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Abstract: For the analysis of low-speed incompressible fluid dynamics with turbulence around
airfoils, we developed a finite element formulation based on a stabilized pressure and velocity for-
mulation. To shape the optimization of bidimensional airfoils, this formulation is applied using
machine learning (TensorFlow) and public domain global optimization algorithms. The goal is to
maximize the lift-over-drag ratio by using the class-shape function transformation (CST) parameteri-
zation technique and machine learning. Specifically, we propose equal-order stabilized three-node
triangles for the flow problem, standard three-node triangles for the approximate distance function
(ADF) required in the turbulence stage, and stabilized three-node triangles for the Spalart–Allmaras
turbulence model. The backward Euler time integration was employed. An implicit time-integration
algorithm was adopted, and a solution was obtained using the Newton–Raphson method. This was
made possible in the symbolic form via Mathematica with the AceGen package. Three benchmarks
are presented, with Reynolds numbers up to 1× 107, demonstrating remarkable robustness. After
the assessment of the new finite element, we used machine learning and global optimization for four
angles of attack to calculate airfoil designs that maximized CL/CD.

Keywords: computational fluid dynamics; machine learning finite elements; Petrov–Galerkin; airfoil;
optimization

1. Introduction

Research on airfoil shape optimization with classical gradient-based methods has
been published for nearly five decades [1]. With the advent of automatic differentiation
algorithms for machine learning (see the review article [2]) and backpropagation, it became
advantageous to use machine learning algorithms for problems where sensitivity analyses
were intricate, see, e.g., [3].

For airfoil optimization, it is customary to use finite-volume software to perform the
CFD analysis [4], but PINN has also been successfully adopted [5]. The finite element (FE)
choice in this work is supported by the need to further increase the application range of the
simulation to a fluid–structure interaction (FSI).

We focus on three main components in the approach: (i) airfoil parameterization,
(ii) CFD discretization and time integration, (iii) and machine learning/optimization. In [6],
a TLBO (teaching–learning-based) optimization algorithm was proposed for shape opti-
mization. The authors used class-shape function transformation (CST) parameterization
for 3D numerical tests. For CFD analysis, a finite-volume method was adopted. In the
work by Deng and Yi [7], a machine learning algorithm was trained to generate pressure
distributions. Their objective was analysis efficiency. Latin hypercubes and CST parameter-
ization were adopted for 2D numerical tests. In the work by Du et al. [8], a convolutional
neural network algorithm for airfoil design and performance prediction (DPCNN) was
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established, A Bézier representation of the airfoil geometry was adopted, and the UIUC
database was adopted in the training process [9]. In [8], ANSYS Fluent software was used
to analyze the aerodynamic performance of the airfoil. In that paper, optimization was
performed in the machine learning framework to maximize the function denoted by the
ratio of the lift coefficient to the drag coefficient CL/CD. In Hui’s study [10], reinforced
learning was combined with multiobjective optimization. A constraint on the airfoil thick-
ness was enforced to prevent the thinning observed in the current paper. A free-form
deformation (FFD) algorithm was adopted for the shape motion and the CFL3D CFD
code was employed for the simulations. In Karali et al. [11], a lifting line method was
introduced for modeling and optimizing small unmanned vehicles. In a similar approach
to that of this work, Karali et al. tested a range of angles of attack and provided a black
box function for both analysis and optimization. TensorFlow functions and parameters are
similar to other contributions, but only 250 epochs were used. In [12], a deep convolutional
generative adversarial network was adopted, which produced more realistic airfoils than
normal, and a detector of geometric abnormalities was introduced. FFD parametrization
was adopted in [12], with the optimizer being a variant of the sequential quadratic program-
ming (SQP) algorithm. Tyan et al. [13] proposed an inverse design deep neural network
(IDNN), dimensional reduction, and the NACA four-series airfoil geometry representation
via 2D examples. In an alternative approach to optimization, Xu [14] proposed machine
learning (ML) for the adjoint-variable method. In a parallel line of developments, it is
worth mentioning the work by Gutierrez et al. [15], which focused on the optimization of
propellers for high-altitude pseudo-satellites. More sophisticated modeling approaches,
such as physics-informed neural networks (PINNs) [16], have also been adopted. A review
of the state of the art was provided by Li, Du, and Martins [17], who also discussed filtering
and dimensional reduction techniques.

