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Abstract: In recent years, artificial intelligence (AI) technology has been applied in different research
fields. In this study, the XGBoost regression model is proposed to estimate JT9D engine thrust. The
model performance mean absolute error (MAE) is 0.004845, the mean-squared error (MSE) is 0.000161,
and the coefficient of determination (R2) values of the training, validation, and testing subsets are
0.99, 0.99, and 0.98, respectively. Based on a model sensitivity analysis, the four parameters’ optimal
values are as follows: the number of estimators is 900; the learning rate is 0.1; the maximum depth is
4, and the random state is 3. In addition, a comparison between the model performance in this study
and that in a previous one was conducted. The MSE value is as low as 0.000021.

Keywords: artificial intelligence (AI); XGBoost regression model; mean absolute error; mean-squared
error; coefficient of determination; sensitivity analysis

1. Introduction

The JT9D engine program was introduced in 1965 by Pratt and Whitney, who con-
ducted the first engine test in 1966. Its advanced mechanical design technology and
excellent turbofan engine performance were then exploited successfully in the military J58
turbofan engine [1]. In the 1970s and 1980s, the national aeronautics and space administra-
tion (NASA) implemented some technologies related to the JT9D turbofan engine. In 1978,
two kinds of research were conducted on the JT9D engine in regard to its performance dete-
rioration and the analytical study of the thermal barrier coating of the first-stage blades [2,3].
In 1980, the performance and deterioration of the CF6/JT9D engine were investigated by
NASA [4]. Furthermore, NASA presented another report in 1982 investigating flight loads
on the Boeing 747 aircraft, which used the JT9D turbofan engine [5]. Since the JT9D engine
began to serve on the Boeing 747 aircraft in 1970, it has proven itself as the workhorse for
the early 747, 767, A300, A310, and DC-10 aircraft models, with more than 3200 engines
delivered in total [6].

An analysis of the JT9D engine’s power was conducted by Onal and Turan using
aero-engine momentum and continuity equations [7]. Fang et al. successfully built the
FMI-based multidomain simulation of the JT9D engine control system [8]. The estimation
of engine thrust is the primary objective of an engine control system. Therefore, Maggiore
et al. proposed an estimator design to handle the nonlinear dynamics system of a jet
engine [9]. Zhou and Zhang presented a study report on engine thrust estimation using
an ensemble of improved wavelet extreme learning machines to satisfy the conditions
of direct thrust control [10]. In addition, Oruc and Bakircioglu used a particle swarm
optimization algorithm to model JT9D engine thrust; in this study, the investigators found
high-accuracy thrust values during cruise flights [11]. A study was proposed to investigate
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the application of artificial neural networks in accurately predicting aircraft thrust by
leveraging the capability of ANNs to learn from large datasets [12].

In recent years, artificial intelligence (AI) technology has been applied in different
research fields, such as the prediction of the composition of syngas [13], the emissions of
diesel engines [14], and aeroengine thrust estimations [15,16]. Furthermore, the XGBoost
algorithm has been widely utilized for detection, disease diagnosis, classification, and
predictions [17–23]. Based on the excellent performances of the XGBoost algorithm in pre-
vious research, the XGBoost regression model is proposed in the present study to estimate
JT9D engine thrust. Nguyen-Sy et al. studied the XGB model to predict the compressive
strength of concrete and perform a sensitivity analysis of the model parameters’ effects [23].
Sensitivity analysis was also applied to this study’s XGBoost model to investigate the effects
of the parameters.

