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Abstract: Wildlife strikes in aviation represent a serious economic concern; however, in some juris-
dictions, the costs associated with this phenomenon are not collected or shared. This hampers the
industry’s ability to quantify the risk and assess the potential benefit from investment in effective
wildlife hazard management activities. This research project has applied machine learning to the
problem by training a random forest algorithm on wildlife strike cost data collected in the United
States and predicting the costs associated with wildlife strikes in Australia. This method estimated a
mean annual figure of AUD 7.9 million in repair costs and AUD 4.8 million in other costs from 2008
to 2017. It also provided year-on-year estimates showing variability through the reporting period
that was not correlated with strike report numbers. This research provides a baseline figure for the
Australian aviation industry to assess and review current and future wildlife hazard management
practices. It also provides a technique for other countries, airlines, or airports to estimate the cost of
wildlife strikes within their jurisdictions or operational environments.
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1. Introduction

While collisions between aircraft and wildlife, often referred to as wildlife strikes, are
recognized as significant economic and safety issues for the aviation industry [1,2], the
complex nature of costs associated with the management of wildlife strikes poses inherent
challenges. These challenges are exacerbated when missing data hamper cost–benefit
analyses that support effective wildlife hazard management practices. Allan [3] notes
that wildlife-strike-prevention costs, which the airport operator typically bears, are often
expensive; however, they are incurred to save on costs suffered by the aircraft operator,
who often considers these data commercially sensitive and manages them with particular
sensitivity [3,4]. International guidance material recommends the collection of cost impacts
in wildlife strike reporting [5], and some jurisdictions collect these data on a per-strike
basis. However, in Australia, where wildlife strike reporting is mandatory [6], these data
are not collected, creating a gap in the aviation industry’s ability to quantify the wildlife
strike problem and assess the effectiveness of risk management strategies.

In contrast, the United States Federal Aviation Administration (FAA), in collaboration
with the United States Department of Agriculture Wildlife Services (USDA/WS), has
established a voluntary wildlife strike reporting system called the National Wildlife Strike
Database (NWSD) [7]. Reports lodged by aircraft operators may include disclosure of repair
and other costs in two fields of the report. Consequential strike costs are often divided into
direct costs, such as repair costs and indirect costs, such as flight cancellation, passenger
re-booking, and aircraft unavailability [8]. As of May 2022, repair costs were included in
approximately 26% (N = 4910) of strike reports indicating aircraft damage. Other costs
were reported in approximately 32% (N = 4453) of strike reports with a negative effect on
flight recorded [7].
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In response to the limited cost data in the NWSD, Altringer et al. [9] showed that
machine learning techniques could be employed to impute missing data and provide “a
more accurate lower bound estimate” (p. 14) of wildlife strike-related costs. The random
forest modeling technique, in particular, was more effective than traditional estimation
techniques and better at accommodating rare high-impact events. Such techniques utilize a
broad range of explanatory features to calculate costs for reports where this information is
missing. The objective of this research project was to apply machine learning algorithms,
tuned and trained on NWSD data, to the Australian wildlife strike database to derive
annual cost estimates for the years 2008–2017.

Aggregating data across jurisdictions poses specific challenges. As Metz et al. [8] out-
lined, each state approaches the International Civil Aviation Organization’s [10] expectation
of collecting wildlife strike reports differently. Despite being voluntary, the relative size
of the United States’ database is considerable and commensurate with its level of aviation
activity. At the time of this project, the NWSD contained 262,293 strike reports, with an
average annual report total of approximately 15,000 in the five years leading up to and
including 2021. The NWSD contained 101 data fields and was continuously updated and
made available online. In comparison, the Australian wildlife strike database was shared
periodically, typically every two to three years, with the latest version covering 2008 to
2017 [11]. The total number of reports in this database was 17,022, with annual report
numbers averaging approximately 1700 from 2013 to 2017. The Australian Transport Safety
Bureau’s (ATSB) database contained 38 data fields. These differences required careful
planning of the techniques used in this study and consideration of the results.

