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Abstract: Traditional methods are unable to effectively assess the health status of engine bleed air sys-
tems. To address the limitation, this paper proposes a methodology for constructing health indicators
using multi-level feature extraction. First, this approach involves data-level feature extraction from
Quick Access Recorder (QAR) data and employs a method of significance compensation to process
the QAR data. Second, through unsupervised learning, the ResNet Deep Autoencoder (RDAE) is
utilized to do the feature-level feature extraction from the processed data. This can solve the problem
of lacking annotated data and obtain the health indicators of the engine bleed air system. Third, the
method was experimented on one year of QAR data from a specific airline company. The results
demonstrate that the RDAE approach achieves the best performance in constructing health indicators
for the system. It achieves a miss rate of 0.0523 for the duct pressure of 5th stage bleed , reducing the
miss rate by 0.2810 compared to Kernel Principal Component Analysis (KPCA). It also achieves a
miss rate of 0 for the pre-cooler outlet temperature, reducing the miss rate by 0.0035 compared to the
Deep Autoencoder (DAE). The results indicate that the proposed method provides a more effective
assessment of the health status of the engine bleed air system.

Keywords: engine bleed air system; QAR; RDAE; multi-level feature extraction; health indicators

1. Introduction

The engine bleed air system is a vital component that provides air to various aircraft
systems. It plays a crucial role in maintaining optimal cabin pressure and temperature
during flight, ensuring the safety, comfort, and proper functioning of both passengers and
crew members, as well as multiple onboard equipment. The functions of the engine bleed
air system include: supplying compressed air, maintaining cabin pressure, controlling cabin
temperature, providing environmental control. Aircraft manufacturers and airlines place
significant importance on the design, maintenance, and monitoring of the engine bleed air
system to ensure its stable and reliable performance [1,2].

The engine bleed air system has a high failure rate during actual aircraft operation, and
troubleshooting by maintenance personnel often relies on manuals, resulting in high time
costs and low efficiency. With the emergence of PHM (Prognostics and Health Management)
technology, the maintenance approach has shifted from post-maintenance to condition-
based maintenance, significantly reducing time and maintenance costs while improving
maintenance efficiency [3,4]. Additionally, aircraft are equipped with data recorders,
such as the commonly used QAR (Quick Access Recorder), making data-driven PHM
techniques the mainstream approach. However, flight data presents challenges with its
large volume and high dimensionality, making traditional data-driven fault diagnosis
methods inadequate to meet the requirements [5,6].
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For data-driven methods, data preprocessing and feature extraction have a significant
impact on the effectiveness of deep learning in PHM applications. Actual QAR data presents
challenges such as high dimensionality, inconsistent lengths, and lack of annotation, making
it difficult to extract meaningful features. However, feature extraction is the first crucial
step in building effective deep learning models [7,8]. Therefore, in the data processing and
feature extraction stages, it is important to consider the characteristics of the system and
the data itself and adopt targeted approaches to achieve effective state assessment [9,10].

In recent years, numerous studies have emerged that apply deep learning to air-
craft health management. For instance, Reference [11] proposed a novel one-dimensional
multi-channel convolutional neural network (1DMCCNN) for diagnosing fault patterns. It
extracts fault signals by constructing a landing gear hydraulic system using normal and
fault models, and the inputs the extracted signals as multi-channel data into the convolu-
tional neural network. The network used in the fault classification experiments achieves
significantly higher accuracy compared to traditional machine learning algorithms. In
Reference [12], a particle swarm optimization hybrid fruit fly algorithm is employed to
optimize the backpropagation neural network, effectively addressing the issues of weight
and bias in the network. This optimization approach yields high performance in diag-
nosing faults in the rudder system. Reference [13] utilizes an improved extreme learning
machine to establish a novel fault diagnosis model for a commercial aircraft’s elevator
system. Additionally, Kernel Principal Component Analysis (KPCA) is employed to reduce
the dimensionality of the aircraft fault data, thereby enhancing the diagnostic accuracy of
the model. These studies demonstrate that applying deep learning techniques to aircraft
health management can yield promising results.

Furthermore, in the context of the engine bleed air system, there are also several
notable research works. For instance, Reference [14] focuses on the fault detection of
commercial aircraft bleed air systems and proposes a fault detection method using a multi-
cycle data feature multiple linear regression model. Reference [15] presents a multivariate
state estimation technique based on a dynamic process memory matrix to provide early
warning for fault risks in the bleed air system. Reference [16] models multiple components
of the engine bleed air system and predicts the failure rates of these components using
neural networks. The study verifies that neural networks exhibit superior predictive
performance compared to Weibull models.