2. Materials and Methods
2.1. GT9D Turbofan Engine

In the research conducted by Jackson et al., the authors presented the performance and
advanced design of the JT9D turbofan engine [1]. The specifications of the JT9D turbofan
engine are listed in Table 1. The engine stations are as follows: Air flows through the
inlet and enters the fan situated in station 2. The exit station of the fan is named 2.5. The
bypass airs flow from stations 13 to 16. The exit for the compressor is at station 3, and the
exit of the burner is at station 4. The compression process between stations 2.5 and 3 is
meant to compress the air to achieve a pressure ratio according to the needs of the burner.
The hot, high-pressure gas discharged from the burner (station 4) enters the high-pressure
turbine that is connected to the compressor through a shaft. Then, the hot gas enters the
low-pressure turbine in station 4.5 and exits the engine at station 5 [24]. Finally, the exhaust
gas discharges from the nozzle name station 8. The schematic of the JT9D turbofan engine
is shown in Figure 1.

Table 1. Specifications of the JT9D turbofan engine [1].

Parameter Value

Thrust (N) 186,900
Fan Pressure Ratio 1.55
Overall Compressor Pressure Ratio 24.5
Bypass Ratio 5.0
H.P. Compressor Pressure Ratio 10.0
Total Corrected Airflow (kg/s) 740.02

(Takeoff performance, sea level static, 21.1 ◦C day).

JT9D Turbofan Engine Parametric Cycle Analysis

Parametric cycle analysis, which is a design point of the engine, studies the thermo-
dynamic changes in the working fluid flowing through the engine [25]. NASA uses the
numerical propulsion system simulation code to implement the thermodynamic perfor-
mance analysis of aircraft gas turbine engine cycles [26]. The main focus of this analysis
involves the operating characteristics of each module according to the principles of thermo-
dynamics and turbomachinery; these are introduced as follows:

1. Fan

For a given fan pressure ratio
(

π f

)
and isentropic efficiency

(
η f

)
, the relationship

between the fan total temperature and total pressure is as follows:

Pt25 = Pt2 · π f (1)
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Tt25 = Tt2

[
1 +

1
η f

(
π

γa−1
γa

f − 1
)]

(2)

where Pt25 is the total pressure at the outlet of the fan, Tt25 is the total temperature at the
outlet of the fan, and γa is the ratio of the specific heat of the cold airflow.
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Figure 1. Schematic of the JT9D turbofan engine.

Because the air is compressed by the fan and guided into the bypass channel according
to the set ratio, mixed with the core airflow at the outlet of the turbine, and then discharged
from the nozzle to generate thrust, the ratio of the bypass airflow to the core airflow is
defined as the bypass ratio, as follows:

RBypass =
GaBypass

Gacore

(3)

where RBypass is the bypass ratio, GaBypass is the bypass airflow, and Gacore is the core airflow.

2. Compressor

The primary function of the compressor module is to compress the core airflow
entering the engine and to provide combustion in the combustion chamber. The compressor
pressure ratio is equal to LPC-Pt times HPC-Pt. When the pressure ratio is given, the total
pressure of the outlet airflow can be calculated as follows:

Pt3 = πC · Pt25 (4)

where Pt3 is the total pressure of the outlet airflow of compressor and πC is the compressor
pressure ratio.

Then, according to the overall adiabatic compressor efficiency, ηC =
wCideal
wCactual

=
∆h′tC
∆htC

,

the axial work required for the airflow to be compressed in the compressor can be calculated
as follows:

WC =
CpaTt25

ηC

[(
Pt3

Pt25

) ra−1
ra
− 1

]
(5)

Tt3 =
WC
Cpa

+ Tt25 (6)
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where WC is the compressor’s required work, Cpa is the specific heat of the cold airflow,
and Tt3 is the total temperature of the outlet airflow of the compressor.

To prevent the turbine blades from being burned due to high temperature, the com-
pressor usually extracts part of the relatively low-temperature compressed air into the
turbine; thus, the airflow entering the combustion chamber should be calculated as follows:

Gagg = Gacore − GaNGV − GaHPT − GaLPT (7)

In Equation (7), GaNGV , GaHPT , and GaLPT represent the cooling airflow required to be
extracted by the first-stage nozzle of the turbine, the high-pressure turbine, and the low-
pressure turbine, respectively. Suppose the compressor is an n-stage axial flow compressor,
and the cooling airflow is extracted from the outlet of the a-stage compressor. In this case,
the pressure ratio of the cooling airflow can be calculated as follows:

πCool = ( n
√

πC)
a (8)

where πCool is the pressure ratio of the cooling airflow.