The following sections outline how we developed and validated a machine learning
algorithm using a constrained NWSD feature set before predicting out-of-sample cost esti-
mates using the Australia wildlife strike database. Initially, we validated the performance
of the constrained feature set, which was required to address the differences in data fields
between the two databases, against the performance of the full feature set established by
Altringer et al. [9]. Then, with satisfactory results, we trained the model on the full NWSD
data set and derived estimates for the wildlife strikes within the Australian database,
covering the period 2008 to 2017. The mean annual costs estimated by the model were
AUD 7.9 million in repair costs and AUD 4.8 million in other costs. Our analysis reveals
that costs and reporting rates are unrelated, indicating a complex relationship between
the constrained feature set and the derived costs. In similar terms to Altringer et al. [9],
we discuss the impact of underreporting and costs not included in this assessment and
conclude that these results similarly represent the lower bound of wildlife strike costs
within Australia. Our aim is that these results will support ongoing efforts to reduce the
risk of wildlife strikes by providing a basis for cost–benefit analyses on existing and future
wildlife hazard management activities.

Perhaps the most quoted wildlife strike cost estimate is the USD 1.2 billion annual
global cost established by Allan [3]. Over 20 years later, this figure, often without inflation-
ary consideration, is quoted in support of a variety of research topics such as operational
bird strike prevention [8], risk assessment modeling [12], robotic harassment [13], species-
specific hazard analysis [14], and strike risk prediction [15]. Allan’s [3] seminal work was
based on the wildlife strike costs, in terms of repair and delay, confidentially recorded by a
single airline over a year, averaged over that airline’s annual movements, and applied to
worldwide traffic numbers. He acknowledged the conservative nature of this estimate by
noting the lack of any significantly damaging strikes in the year in question, the exclusion of
further consequential costs such as increased insurance premiums, and the loss of customer
goodwill/repeat business. He also outlined the estimate’s sensitivity to variations and
settled on the range of USD 1.0 billion to 1.5 billion per year as the best estimate. Allan
and Orosz [16] revised this estimate with an additional year’s data from the same airline.
Following this re-assessment, they estimated that the annual cost to aviation was slightly
higher at USD 1.28 billion but that the range was narrowed to between USD 1.21 billion and
1.36 billion. The same conclusions regarding conservativeness and sensitivity were drawn.
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Sodhi’s [17] discussion on bird and aircraft conflicts included details of overall and
specific costs associated with wildlife strikes as well as the relationship between these costs
and the cost of wildlife hazard management. He reported that the annual repair costs
associated with strikes in the United States between 1990 and 1998 were USD 400 million.
This figure is likely derived from Cleary et al. [18], whose annual report on wildlife strikes
reported to the NWSD included details of the reported costs contained in the database and
an estimate of annual losses based on the assumption that the reported costs represented
between 20% and 100% of all wildlife strikes. The estimate ranged from USD 77 million
to 386 million. A similar approach was taken in the 2006 edition of this report [19], which
revised the estimated range to between USD 111 million and 557 million. The maximum
was again based on the assumption that reported strikes represent only 20% of all wildlife
strikes but with research having been undertaken to support this reporting rate [20,21].

In recent editions of this report (such as [2]), cost estimations have been derived by
projecting losses using what Altringer et al. refer to as the “mean cost assignment” [9] (p. 2)
approach. This technique applies the reported cost means to the number of strike reports
indicating damage, a negative effect on flight, aircraft downtime, repair costs, and other
costs. Dolbeer et al. [2] calculated an annual cost within the United States for 2019 of USD
205 million and noted that this amount underestimated the actual total. A 20% reporting
rate assumption is no longer the basis for calculation, as research shows an improvement
in the reporting ratio of up to 93% for damaging strikes at Part 139 airports between 2009
and 2013 [22]. The resulting assumption is that these figures represent the lower limit of
actual costs associated with wildlife strikes.