However, most of these studies rely on simulated data to conduct their research due
to the challenges associated with real aircraft operational data. These challenges include
a scarcity of fault data relative to normal data and a lack of annotations, which make it
difficult to establish effective deep learning algorithm models. In the context of the bleed air
system, models mentioned above exhibit weaker learning capabilities in handling complex
data features. There is relatively limited research available on the application of deep
learning techniques to health management. Furthermore, the utilization of unsupervised
learning to address the issue of data lacking annotations in real-world scenarios has been
relatively limited in previous studies. Unsupervised learning offers several advantages
in handling unannotated data without the need for manual labeling, which significantly
reduces time costs [17]. This aligns well with the characteristic of flight data lacking
annotations. Additionally, unsupervised learning can automatically extract features and
uncover underlying patterns within the data [18], facilitating the exploration of latent
patterns and hidden information within flight data.

Therefore, to address the aforementioned issues present in actual flight data, we
propose a method for constructing health indicator of the engine bleed system based on
multi-level feature extraction. The study utilizes Quick Access Recorder (QAR) data as the
basis for experimental research. The proposed method does not require annotated data.
Instead, it involves data-level feature extraction by extracting statistical features of the duct
pressure of 5th stage bleed and the bleed air temperature from the QAR data. Second, it
involves feature-level feature extraction where unsupervised learning is employed using
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RDAE to map the data-level features. The method enables effective evaluation of the health
status of the engine bleed air system.

The main contributions of this paper are summarized as follows:

1. To address the challenge of assessing the operational status of engine bleed air systems,
we propose a multi-level feature extraction approach for constructing HIs (Health
Indicators) that quantify the health status of the engine bleed air system based on data
collected from each flight cycle.

2. In the process of constructing health indicators for the engine bleed air system, we
solve the issue of varying cycle lengths in the flight data. We introduce a data-level
feature extraction method that transforms the original QAR data, which has unequal
cycle lengths, into samples of equal length with consistent feature spaces. Additionally,
we apply significant compensation to certain elements within the samples to highlight
their numerical features.

3. Considering the unannotated nature of actual flight data, we propose an enhanced ap-
proach named RDAE (ResNet Deep Autoencoder). RDAE is based on the autoencoder
algorithm and aims to extract features from preprocessed data using unsupervised
learning. The effectiveness of the proposed methods was validated through experi-
ments conducted on one year of QAR data from a specific airline company.

The remainder of this paper is organized as follows. Section 2 presents the methodol-
ogy part of the proposed framework, including key parameter selection, data-level features
extraction and feature-level feature extraction. Section 3 describes our experimental results
and analysis, as well as the comparison results with other methods. Section 4 offers our
conclusion.

2. Methodology

The construction method for health indicators based on multi-level feature extraction
is illustrated in Figure 1. It primarily consists of three steps: key parameter selection, data-
level feature extraction, and feature-level feature extraction. These steps aim to transform
each flight cycle data into a HI (Health Indicator), enabling the quantification of the engine
bleed air system’s health status.

Figure 1. Framework for Multi-level Feature Extraction.

2.1. Key Parameter Selection

This study utilizes the Quick Access Recorder (QAR) data from a airline’s Boeing
737 fleet over one year as the underlying data support for experiments. There are several
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continuous parameters associated with the engine bleed air system, as shown in Figure 1.
These parameters include ALTITUDE, MACH, SAT (Static Ambient Temperature), N1,
N2, DP (Duct Pressure of 5th stage bleed), EGT (Exhaust Gas Temperature), PCOT (Pre-
Cooler Outlet Temperature), and more. Taking into account the expertise of the airline
company’s specialists, we have selected DP and PCOT as the fundamental parameters for
calculating the health indicators of the engine bleed air system.

DP (Duct Pressure of 5th stage bleed) is the bleed air pressure provided by the 5th
stage of the high-pressure compressor. During normal operation, 5th stage bleed is used
to drive various systems, such as pneumatic source, air conditioning, and pressurization
systems. PCOT (Pre-Cooler Outlet Temperature) refers to the temperature of the air leaving
the pre-cooler unit. The pre-cooler is a heat exchanger and is responsible for cooling the
compressed air before it is distributed to various aircraft systems. DP and PCOT are both
critical parameters for monitoring and assessing the health status of the bleed air system.