Here, we propose distinct approaches: the panel solver XFOIL [18] and the mixed-
Finite Element software SIMPLAS [19] (developed by the first author). CST parameteri-
zation with 10 parameters was adopted for each airfoil, which was read from the UIUC
database [9], and the control volume was meshed using Triangle [20]; both SIMPLAS and
XFOIL produced the CL/CD values. Four values of the attack angle were tested for each
airfoil: α = 0◦, 1.25◦, 2.5◦ and 5◦. After this, the TensorFlow machine learning library was
employed to produce a function that returned CL/CD from the 10 CST parameters. A dual
annealing algorithm was then employed to estimate the optimized airfoil.

This paper, which is aimed at optimizing recreational aircraft airfoils, is organized as
follows: Section 2 discusses the CST parameterization. Section 3 focuses on a RANS finite
element formulation based on equal-order velocity/pressure interpolation and stabilization
terms. This is a variant of the Petrov–Galerkin formulation, which was created by the first
author. In Section 4, the Spalart–Allmaras transport equation for the eddy viscosity is de-
scribed and discretized. The machine learning algorithm for the solution and optimization
is described in Section 5. The results are presented in Section 6.

2. Parameterization

The parameterization of airfoil geometry, although not strictly required from the
simulation perspective, reduces the required information needed to feed the machine
learning algorithm [21]. Among the established parameterization algorithms, the cubic
version of the CST [22] (class function/shape function transformation method) algorithm
has been profusely adopted. Although CST is not suitable for all profiles in the repositories,
the greatest advantages of CST are as follows: (i) it is applicable to 3D airfoils and (ii) it
only requires a small number of parameters. The latter is of special importance, as only
a small number of profiles are available in the databases [9]. For traditional optimization
algorithms, see, e.g., [23], the CST parameterization is also commonly adopted due to its
convenience. Figure 1 shows the essential nomenclature of an airfoil.
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Figure 1. Two-dimensional airfoil optimized using the CST parameterization.

We directly implemented the CST functions proposed by Kulfan [22], which are
capable of analytically defining a variety of airfoils with a reduced number of parameters.
CST equations are based on a Bézier curve with an added class function term. Lower and
upper surfaces are defined, respectively, by:

ζl(χ) = χ0.5(1− χ)Sl(χ) + χ∆ζl (1)

ζu(χ) = χ0.5(1− χ)Su(χ) + χ∆ζu (2)

where ζl is the upper surface, ζu is the lower surface, ∆ζu and ∆ζL define the thicknesses of
the trailing edge, and Su(χ) and Sl(χ) are the shape functions obtained from the Bernstein
polynomials, Nu(χ) (Nu + 1−dimensional) and Nl(χ) (Nl + 1−dimensional), for the upper
and lower surfaces, respectively:

Nl(χ) =

{
· · · ,

Nl !
i!(Nl − i)!

χi(1− χ)Nl−i, · · ·
}

, i = 0, . . . , Nl (3)

Nu(χ) =

{
· · · ,

Nu!
i!(Nu − i)!

χi(1− χ)Nu−i, · · ·
}

, i = 0, . . . , Nu (4)

The dimensionless coordinates are defined by:{
χ
ζ

}
=

1
c

{
x
z

}
(5)

where c represents the chord length, x represents the coordinate along the chord length,
and z represents the coordinate along the profile thickness. We now use all nodal images of
ζl as ζ lN and of ζu as ζuN . Solving the NU and NL equations and applying the method of
least squares, we obtain

Al =
(

CT
l · Cl

)−1
· CT

l · (ζ lN − χlN∆ζl) (6)

Au =
(

CT
u · Cu

)−1
· CT

u · (ζuN − χuN∆ζu) (7)

So now we have everything to obtain the following:

Sl(χ) = Nl(χ) · Al (8)

Su(χ) = Nu(χ) · Au (9)