Altringer et al. [9] critiqued the mean cost assignment methodology, noting two
disadvantages. The first was the approach’s inability to incorporate multiple aircraft and
strike event features in the calculation. For example, in calculating the mean and assigning
costs, the process does not consider features such as aircraft type, size, engine type, aircraft
component damage, and bird size. The second disadvantage described was the positive
skew in cost data. By way of example, the high-profile wildlife strike involving US Airways
Flight 1549 (the “Miracle on the Hudson”) was reported as costing USD 42 million, and
whether it was included in the 2009 cost calculation or not impacts the annual results by
USD 229 million. This sensitivity to rare high-impact events is similar to the issue raised
with the Allan [3] technique.

In response to these concerns, Altringer et al. [9] employed machine learning to derive
a lower bound estimate that is more accurate and resilient against extreme outcome events.
Using holdout (80/20 train–test split) and cross-validation techniques to tune and test two
machine learning approaches, they compared the results of their random forest model and
artificial neural network to a linear regression model. Repair cost models were trained
on the available repair cost data (n = 4103) and other cost models on similarly available
other cost data (n = 4688). These models were then tested on the holdout test set (repair
n = 1026, other n = 1172), with the random forest model found to outperform both the
linear regression and the artificial neural network. Finally, this model was retrained on
the full cost data set to predict the missing costs for all such reports in the NWSD. The
resulting estimate was a new annual average for lower bound costs in the United States
of USD 54.3 million from 1990 to 2018. The authors note that these results are still subject
to underreporting and are an underestimation of further consequential costs, as outlined
above, with no account of human morbidity or mortality costs.

Research into the reporting of wildlife strike costs within Australia is minimal. Qantas,
in concert with rival airline, Virgin Blue, presented trend data on costs but withheld
the actual cost figures [23]. The following year, Taylor [24] presented more details on
Qantas’ cost consideration figures, advising that while safety was the airline’s primary
concern, the financial impact of wildlife strikes was high and that costs were being made
available within the airline. These costs included traditional repair and other costs as
well as consequential costs and injuries. He provided an overview of estimated costs for
2005 and 2006 and projected costs for 2007. The conservative estimate for 2006 was AUD
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2.36 million, and the projected estimate for 2007 was AUD 2.57 million. He also reported an
average cost of approximately AUD 7000 per bird strike. These figures did not include all
parts of the Qantas group but were considered consistent with different group segments. As
noted above, the Australian wildlife strike database does not include cost data, precluding
analysts from applying the mean cost assignment technique of Dolbeer et al. [2]. Moreover,
while the method proposed by Allan [3] was suggested as a technique that could be applied
within a specific jurisdiction or to individual airlines and airports, this does not appear to
have been documented within an Australian context.

However, the motivation to gather, derive, or otherwise calculate wildlife strike costs
remains. From Allan’s desire “to gather the data necessary to evaluate the true cost-
effectiveness of increasing bird control provisions” [3] (p. 152) through to Altringer et al.’s
goal of assisting in “the efficient allocation of wildlife management resources” [9] (p. 16),
the need for accurate cost estimates is clear. Furthermore, the methodology outlined by
Altringer et al. [9] provides a new avenue for calculating these costs for the Australian
industry using its strike data.

2. Materials and Methods

This research set out to estimate the cost of wildlife strikes in Australia by tuning and
training a supervised machine-learning algorithm and applying it to new data. This and
the following sections provide some background to the random forest modeling technique,
model tuning, and refinement, as well as a description of the process used to predict
wildlife strike costs using the Australian wildlife strike database. As mentioned above, this
project leverages the work of Altringer et al. [9], who identified their random forest models
as performing the best. They outlined a model training and testing workflow based on
Raschka [25], which was tailored to this project’s objective.