2.2. Data-Level Feature Extraction

To address the issue of varying lengths in flight cycle data generated during aircraft
flight, this study employs dataset feature extraction to extract data-level features from DP
and PCOT. The process of extracting data-level features is illustrated in the as Algorithm 1.

Algorithm 1 Data-level feature extraction from DP and PCOT

Input: DP or PCOT;
Output: X∗DP or X∗PCOT ;

1: Find the number of rows k and columns m of X∗DP or X∗PCOT ;
2: Initial X∗DP or X∗PCOT , sorted in chronological order;
3: repeat
4: Initial empty Queue 1;
5: Initial empty Queue 2;
6: Read a column of data by column index j;
7: repeat
8: Read a row of data by row index i;
9: if The basic conditions are met then Place PCOT value in Queue 2;

10: end if
11: if The basic conditions are met and DP value is a duct pressure of 5th stage

then Place DP in Queue 2;
12: end if
13: i = i + 1;
14: until i = k− 1.
15: if Queue 2 is not empty then
16: Find each characteristic for Queue 2;
17: Splice all the feature, get the feature vectors;
18: Put the feature vector into Queue 1;
19: Place Queue 1 in i row of X∗DP or X∗PCOT ;
20: end if
21: j = j + 1;
22: until j = m− 1.

Before starting the data-level feature extraction for DP or PCOT, the QAR data for the
Boeing 737 fleet for one year needs to be sorted in chronological order. An empty Queue 1
is then established to store the feature vectors for each flight cycle. Next, using a loop, the
feature information is extracted for each flight cycle, and before the feature extraction, an
empty Queue 2 is created to store the DP or PCOT values for each flight cycle.

1. Determine whether each row of data in each flight cycle satisfies the basic conditions.
The basic conditions include both engine start valves closed, APU bleed valve closed,
engine anti-ice valves and wing anti-ice valves closed, and left and right isolation
valves open.
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2. If each row of data in the flight cycle satisfies the basic conditions, determine the
stage of the bleed air and check if it satisfies the criteria for the DP. If it satisfies
the criteria, add the current DP to Queue 2. Because DP involves multi-level bleed
air pressures (such as 5th stage, 9th stage, etc.), the same pressure value represents
different meanings at different stages. Therefore, it requires judgment. However,
PCOT is a temperature value generated by a single sensor, so it does not require any
judgment and can be directly placed into Queue 2.

3. After scanning each row of data in the flight cycle, Queue 2 contains the collection of
DP or PCOT values for that flight cycle.

4. If Queue 2 is not empty, perform feature calculations on Queue 2. The calculations
can include finding the maximum, minimum, and average values of queue 2, as well
as determining the number of elements in different pressure ranges for detecting
abnormal DP or PCOT values. The number of elements in each range represents the
frequency of occurrence within the range, and since the QAR data has a sampling
frequency of 1 Hz, the occurrence value is equal to the time duration.

The aforementioned statistical quantities represent the extracted features. After com-
pleting the feature extraction for each flight cycle, we obtain a k×m-dimensional matrix X
(Queue 1), consisting of m DP or PCOT features for k consecutive flight cycles.

X = {x0, x1, · · ·, xi, · · ·, xm−1} ∈ Rk×m (1)

In the Equation (1), X represents the feature matrix of either DP or PCOT. It consists
of k×m-dimensional vectors, denoted as xi. The Table 1 illustrates the division criteria for
DP and the information represented by the index positions of the pressure feature vectors
generated for each flight cycle. In the table, there are 163 abnormal pressure intervals for
duct pressure of 5th stage bleed DP. During the normal regulation phase, the pressure
ranges from 34 psi to 50 psi. The omitted parameters include f30−32, f28−30, f26−28, f24−26,
f22−24, f18−22, f14−18. During takeoff and climb, the duct pressure of 5th stage bleed may
be slightly higher, so the high-pressure threshold is set at 53 psi. A 5th stage bleed air
pressure of 22 psi during descent indicates a significant performance decline in the related
components. Due to the comprehensive consideration of airline costs, the high-pressure
threshold is set at 22 psi. When the pressure is below 10 psi, it is considered the highest
level of abnormality, indicating a lack of bleed air.