3. Combustor

The primary function of the combustion chamber module is to provide a mixture of
fuel and high-pressure gas for combustion to release the chemical energy for power, thereby
increasing the temperature and thermal energy of the working airflow. The ideal combus-
tion state in the combustion chamber should be equal-pressure combustion; however, in
real conditions, pressure losses may be caused by friction and other factors. By defining
the total pressure loss percentage ∆P, the total pressure of the airflow at the exit of the
combustion chamber can be calculated as follows:

Pt4 = (1− ∆P) · Pt3 (9)

where Pt4 is the total pressure of the airflow at the exit of the combustion chamber, and ∆P
is the total pressure loss percentage:

Tt4 =
G f · HV · ηB + CPaTt3

(
G f + Gacore

)
CPg ·

(
G f + Gacore

) + Tt3 (10)

where Tt4 is the total temperature of the airflow at the exit of the combustion chamber, G f
is the fuel flow, HV is the heating value, ηB is the combustion efficiency, and CPg is the
specific heat of the hot airflow.

4. High-pressure turbine

The primary function of the high-pressure turbine is to convert the outlet airflow of the
combustion chamber to shaft work in order to drive the rotation of the compressor. If a small
part of the shaft work must be transferred for other purposes (i.e., power takeoff) owing
to task requirements, such as driving the accessory gearbox, the shaft power extraction
percentage is defined as PTO; for the PTO, the principle of shaft power matching between
the compressor and high-pressure turbine must be satisfied. Assuming that the mechanical
efficiency ηmech of the transmission between the compressor and high-pressure turbine is
known, the high-pressure shaft work provided by the turbine can be calculated as follows:

.
WHPT =

.
WC

(1− PTO)ηmech
(11)

where
.

WHPT is the high-pressure turbine shaft power, PTO is the shaft power extraction
percentage, and ηmech is the mechanical efficiency of the drive shaft between the high-
pressure turbine and compressor.
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Furthermore, according to the definition of the high-pressure turbine output shaft
work,

.
WHPT =

(
Gagg + GaNGV +

.
GaHPT +

.
G f

)
×
(
CPgTt4 − CPgTt45

) (12)

where Tt45 is the total temperature of the high-pressure turbine.
The total temperature of the airflow at the outlet of the high-pressure turbine can then

be calculated as follows:

Tt45 =

[
CPgTt4 −

.
WHPT( .

Gagg+GaNGV+
.

GaHPT+
.

G f

)
]

CPg
(13)

Assuming that the airflow through the high-pressure turbine follows an adiabatic
expansion process, its adiabatic efficiency ηHPT can be defined as follows:

ηHPT =
∆htHPT
∆htHPT′

=
CPg(T t4 − Tt45

)
CPg

(
Tt4 − T′t45

) (14)

where ∆htHPT is the actual enthalpy for the high-pressure turbine, ∆htHPT′ is the ideal
enthalpy for the high-pressure turbine, and T′t45 is the total temperature of the ideal high-
pressure turbine.

The total temperature of the outlet airflow of the high-pressure turbine in the ideal
process can be deduced through the transposition of Equation (11), as follows:

T′t45 = Tt4 −
Tt4 − Tt45

ηHPT
(15)

The total pressure at the outlet airflow of the high-pressure turbine can then be
deduced according to the isentropic relationship, as follows:

Pt45 = Pt4

(
T′t45
Tt4

) γ
γ−1

(16)

where Pt45 is the total pressure of the high-pressure turbine.