Supervised machine learning involves the development of a function (ƒ) that will
produce a desired output (or target, y) from a set of given inputs (or features, x) [26]. In real-
world problems, the discovery of the most accurate function is complicated by complex data
structures, non-linear relationships, and hidden associations [27], as well as the volume of
data and computational resources required to derive and refine such models [26]. Machine
learning addresses these challenges by automating computational tasks and feedback loops
to derive optimal functions based on minimizing loss (L). Random forest modeling is a
technique based on decision trees. Many such trees are developed using randomization,
and each tree votes with the most popular outcome becoming the predicted target [28].
A decision tree is a multi-stage or layered approach whereby selected features become
nodes on which branches are split on the feature’s values. Subsequent nodes and branches
propagate until a terminal node or leaf is reached. The leaf will provide either a classification
or mean value for the target variable. The random forest approach aggregates a large
number of trees created through randomization with hyperparameters that determine the
number of trees, number of features, tree depth, splitting, and termination as defined by
the user through experimentation.

2.1. Model Tuning, Training, and Development

We used Python with the Scikit-learn implementation of random forest through the
random forest regressor method [29]. We followed a modified modeling workflow (Figure 1)
similar to that established by Altringer et al. [9]. First, records with missing cost data (repair
and other costs) were discarded with an evaluation of each model’s performance based on
the holdout method [25]. Next, an 80/20 train–test split was carried out on the remaining
data before model tuning. We completed initial hyperparameter selection through a
randomized grid search across a broad range of parameters, including the number of trees
(n_estimators), number of features (max_features), maximum tree depth (max_depth),
minimum number of samples required to split a node (min_samples_split), and minimum
samples required in a leaf (min_samples_leaf). Based on these results, we conducted a
refined grid search to confirm optimal hyperparameters. Both processes employed 10-fold
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cross-validation to address potential biases in data selection. Finally, we evaluated model
performance using the test data set with 100 random samples (65% of the data set without
replacement) of the model’s prediction errors used to calculate summary statistics in terms
of mean squared error, mean absolute error, and R-squared.
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2.2. Model Development, Refinement, and Prediction

As noted above and in more detail below in Section 4, the Australian wildlife strike
database contained fewer explanatory features than the NWSD. To ensure that the pre-
dictive power of the models based on a constrained feature set was comparable to that
achieved by Altringer et al. [9], we tuned, trained, and tested the random forest regressor
on a full feature set and a constrained feature set to compare the results. Models based on
repair and other costs were developed and refined independently. We assessed the accuracy
of these models to evaluate whether they would support predictions of costs based on the
Australian data feature set. The final models were retrained on the full cost data sets (repair
and other costs with “destroyed” aircraft included) and used to predict the “missing” costs
for the Australian wildlife strike data.

2.3. Economic Conversion

The costs predicted by the final models are in 2021 US dollars. We converted these
figures to 2021 Australian dollars by applying a “repair cost” conversion factor and the
average 2021 foreign exchange rate.

Using a data set of 2017 to 2022 global fleet and maintenance repair and overhaul
(MRO) costs [30], we calculated that the mean MRO cost difference in the Asia Pacific region
was 30% higher than that of North America. These costs were broken down according
to major aircraft components, with conversion factors ranging from 0.88 for component
maintenance to 1.52 for engine repair. Given the breakdown of aircraft component damage
resulting from wildlife strikes [2], we weighted each conversion ratio according to the
proportion of component damage and calculated an overall cost conversion factor of 1.33
for damaging strikes. For “other costs”, we used a one-to-one cost conversion ratio as
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insufficient data were available on the factors used to calculate these figures and their
relative proportions.

We applied a foreign exchange conversion rate of 1.33 using the mean 2021 US dollar
to the Australian dollar rate according to the Reserve Bank of Australia (RBA) [31].