Table 1. DP (Duct Pressure of 5th stage bleed) features.

Name Column Indices The Meanings Units

DPmax 0 The maximum value of DP. psi
DPmin 1 The minimum value of DP. psi
DPmean 2 The mean value of DP. psi
f60−70 3 The number of occurrences when 70 > DP ≥ 60. -
f55−60 4 The number of occurrences when 60 > DP ≥ 55. -
f53−55 5 The number of occurrences when 55 > DP ≥ 53. -
f32−34 6 The number of occurrences when 34 > DP ≥ 32. -
· · · · · · · · · · · ·
f10−14 14 The number of occurrences when 14 > DP ≥ 10. -
f0−10 15 The number of occurrences when 10 > DP ≥ 0. -

In Table 2, the values represent the pre-cooler outlet temperature PCOT during each
flight cycle. According to service bulletins of Boeing and relevant manuals, if the tempera-
ture exceeds 450 ◦F, it can be considered as an elevated bleed air temperature. However,
in practical operations, airlines may adjust the alarm threshold flexibly due to the lower
benefits of detecting early-stage performance degradation with higher sensitivity. There-
fore, in this case, the threshold for abnormal pre-cooler outlet temperature is set at 455 ◦F
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to ensure that the distribution of samples tends to be consistent when there is no significant
performance decline observed.

Table 2. PCOT (Pre-Cooler Outlet Temperature) features.

Name Column
Indices The Meanings Units

PCOTmax 0 The maximum value of PCOT. ◦F
PCOTmean 1 The mean value of PCOT. ◦F
t455−460 2 The number of occurrences when 460 > PCOT ≥ 455. -
t460−465 3 The number of occurrences when 465 > PCOT ≥ 460. -
t465−470 4 The number of occurrences when 470 > PCOT ≥ 465. -
t470−475 4 The number of occurrences when 475 > PCOT ≥ 470. -
t475−480 5 The number of occurrences when 480 > PCOT ≥ 475. -
t480−485 6 The number of occurrences when 485 > PCOT ≥ 480. -
t485−490 7 The number of occurrences when 490 > PCOT ≥ 485. -

In Figure 2, during the 826th flight cycle, the frequency spent with duct pressure of
5th stage bleed DP ranging from 32 to 34 psi is 3139 occurrences, and the minimum DP
is above 28 psi. On the other hand, during the 828th flight cycle, the frequency of the DP
dropping below 10 psi is 850 occurrences. Clearly, the severity of the anomaly in the 828th
cycle is higher. 3139 is much larger than 850. However, if we input these two vectors into
the feature extraction model, the model may erroneously perceive the 826th flight cycle to
be in a relatively worse health state and map it to an unreasonable probability distribution.
This hinders the effective application of the multi-level feature extraction approach.

Therefore, after achieving consistency in the value range of multidimensional numeri-
cal data, it is necessary to consider additional preprocessing steps to enable the model to
perform a more reasonable feature mapping of the feature vectors. In this regard, emphasis
is given to the numerical features of elements representing severe abnormalities, compen-
sating for the saliency of these features. The method for DP is illustrated in Algorithm 2,
and the method for PCOT is illustrated in Algorithm 3.

Algorithm 2 The method for DP

Input: X∗DP;
Output: XDP;

1: Initial i = 0 j = 3;
2: Find the number of rows k and columns m of X∗DP;
3: repeat
4: Read X∗DP by row index;
5: repeat
6: Read X∗DP by column index;
7: if X∗DPi,m−2

≥ 30 then Assign X∗DPi,j
= 30;

8: else The value of X∗DPi,j
remains unchanged;

9: end if
10: j = j + 1;
11: until j = m− 1
12: if X∗DPi,m−2

≥ 30 then Assign X∗DPi,6:(m−3)
= 30;

13: else if X∗DPi,m−1
≥ 30 then Assign X∗DPi,6:(m−2)

= 30;
14: else XDPi,j = X∗DPi,j

;
15: end if
16: i = i + 1;
17: until i = k− 1.