5. Low-pressure turbine

The primary function of the low-pressure turbine is the conversion of the heat energy
of the airflow introduced from the high-pressure turbine to shaft power for driving the
rotation of the fan. The calculations for the changes in airflow properties are similar to
those of the high-pressure turbine, because the shaft work must be matched between the
fan and low-pressure turbine (according to the power-matching principle). Hence, on the
premise that the mechanical efficiency of the shaft work transfer between the two modules
is known, the formula for the shaft work output per unit time of the low-pressure turbine
can be deduced as follows:

.
WLPT =

.
WF

ηmech
(17)

where
.

WLPT is the low-pressure turbine shaft power.
Then, the low-pressure turbine output shaft work per unit time can be defined as

follows: .
WLPT =

( .
Gagg +

.
GaNGV +

.
GaHPT

+
.

GaLPT +
.

G f

)
CPg(Tt45 − Tt5)

(18)

where Tt5 is the total temperature of the low-pressure turbine.
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The total temperature of the airflow at the outlet of the low-pressure turbine is then
calculated as follows:

Tt5 = Tt45 −
WLPT

CPg

( .
Gagg +

.
GaNGV +

.
GaHPT

+
.

GaLPT +
.

G f

) (19)

Suppose that the airflow passing through the low-pressure turbine is assumed to be an
adiabatic expansion process. Thus, its adiabatic efficiency ηLPT can be defined as follows:

ηLPT =
∆hLPT
∆hLPT′

=
CPg(T t45 − Tt5

)
CPg

(
Tt45 − T′t5

) =
Tt45 − Tt5

Tt45 − T′t5
(20)

where ∆htLPT is the actual enthalpy for the low-pressure turbine, ∆htLPT′ is the ideal
enthalpy for the low-pressure turbine, and T′t5 is the total temperature of the ideal low-
pressure turbine.

From Equation (20), the total temperature of the outlet airflow of the low-pressure
turbine in the ideal process can be deduced as follows:

T′t5 = Tt45 −
Tt45 − Tt5

ηLPT
(21)

The total pressure of the outlet airflow of the low-pressure turbine can then be deduced
according to the isentropic relationship, as follows:

Pt5 = Pt45

(
T′t5
Tt45

) γ
γ−1

(22)

where Pt5 is the total pressure of the low-pressure turbine.

2.2. GT9D Turbofan Engine Data

Simulations are used to collect the dataset at the component level of the JT9D turbofan
engine [27]. The 13 features selected for the AI model are listed in Table 2. A total
of 12 features were chosen for the AI model inputs, including the fuel flowrate (Wf),
combustion chamber exit temperature (T4), and nozzle exit temperature (T8). The engine
thrust (Fg) is the expected target value of the AI model. The selection of the 12 input
features selection was based on the research of Wang et al. [16]. Furthermore, the thrust
simulation results of Wang and this study could be compared to evaluate the accuracy.

Table 2. Thrust estimator parameters for the JT9D turbofan engine.

Symbol/Unit Parameter

Wf (pps) Fuel flowrate
HPC-Pt High-pressure compressor pressure ratio
LPC-Pt Low-pressure compressor pressure ratio
P4 (psia) Combustion chamber exit pressure
T4 (◦R) Combustion chamber exit temperature
HPT-Pt High-pressure turbine pressure ratio
LPT-Pt Low-pressure turbine pressure ratio
HPS-Nmech (rpm) High-pressure rotor speed
LPS-Nmech (rpm) Low-pressure rotor speed
P45 (psia) High-pressure turbine exit pressure
T45 (◦R) High-pressure turbine exit temperature
T8 (◦R) Nozzle exit temperature
Fg (lbf) Engine thrust
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JT9D Turbofan Engine Data

The total number of samples obtained in the data collection was 438. Figure 2a shows
the violin plots depicting the summary statistics and densities of HPS-Nmech and Fg. The
broader areas of the violin plots represent higher probabilities that the members of the
population will take on the given values; conversely, the narrower areas represent lower
probabilities. For instance, in Figure 2a, the white dot represents the median and the black
bar in the center represents the interquartile range. The top of the black bar represents the
third quartile, and the bottom represents the first quartile. Figure 2b–d shows the summary
statistics and densities of T4, LPS-Nmech, T45, T8, P4, P45, Wfuel, HPC_Pt, LPC_Pt, HPT_Pt,
and LPT_Pt. The exact interquartile range values are listed in Table 3.
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Table 3. The exact interquartile range values.