2.4. Data
2.4.1. United States Data—Cost Data Summary Statistics and Variations

The NWSD download contained 262,693 wildlife strike reports with 101 data fields
and differed from the Altringer et al. [9] data set in the following ways. The most obvious
was the additional reports submitted between the Altringer et al. [9] research and this
project. Approximately 25,000 additional reports were contained in this NWSD download,
but this did not represent the only change in the data. We also considered ongoing and
periodic curation of the NWSD when comparing results between different projects. Such
curation includes removing duplicates and validating reports, and would impact each
database’s summary statistics. Therefore, we reviewed these statistics for cost-related fields
and found evidence of significant curation in the reductions of cost report numbers and
overall damaging strike reports (Table 1). Altringer et al. [9] reported that 10.5% of strikes
were reported as damaging, whereas our data showed 7.2% as damaging.

Table 1. Summary statistics of repair and other cost data.

Mean SD Min Median Max N Missing
Data

Repair Costs
Altringer et al. [9] a $152,646 $926,856 $1.02 $13,670 $42,117,878 5129 19,838 b

FAA (2022) c $171,491 $1,010,921 $1.00 $15,304 $45,432,000 4910 13,932 b

Other Costs
Altringer et al. [9] a $16,225 $149,036 $0.01 d $234 $6,419,450 5860 231,445
FAA (2022) c $24,839 $187,126 $0.01 d $716 $6,925,000 4453 258,240

a All figures reported by Altringer et al. [9] are in 2018 US dollars. b Strike reports that indicate nil damage are
assumed to have USD 0 repair cost and were excluded from Altringer et al.’s [9] imputation process. Missing
values were not used in this analysis but are included here to highlight the curation of the data that have become
available since the earlier research project. c All figures derived from this project’s retrieval of the NWSD are
reported in 2021 US dollars. d As per Altringer et al. [9], other cost values of USD 0 were substituted with USD
0.01 to facilitate log transformation.

Regarding costs, the NWSD contained four fields with repair and other costs reported
in raw and inflation-adjusted (2021) values. We used inflation-adjusted values and noted
the same wide variation and positive skew identified by Altringer et al. [9]. For this
reason, we, too, applied a log transformation to these fields for use in model training,
testing, and prediction before transforming back to dollar values for the presentation of
results. The increase in mean and median figures for repair costs (mean = AUD 171,491,
median = AUD 15,304) generally align with inflation [32]. However, the increases in other
cost values (mean = AUD 24,839, median = AUD 716) suggested that the variation was
impacted by factors other than inflation and could result from a general upward trend in
reported other costs or curation.

2.4.2. Australian Data—Full and Constrained Feature Sets

The latest edition of the Australian wildlife strike database was published in two
separate data tables, specifically bird strikes and animal strikes [11]. The bird strike data
table included flying bird and bat species, while the animal database contained terrestrial
animals (e.g., kangaroos, rabbits, and goannas) and flightless birds (i.e., emu). The bird
strike data table contained 38 data fields and the animal strike data table contained 34 fields,
all similarly labeled or comparable to those in the bird strike data table. The missing fields
were engine ingestion, number of birds struck, number of birds seen, and runway number.
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We concatenated the data tables, inserting null values into the animal strike data table for
the missing fields. The total number of strike reports in the combined database was 17,022.

Not all explanatory features used by Altringer et al. [9] were present in the Australian
database (Table 2). This difference required evaluating the random forest model on a
constrained feature set. Where variables existed in both databases, these features were
common to the full and constrained feature sets. For ease in coding and to address minor
labeling inconsistencies, data were relabeled in line with the coding contained in the Manual
on the ICAO Bird Strike Information System (IBIS) [5]. Australian data categorization
differed slightly from the NWSD and IBIS approach for number seen and number struck
variables. Numbers seen/struck labeled “>10” were coded to the category labeled “11–100”.
Similarly, the Australian data’s animal size label “very large” was coded as “large” to align
with the NWSD and IBIS. Both the NWSD and Australian data for engine ingestion were
also re-coded. For the NWSD, a change in the data structure implemented in March 2021
was reversed for all subsequent data. For the Australian data, any unique labeling was
re-coded to binary as appropriate. Component struck data also required restructuring due
to the lack of distinction in the Australian data between nose and radome. As these data
were already structured as dummy variables, this restructuring involved the combination
of these fields into a new data field. The pilot warned, effect on flight, component damaged,
cloud cover, and time of day variables, which were not found in the Australian data, were
not included in the constrained feature set.