Aerospace 2023, 10, 645 7 of 15

Algorithm 3 The method for PCOT

Input: X∗PCOT ;
Output: XPCOT

1: Initial i = 0, j = 2;
2: Find the number of rows k and columns m of X∗PCOT ;
3: repeat
4: Read X∗PCOT by row index;
5: repeat
6: Read each column of X∗PCOT by column index;
7: if X∗PCOTi,j

≥ 60 then Assign X∗PCOTi,j
= 60;

8: else The value of X∗PCOTi,j
remains unchanged;

9: end if
10: j = j + 1;
11: until j = m− 1
12: if X∗PCOTi,m−1

≥ 60 then Assign X∗PCOTi,2:(m−2)
= 60;

13: else The value of X∗PCOTi,j
remains unchanged;

14: end if
15: until i = k− 1.

Figure 2. Part of the Feature Matrix of DP.

2.3. Feature-Level Feature Extraction

Feature-level feature extraction is mainly achieved by using the ResNet Deep Autoen-
coder (RDAE) which is an improved architecture of the autoencoder (AE). The AE and
RDAE both consist of two main components: the encoder and decoder, as shown in the
Figure 1. The encoder’s main function is to “encode” the input high-dimensional samples
(XDP and XPCOT) by mapping them to a lower-dimensional representation. At the same
time, it is also necessary to obtain the hidden vector (HIDP and HIPCOT). The main function
of the decoder is to “decode” the hidden vector and reconstruct the original samples by
upsampling the hidden vector.

The RDAE in this paper adopts unsupervised learning, where both the input and
output are unannotated samples. During the training process, the model extracts features
from the original samples and aims to minimize the difference between the reconstructed
samples and the original samples by adjusting the network parameters. Mean squared
error (MSE) is used as a measure of the difference between the original samples and the
original samples in the model training process. The formula for MSE is as Equation (2):

MSE =
1
k

k

∑
i=1

(xi − x̂i) (2)

In Equation (2), k represents the number of samples, xi represents the i-th original
sample vector, and x̂i represents the i-th reconstructed sample vector.

RDAE is a variant of the AE architecture that incorporates residual connections in-
spired by Residual Neural Networks (ResNets). The term “Shortcut” in Figure 3 refers to a
direct connection that adds the input to the output of a layer, also known as the “residual”
connection. This connection addresses the issue of vanishing gradients and enhance the
network’s learning capability and performance. In our approach, we adopt an add-type
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ResNet structure, where the input layer is connected to subsequent layers through shortcut
connections, allowing the feature information to be combined. We employ a fully connected
layer to create the shortcut connection, enabling the input data to undergo an identity map-
ping for HI calculation. This approach helps prevent performance degradation that may
occur when stacking deeper layers in the network.

Figure 3. Feature-level feature extraction from DP and PCOT.

The Figure 3 illustrates the model structure of RDAE for constructing the health
indicators of DP and PCOT. In the encoder part, each row of the feature matrix is treated
as a sample, with each sample represented by a 16-dimensional vector. The training
samples are fed into the network in batches for iteration. Initially, the fully connected layer
transforms the sample shape to (?, 60), followed by the “Relu” activation function for non-
linear operations. Then, another fully connected layer with the “Relu” activation function
is applied, resulting in a sample shape of (?, 60). Subsequently, the feature information
obtained after passing through the fully connected layer is combined with the sample
shape obtained from the add-type connection, resulting in a shape of (?, 1). Finally, the
“Sigmoid” activation function is applied to generate the health indicator (HI). The decoder
part follows a similar structure to the main path of the encoder, with the exception of the
sample size setting.

During the health indicator construction experiment, the visualized health indicators
mapped from the feature matrix trained by the model are first analyzed. Then, the miss
rate is used as an evaluation metric to assess the performance of various models, including
RDAE, classic Deep Autoencoder (DAE) [19], and Kernel Principal Component Analysis
(KPCA) [20], in constructing health indicators.

3. Results and Discussion

In this study, the QAR data from a Boeing 737 fleet of an airline company for one year
was used as the experimental dataset. Each aircraft in the dataset recorded fault data from
the engine bleed air system, providing maintenance segments as well as several preceding
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normal flight segments. Additionally, considering that the dual-engine bleed air systems
operate independently, the dataset was divided based on the left and right engine data to
allow the model to learn the distinctive features of system degradation. Each sample in the
dataset corresponds to the data from a single engine’s flight cycle. After data preprocessing,
the experimental dataset consists of 2474 samples.