Symbol Third Quartile Median First Quartile

Wf 2.951835 1.64026 0.889763
HPC-Pt 5.603 5.306 4.82475
LPC-Pt 2.25775 2.117 1.717

P4 186.84425 114.1555 71.088
T4 2459.115 2192.31 1808.205

HPT-Pt 2.77175 2.725 2.69925
LPT-Pt 4.81675 4.5125 3.514

HPS-Nmech 7595.275 7226.1 6802.7
LPS-Nmech 3584.2 3213.65 2675.525

P45 69.066 41.7 26.085
T45 1919.1875 1700.105 1386.7825
T8 1340.6175 1214.885 1049.4125
Fg 22,097.65 10,562.45 5623.125

The statistical analysis results between the model input features and target are repre-
sented visually in Figure 3. From Figure 3, it can be observed that parts of the input features
are proportional to the engine thrust Fg, such as Wfuel, P4, T4, HPS_Nmech, P45, and T8.
Figure 3a shows the results of the thrust increasing due to the increase in the fuel flow rate.
This means that energy sustainably increases when more fuels are sprayed into the com-
bustion chamber. Furthermore, Figure 3d shows that the pressure loss in the combustion
chamber affects the thrust. The most important factor affecting the thrust is the temperature
exit from the combustion chamber, shown in Figure 3e. A higher T4 value means that a
higher thrust can be created. This is a similar effect to that of the aforementioned fuel
flow rate. It is noted that even at the same temperature values, the thrust also increases
because the cooling consideration limits the temperature value in the case of burnout. The
relationships between the other input features and Fg also show proportional trends but
are limited by the power matching and cooling considerations.
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2.3. XGBoost Model

Chen and Guestrin proposed a novel sparsity-aware algorithm, which is an open-
source package for approximate tree learning called the XGBoost. The XGBoost algorithm
can effectively reduce calculation costs while providing a higher model performance [28].
Figure 4 shows the flowchart of the proposed XGBoost algorithm model for engine thrust
prediction. In the research of Wang et al., the percentages of splitting the dataset for
different combinations were investigated [16]. There are three ratios for the training and
testing datasets: 8:2, 6:4, and 5:5. The ratio 8:2 had the lowest MSE value, which indicated
an excellent model performance. In the present study, the dataset was split into three
subsets using the Python sklearn library train_test_split code, so that 70% was used for
model training needs, 10% was used for the validation of the model’s performance, and the
remaining 20% was used for model testing. The primary parameters of the XGBoost model
are as follows: for the Max_depth, denoting the maximum depth of the tree, the default
value is 6; this was set to 4 in this study to prevent overfitting. N_estimators represents the
number of trees used for boosting, whose value was set to 900 herein. The Learning_rate
indicates the learning rate that determines the step size at each iteration while reaching a
minimum loss function; the lower the value of this parameter is, the better the performance
is. Thus, this value was set to 0.1 in this study. Colsample_bytree denotes a family of
parameters for subsampling the columns within the range of 0 to 1, and this value was set
to 0.8. The subsample represents the training sample’s subsample ratio, which was set to
0.5. The parameter values of Colsample_bytree and the subsample ratio were determined
using typical values based on experience.
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The model’s performance reveals its accuracy, and the mean absolute error (MAE),
mean-squared error (MSE), and coefficient of determination (R2) are the metrics used in
this study to evaluate the model’s performance. The statistical equations for these metrics
are as given in Equations (23)–(25), where Pi is the predicted value obtained from the model
and Ti is the target value obtained from the dataset. Pi is the average of the predicted
values for the entire dataset.