Table 2. Variables used in full [9] and constrained feature sets.

Variable Full Feature Set Constrained Feature Set Difference

Aircraft Class X X
Engine Type X X
Aircraft Mass X X
Pilot warned X 7 Not included in Australian data
Phase of flight X X
Number seen X X Australian data stop at >10
Number struck X X Australian data stop at >10

Animal size X X
Australian data included “very
large”—recategorized as “large”

Component struck X X
Australian data did not distinguish
radome, constrained NWSD data
combined nose and radome

Effect on flight X 7 Not included in Australian data
Damage type X X
Component damaged X 7 Not included in Australian data

Engine ingestion X X

Change in NWSD data from March 2021
reversed. Australian data included extra
labels for number of engines, relabeled as
binary

Cloud cover X 7 Not included in Australian data
Time of day X 7 Not included in Australian data

As the Python implementation of random forest does not fit on categorical variables,
these variables must be converted to numerical values. We used one hot encoding to create
new fields for each categorical label, with each value assigned a binary value according
to this label. For example, data in the animal size variable were labeled either “small”,
“medium”, “large”, or “missing”. Encoding these data created four new variables with
labels such as “animal size small” and “animal size medium”. A strike report with the
animal size labeled “small” would be coded with 1 in the “animal size small” variable and
0 in the others. Following this process, the number of features in the full feature set was
94. In the constrained feature set, it was 55 following the removal of the turbojet engine
type and the birds seen/struck greater than 100 features, for which no data existed in the
Australian database.
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3. Results
3.1. Model Evaluation—Full and Constrained Feature Sets

Following randomized and refined grid searches, we established two sets of optimal
random forest hyperparameters for the full feature set. We evaluated these models’ perfor-
mance against their test data sets using mean squared error (MSE), mean absolute error
(MAE), and R-squared. This process was repeated using the constrained feature set with
the same metrics calculated. For repair costs, the models trained on both the full and con-
strained feature sets show slightly better performance compared to the Altringer et al. [9]
model in terms of mean square error and comparable performance in mean absolute error
but poorer, albeit marginal, performance on R-squared. For other costs, however, our
models performed markedly poorer than the equivalent Altringer et al. [9] model but,
overall, similar to the repair cost models. The differences between full and constrained
feature set model performances were found to be significant, using a t-test, but within 3%
(Table 3).

Table 3. Feature set evaluation.

Mean Square Error
Mean (SD)

Mean Absolute Error
Mean (SD)

R-Squared
Mean (SD)

Repair costs
Altringer et al. [9] 2.637 (0.088) 1.244 (0.022) 0.504 (0.015)
Full feature set 2.434 (0.082) 1.234 (0.022) 0.486 (0.013)
Constrained feature set 2.474 (0.084) 1.240 (0.022) 0.475 (0.017)
Performance difference
(constrained vs. full feature set) −1.65% (p < 0.001) −0.08% (p = 0.012) −2.26% (p < 0.001)

Other costs
Altringer et al. [9] 1.822 (0.109) 0.838 (0.021) 0.945 (0.003)
Full feature set 2.567 (0.164) 1.139 (0.024) 0.536 (0.020)
Constrained feature set 2.640 (0.198) 1.164 (0.026) 0.521 (0.026)
Performance difference
(constrained vs. full feature set) −2.84% (p = 0.004) −2.19% (p < 0.001) −2.80% (p < 0.001)