Following the experimental method described in Section 2, multi-level feature ex-
traction was performed on the data to construct health indicators for each flight cycle.
Additionally, to obtain better HI values corresponding to a good health status, performance
baselines are set in the region of HI. This allowed for the separation of normal and abnormal
samples. According to the discussion in Section 2 regarding Tables 1 and 2, the performance
baselines were determined based on Boeing’s service bulletins and considering the cost re-
quirements of the airlines. For DP, the normal range is 34–50 psi. Taking into consideration
that the engine thrust during takeoff phase can cause a slight deviation, it is possible for the
pressure to slightly exceed the specified range. Therefore, the range is set at 34–53 psi. The
baseline is determined by the maximum and minimum values of all the samples within this
range. Similarly, for PCOT, the maximum temperature is set at 455 ◦F. The lower bound of
the baseline is determined by all the samples with temperatures that have not exceeded
this range. If the calculated HI falls below this baseline, it indicates that the temperature
has exceeded 455 ◦F. The HI curves with baseline annotations are shown in Figures 4 and 5.

Figure 4 illustrates the HI for DP constructed using RDAE. The red line in Figure 4
represents the performance baseline, with a HI threshold range of [0.644, 0.765]. The green
points indicate the normal samples that satisfy the maximum and minimum values of
DP. sample points that satisfy 53 > DP ≥ 34 are considered as normal sample points.
Their corresponding HI values are defined as the standard HI, which are in HI range of
[0.644, 0.765]. Figure 4 illustrates that due to the baseline [0.644, 0.765], the green points
and blue points are effectively separated. However, there are some red points within the
baseline. The red points are defined as non-standard HI, indicating samples that do not
meet the normal feature conditions but fall within the baseline boundary. There are no red
points which means all abnormal points are separated.

The presence of some red points within the baseline range in Figure 4 can be attributed
to the different mechanism for mapping data features and setting threshold values. The red
points correspond to DP that exceed the experimentally set threshold values. However, the
extracted data features by the model are complex and do not solely represent the magnitude
of DP. As a result, these samples are mistakenly mapped within the baseline range.

Figure 4. HI of DP with Performance Baseline constructed by RDAE.

Figure 5 depicts the HI for PCOT constructed using RDAE. In the calculation of HI,
if the PCOT temperature is higher, the resulting HI value is smaller. Therefore, the upper
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limit value of temperature corresponds to the lower limit value of HI. The red line in
the Figure 5 represents the performance baseline, with a HI lower limit of 0.733. The
normal sample points for this case are determined by selecting the samples that satisfy
PCOT ≤ 455. Their corresponding HI values are defined as the standard HI, which are
the points above the baseline 0.733. As the performance anomaly detection is focused on
high temperatures, no upper limit is specified for the HI of PCOT. The red points represent
non-standard HI samples that do not meet the normal feature conditions but fall within the
baseline threshold. There are no red points which means all abnormal points are separated.

Figure 5. HI of PCOT with Performance Baseline constructed by RDAE.

Once the health indicators are constructed, it becomes easy to distinguish between
normal and abnormal values for DP and PCOT. For DP, the baseline is defined as a range.
When the calculated HI based on DP falls within this range, it can be considered as normal.
For PCOT, the baseline is a lower limit. When the calculated HI based on PCOT is above
this value, it can be considered as normal. This provides a relatively intuitive evaluation
indicator, HI, which is concise and effective. The graph also shows some points where the
actual values exceed the limits but the calculated HI still falls within the baseline range.
The proportion of these points is known as the miss rate, which is an important metric for
evaluating HI construction algorithms.

In addition, we also used the classical Deep Autoencoder (DAE) and Kernel Principal
Component Analysis (KPCA) as comparative models to validate the performance of the
health indicator construction in this paper. The HIs constructed by DAE are shown in
Figure 6 and Figure 7, respectively. The HIs constructed by KPCA are shown in Figure 8
and Figure 9, respectively.

By comparing Figures 4, 6 and 8, RDAE has learned the distribution of data-level
features more effectively than KPCA. Through RDAE feature mapping, the health status
of the system for each flight cycle can be quantitatively evaluated. Figure 6 shows The
DP HI constructed by DAE has a higher number of non-standard HIs compared to RDAE,
indicating slightly weaker separation performance between normal and abnormal samples.
However, Figure 8 shows that there is a significant number of non-standard HIs within the
baseline constructed by KPCA. This can introduce interference in the analysis of system
performance in practical engineering.
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Figure 6. HI of DP with Performance Baseline constructed by DAE.

Figure 7. HI of PCOT with Performance Baseline constructed by DAE.