MAE =
1
n∑n

i=1|Ti − Pi| (23)

MSE =
1
n∑n

i=1(Ti − Pi)
2 (24)

R2 = 1− ∑n
i=1(Pi − Ti)

2

∑n
i=1
(

Pi − Ti
)2 (25)

3. Results
3.1. Model Performance

The model performances are listed in Table 4. These results were calculated based on
Equations (20)–(22). According to Equation (22), if the predicted values are close to the
target values, the R2 value approaches 1. The MAE and MSE values are calculated based
on the min–max normalization values of the dataset. In this model, the R2 value is 0.99,
which means that the predicted values are relative to the target values. Only the R2 value
for the 20% dataset for testing is 0.98. This is unsurprising, because the testing dataset is
used to test the model, and it is possible to obtain a lower R2 value for the actual model. It
also shows the outstanding performance of the XGBoost regression model. The scatter plot
of the engine thrust predictions versus the dataset values is shown in Figure 5.
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Table 4. Performance MAE, MSE, and R2 statistics results of the XGBoost model.

MAE MSE
R2

Train Test Validation All

0.004845 0.000161 0.99 0.98 0.99 0.99
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3.2. Sensitivity Analysis
3.2.1. Effect of the Number of Estimators

In the XGBoost model, the estimators represent the number of trees used for boosting.
The range varies from 50 to 1100. The MSE and R2 values were observed during the
estimator variation in the model training and testing. Figure 6a,b illustrate the MSE values
for the model training and testing, respectively. Figure 6c,d represent the R2 values for
the model training and testing, respectively. The opposite result is observed between the
MSE and R2 values because of their definitions. While the number of estimators reaches
300, the lowest value of the MSE and the highest value of R2 were obtained for the training
dataset, as shown in Figure 6a,c. The same trends were observed in Figure 6b,d, except for
the lower value compared with the results in Figure 6a,c. The reason for this is that the
model testing dataset was selected for testing only. Therefore, the model’s performance for
the testing dataset was lower than that for the training dataset.
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3.2.2. Effect of the Learning Rate

The learning rate determines the step size at each iteration while reaching a minimum
loss function. The range varies from 0.04 to 0.4. The MSE and R2 values were also observed
during the model training and the testing learning rate variation. Figure 7a,b illustrates the
MSE values for the model’s training and testing, respectively. Figure 7c,d represents the R2

values for the model’s training and testing, respectively. While the learning rate reached
0.1, the testing dataset’s MSE had the lowest value, and the R2 value was the highest. These
results determine the whole model’s performance.
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3.2.3. Effect of the Max_depth

Max depth denotes the maximum depth of the tree. The range varies from 1 to 7. The
MSE and R2 values were also observed during the model’s training and testing with max
depth variation. Figure 8a,b illustrates the MSE values for the model’s training and testing,
respectively. Figure 8c,d represents the R2 values for the model’s training and testing,
respectively. While the max depth reached 4, the testing dataset’s MSE was the lowest, and
the R2 value was the highest. These results show a similar trend to that of the learning rate
sensitivity analysis.
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3.2.4. Effect of the Random State

The random state value for splitting the train and test datasets was also investigated,
because it controls the shuffling applied to the data before using the split. The random state
value will directly determine the samples of the training, validating, and testing datasets
and affect the model’s performance. The range varies from 1 to 7. The MSE and R2 values
were also observed during the model’s training and testing with max depth variation.
Figure 9a,b illustrates the MSE values for the model’s training and testing, respectively.
Figure 9c,d represents the R2 values for the model’s training and testing, respectively.
While the random state value reached 3, the testing dataset’s MSE was the lowest, and
the R2 value was the highest. These results show a similar trend to that of the max depth
sensitivity analysis.
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4. Discussion