3.2. Australian Wildlife Strike Cost Estimates

Using the optimal hyperparameters established above, we retrained each random
forest model on the full NWSD data set of constrained features and then predicted cost
values on the Australian data set. We applied the cost conversion factors to each estimated
cost and calculated annual totals (Figure 2). For 2008–2017, the mean repair cost estimate
was AUD 7.9 million per year, and the mean other cost estimate was AUD 4.8 million per
year. The estimated overall cost for the same period ranged from AUD 6.29 million in
2017 to 20.21 million in 2009. These figures are expressed in 2021 Australian dollars. There
appears to be a strong relationship between repair and other costs, with annual averages
tracking similar trends. However, we found a weaker relationship between these costs on a
report-by-report basis. Neither annual totals show a relationship with the total number of
reported wildlife strikes (Figure 2).
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4. Discussion
4.1. Model Performance

The first step of the model development, training, and testing process was to confirm
that our implementation of the random forest modeling technique at least matched the
performance achieved by Altringer et al. [9]. Overall, the repair cost model performance
was considered comparable and acceptable. However, our implementation of the other cost
model performed noticeably worse, requiring further investigation (Table 3). Therefore, we
closely inspected the other cost data set that Altringer et al. [9] used (see [33]). This earlier
data had approximately 1400 more records (Table 1). Our closer inspection showed that
over 2200 records had been removed from the NWSD since Altringer et al. [9] downloaded
their data. Of these records, 1907 (86%) had reported a cost of AUD 0. All AUD 0 reported
other cost records were removed from the NWSD, with six new reports added in 2021. We
surmise that the random forest model generally performs better when dealing with zero-
inflated data. We confirmed this by testing our implementation using the Altringer et al. [9]
random forest model and their original data. The results were comparable, indicating that
the changes made to the data between this earlier retrieval and our retrieval have adversely
impacted the modeling technique’s ability to predict out-of-sample values.

As such, the results for the full feature set for repair and other costs were considered
satisfactory for developing random forest models based on the constrained feature set. As
expected, there was a reduction in predictive performance when the constrained feature
set was used. However, this reduction was minimal, with the lowest impact being mean
absolute error for the repair cost model at 0.08% and the maximum being 2.84% for the
mean squared error for the other cost model. Overall, the performance of these models
using the constrained feature set was considered acceptable, and estimation of wildlife
strike costs using the Australian database was undertaken.

4.2. Cost Estimates

Unlike the estimates made by Altringer et al. [9], these results cannot be compared
to previous estimations or incomplete data. Instead, they provide a new foundation to
build upon and offer some new insights into the impact of wildlife strikes on aviation in
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Australia. In the first instance, these results support the contention that wildlife strike
numbers or rates should not be the focus of wildlife strike mitigation efforts and that a
risk-based approach is preferred [34]. The reductions in costs from 2009 to 2014, counter
to the generally rising wildlife strike numbers, and the contrasting spike in costs through
2015–2016 should focus effort on those periods to identify what was working versus what
changed. The reasons behind these trends are worthy of further exploration with potential
causes coming from ecological factors such as increased presence of larger birds, such
as predators, or operational factors such as new aircraft types or increased post-strike
inspection requirements. Despite these unanswered questions, the estimated cost values
achieved the aim of the study by providing a basis for future cost–benefit analyses at a
national, airport, or airline level.

As with previous cost estimation studies and as made quite explicit by Altringer et al. [9],
these estimates are conservative and may represent the lower bound of actual costs incurred
due to wildlife strikes. These figures did not incorporate consequential costs suffered by the
airline and its passengers, such as network delays, rebooking, and accommodation costs,
nor do they include morbidity and mortality costs. Luckily, the Australian data did not
include any fatalities, although 12 wildlife strikes did result in injuries, with one reported
as serious. The potential negative impacts of report quality and accuracy on the estimates
produced by the model also remain present. Responsible persons, the term established
by Australia’s occurrence reporting regulations [6], may submit a wildlife strike report
before the extent of the impact is known, or they may not be aware of certain aspects of
the strike event. For example, the level of damage categories appeared prominent in the
feature importance breakdown, yet this field was reported as “unknown” or left blank in
20% of reports. Similarly, component damaged categories are important features in the
predictive model, but the Australian database only allows one component to be reported.
The reason behind this is unknown and worthy of review by the responsible authority.