Figure 8. HI of DP with Performance Baseline constructed by KPCA.
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Figure 9. HI of PCOT with Performance Baseline constructed by KPCA.

Figures 5, 7 and 9 reveal the performance differences among the three models in
constructing the HI for PCOT. It is important to note that in Figure 7, there are non-
standard HIs present in the points constructed by DAE, indicating its relatively inferior
performance in separating normal and abnormal samples compared to RDAE and KPCA.
Although KPCA has constructed an HI curve with almost no non-standard HIs within
the baseline, the distribution is not sufficiently uniform. The overall curve in the early
stage of performance degradation is too flat, which hinders the prediction model from fully
learning the characteristics of HI variations.

To visually assess the performance of the HI construction models in separating nor-
mal and abnormal samples, the results obtained from Figures 4–9 were visualized using
confusion matrix plots, as shown in Figures 10 and 11. In Figures 10 and 11, the label “0”
represents normal samples, and the label “1” represents abnormal samples. The confusion
matrix represents the cases of classification errors. For example, in Figure 10a, the true
label “0” is classified into baseline classification label “0” and “1” with counts of 1130 and 0
respectively. Similarly, the true label “1” is classified into baseline classification label “0”
and “1” with counts of 72 and 1272 respectively. The meanings of the remaining figures are
also similar.

Since the baselines in Figures 4–9 are set based on the HI values of normal sam-
ples, there are no cases in Figures 10 and 11 where label “0” is misclassified as label “1”.
In Figure 10a, the number of cases where label “1” is misclassified as label “0” is the
lowest compared to Figure 10b,c, indicating that the RDAE model has the strongest perfor-
mance in separating normal and abnormal samples. In Figure 11, both Figure 11a,c plots
have no misclassifications. Therefore, it can be concluded that the RDAE model has the
best performance.

(a) (b) (c)

Figure 10. Confusion Matrix of HI for DP. (a) RDAE. (b) DAE. (c) KPCA.
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(a) (b) (c)

Figure 11. Confusion Matrix of HI for PCOT. (a) RDAE. (b) DAE. (c) KPCA.

Additionally, this study compares the miss rate (Equation (3)) [21] as an evaluation
metric to quantify the performance of the HI construction models in separating normal and
abnormal samples. The results are shown in Table 2.

M =
Nin
Nab

(3)

In Equation (3), M is the miss rate. Nin represents the number of abnormal samples
that fall within the baseline threshold. Nab represents the total number of abnormal samples.
According to Table 3, the miss rate of RDAE for DP is 0.0523, indicating that it can correctly
identify 94.77% of abnormal HI in the batch of flight cycles. The RDAE model achieves a
miss rate of 0.00% for PCOT, meaning it can identify all abnormal samples in the batch.
DAE exhibits weaker performance in separating normal and abnormal samples, while
KPCA has a high miss rate of 33.33% for DP. It is evident that RDAE outperforms the other
two models in terms of the miss rate, demonstrating superior performance in separating
normal and abnormal samples for both DP and PCOT.

Table 3. Miss Rate of HI Constructing Models.

Model M (DP) M (PCOT)

RDAE 0.0523 0.0000
DAE 0.0692 0.0035
KPCA 0.3333 0.0000

4. Conclusions

This study addresses the challenge of assessing the health status of the engine bleed
air system. It utilizes QAR data as experimental support, and proposes a multi-level
feature extraction method to construct health indicators for the system. First, the original
QAR data undergoes data-level feature extraction to compress the uneven-length and
unannotated data into consistent-length feature vectors that can represent performance
anomalies. Second, the RDAE, employing unsupervised learning, performs feature-level
feature extraction on the feature vectors to obtain a subset of features in the hidden space,
which is used to construct health indicators for the DP and PCOT. Finally, in the HI
construction experiment, the separation performance of the HI curves between normal and
abnormal samples is compared, and it is found that RDAE demonstrates better performance
in constructing health indicators.

The method we propose offers valuable insights into assessing the health status of the
engine bleed air system and enables preventive maintenance strategies. By providing a
decision-making framework for proactive maintenance, our method empowers airlines
to effectively manage the engine bleed air system. Furthermore, our approach establishes
a foundation for regression prediction of the system’s health status, allowing for early
detection of potential issues and optimization of maintenance schedules. This ultimately
helps airlines reduce operational costs and ensure long-term fleet reliability.
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