The deviations in the values between the validation dataset and its predictions are
shown in Figure 10. The pink triangles and the blue squares stand for the validation dataset
and the prediction of the validation dataset, respectively. Most predictions are close to the
original validation dataset, reflecting the model’s outstanding performance. The deviations
between the test dataset and its predicted values are shown in Figure 11. Most predictions
are close to the original test dataset, especially when the engine thrust values are around
10,000 lbs; however, the deviations are more significant when the engine thrust values are
over 30,000 lbs. These deviation numbers are obviously attributable to the fact that test
dataset represents only 20% of the total dataset. Because the 20% testing dataset is for
testing only, it is reasonable to infer that decreasing the testing dataset percentage would
lead to a higher model performance, because the training dataset percentage would increase.
Furthermore, Table 3 shows that the third quartile of the thrust dataset is 22,097.65 lbs. This
statistic also reveals higher deviations between the actual and predicted thrust after the
XGBoost regression model simulation, where the real thrust values are over 30,000 lbs.
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Furthermore, the XGBoost regression model performance was validated by compar-
isons with the results reported by Wang et al. [16]. The MSE value in the present study
is less than that of Wang’s model listed in Table 5, which indicates outstanding model
performance.
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Table 5. Performance comparison between the XGBoost regression model and that of Wang et al. [16].

MSE

XGBoost regression model 0.000161
Wang et al. model [16] 0.000182

The XGBoost regression model’s performance was investigated through model pa-
rameters such as the number of estimators, learning rate, max depth, and random state.
These former three parameters directly relate to the model’s training and testing results
and determine the final model performance. The last one is associated with the dataset
split. The sample qualities of the dataset will also affect the model’s performance. Model
sensitivity analyses were investigated by adjusting the range of these model parameters.
These results are helpful in fully understanding the model’s training and testing processes.
This procedure also helps the researcher to tune the model parameters. Based on the
sensitivity analysis, the optimal parameters of the XGBoost model are listed in Table 6.

Table 6. Optimal parameters of the XGBoost model.

Number of Estimators Learning Rate Max Depth Random State

900 0.1 4 3

5. Conclusions

In this study, the statistical analysis of the violin plot and correlation between the input
feature and target (thrust) of the JT9D engine data were calculated and plotted first. It is
helpful to analyze and visualize the original data patterns and trends and to preprocess the
dataset for model training.

Then, the thrust estimation model for the JT9D turbofan engine was successfully built
based on the XGBoost regression model. The R2 values of the training, validation, and
testing subsets were 0.99, 0.99, and 0.98, respectively. In addition, a comparison between the
model performance in this study and that in a previous one was conducted. The MSE value
was as low as 0.000021, which shows the advantages of the XGBoost regression model.

After model sensitivity analysis, four parameters’ optimal values were determined by
adjusting the contents in a particular range, as listed in Table 6. The values were as follows:
the number of estimators was 900; learning rate was 0.1; max depth was 4; and random
state was 3.
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Nomenclature

Notations
CP Specific heat
CPa Specific heat of cold airflow
CPg Specific heat of hot airflow
Ga Air flow
Gaburner Burner airflow
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Gf Fuel flow
HV Heating value
.

m Mass flow rate
P Pressure
PR Pressure ratio
Pt Total pressure
PTO Power takeoff
T Temperature
Tt Total temperature

.
W Power
Greek letters
γ Ratio of specific heat
η Efficiency
π Isentropic compression ratio
Subscripts
HPT High-pressure turbine
LPT Low-pressure turbine
NGV Nozzle guide vane
agg Airflow entering burner
f Fuel
mech Mechanical
2 Entrance to fan
25 Exit of fan, entrance to compressor
3 Exit of compressor, entrance to burner
4 Exit of burner, entrance to high-pressure turbine
45 Exit of high-pressure turbine, entrance to low-pressure turbine
5 Exit of low-pressure turbine
8 Exit of nozzle
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