Much like the sensitivity issue around wildlife strike cost data that precipitated this re-
search, the availability of maintenance, repair, and overhaul cost data unavoidably impacts
the research results. Extending the application of this methodology beyond the jurisdiction
in which the training data are based necessitates economic conversion. Examples of costs
that differ between jurisdictions include but are not limited to the fabrication, transport,
and storage of aircraft parts and the costs of skilled labor. Without consideration of the
economic factors within the target jurisdiction, the predicted costs will not be relevant to
its environment. This could result in either an under or overestimation depending on the
relative economic factors existent within the target jurisdiction. The method applied in this
case represented the best approach available to the authors. Data on other consequential
costs are even more challenging to obtain, with definitions of what can be included and
what is included in any specific report providing the greatest challenge. In this case, no
reasonable economic conversion factor could be applied. In both of these cases, further
research would improve the quality of these results, but within the objective of this research,
that impact was not expected to be significant.

5. Conclusions

In their conclusion, Altringer et al. [9] noted the superiority of machine-learning
techniques to econometric tools when dealing with missing data. This paper extends that
conclusion by highlighting that machine learning techniques can also reach into related but
distinct data sets. After confirming that a constrained feature set would not significantly
weaken the techniques’ accuracy, we used the wildlife strike and cost data contained in
the NWSD to train two random forest machine learning algorithms to predict the costs
associated with wildlife strikes reported in Australia. These algorithms predicted that
wildlife strikes cost the Australian aviation industry approximately AUD 7.9 million in
repair costs and approximately AUD 4.8 million in other costs on average each year between
2008 and 2017.
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Due to reporting quality and economic conversion limitations, these results suffer
from a few limitations. Firstly, while estimations are provided on a per-strike basis, the
above modeling technique still relies on some mean cost assignment, albeit across a broad
set of features with complex weightings. This can be seen in a cost estimation being made
for every wildlife strike report in the other costs category. While one could argue that every
strike does incur a cost, even if limited to time taken to inspect the aircraft, it might be more
reasonable to assume that this could lead to an overestimate in other costs. However, the
likely tendency to underreport these costs in the training data was thought to counteract
this issue, if not overcome and lead to a total underestimate of the true cost. Nonetheless,
these predicted costs provide a baseline for the industry to use in future wildlife strike
mitigation efforts, including research, collaboration, reporting systems, and education.

The complexity of the environment in which wildlife strikes occur in aviation necessi-
tates a data-driven approach. When addressing the risk posed by wildlife to flight safety,
aerodrome operators are encouraged to look at historical and other data on a per-species
basis [35]. This analysis is thought to provide wildlife hazard managers with the best
framework to identify and develop targeted risk mitigation strategies [34]. Until now,
aerodrome operators have struggled to obtain data regarding the potential benefit of their
risk mitigation efforts, calculated here as a reduction in costs associated with wildlife strikes.
This research provides the Australian aviation industry with a broad baseline of wildlife
strike costs. The technique establishes a method for estimating the costs and potential
benefits at an aerodrome and aircraft operator level. The algorithm’s weighted use of
multiple strike features allows predicted costs to be based on the level of detail contained in
a single aerodrome’s wildlife strike reports. This enables the aerodrome operator to assess
past and future risk mitigation activities against current data held within their system or
the national wildlife strike reporting database. Finally, as Altringer et al. [9] concluded,
this technique also facilitates the calculation of relative risk between aerodromes, assisting
aircraft operators in deciding where to allocate their wildlife hazard management efforts or
which of their destination aerodromes may require support.
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