Finally, we obtain the parameters related to the thicknesses of the lower and upper
surfaces, respectively:

zl(χ) = cχ0.5(1− χ)Nl(χ) · Al + cχ∆ζl (10)

zu(χ) = cχ0.5(1− χ)Nu(χ) · Au + cχ∆ζu (11)
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3. RANS: Consistent Stabilized Petrov–Galerkin Formulation with
Equal-Order Interpolation

The recreational aircraft airfoil flow is clearly within the domain Ma ∈ [0, 0.3], which
means it can be modeled with the following constitutive assumptions (see, e.g., [24]):
(i) incompressible flow and (ii) turbulent behavior. SIMPLAS, developed by P. Areias,
is used; see [19]. The specific elements and turbulence model are created in Wolfram
Mathematica [25] with the AceGen add-on [26]. We use the following tools for the solution
of the flow problem:

• Equal-order stabilized three-node triangles for the flow problem.
• Standard three-node triangles for the distance function (ADF) required in the turbu-

lence stage.
• Stabilized three-node triangles for the Spalart–Allmaras turbulence model.
• Backward Euler time integration is employed.
• A fully-implicit algorithm is adopted, and the solution is obtained using the Newton–

Raphson method.

We now consider an incompressible flow with Newtonian constitutive behavior and
incorporate the effect of turbulence. Given a fixed control volume Ω, and for each point
x ∈ Ω, we have a velocity field v(x), which describes the fluid flow. A pressure field p(x)
is necessary, as it is a Lagrange multiplier for the incompressibility condition. Mass density
is identified as usual by ρ0 and the volume force by fi. Omitting the dependence on x,
Newtonian fluids follow the constitutive law:

σij = 2µε̇ij − pδij

where σij is the Cauchy stress tensor, µ is the dynamic viscosity, vi,j = ∂vi(x)/∂xj, with
ε̇ij = 1/2

(
vi,j + vj,i

)
being the strain rate. The equations of motion and the incompressibility

condition are given, respectively, by:

ρ0v̊i +
(

pδij − 2µε̇ij
)

,j − ρ0 fi = 0 (12)

vi,i = 0 (13)

where
v̊i = v̇i + vi,jvj. (14)

In general, the convective time-derivative (14) corresponds to the following operator
on a generic argument x:

x̊ = ẋ+∇x · v (15)

where [∇x]i = ∂x/∂xi. Boundary conditions for the flow problem are essential in Γv and
natural in Γσ:

vi = f v
i (t) on Γv

σij(t)nj = f τ
i (t) on Γσ

Using the test functions q(x) and w(x), we project (12) and (13) to obtain the weak form:∫
Ω

ρ0wi v̊i dV +
∫

Ω

(
2µwi,j ε̇ij − pwi,i − ρ0wi fi

)
dV −

∫
Γ

wi f τ
i dA = 0 (16)∫

Ω
qvi,i dV = 0 (17)

with vi = f v
i (t) on Γv. Finite element discretization using equal-order interpolation
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(the pressure and velocity share the shape functions) is performed as described in T.E.
Tezduyar’s papers [27,28]. We consider an element with domain Ωe and boundary Γe with
shape functions Nv

K(ξ) for vi and wi and Np
K(ξ) for p and q:∫

Ωe
wKi

[
ρ0Nv

K v̊i + Nv
K,j
(
2µε̇ij − pδij

)
− ρ0Nv

K fi

]
dVe

+
∫

Γe
wKi Nv

K f τ
i dAe = 0 (18)∫

Ωe
qK Np

Kvi,i dVe = 0 (19)

where

v̊i = Nv
L v̇Li + Nv

M Nv
L,jvMjvLi (20)

ε̇ij =
1
2

(
Nv

L,jvLi + Nv
L,ivLj

)
(21)

vi,i = Nv
K,ivKi (22)

in (18) and (19), Ve is the volume of element e, which is assumed to have unit thickness.
With a similar notation, Ae is the area of the boundary where natural conditions are applied.
In a steady-state analysis, which is used for the optimization stage, the following condition
is enforced:

v̊i
∼= vi,jvj (23)

which reduces the acceleration term to be equal to the transport term. We note that
stabilization is required for (18) and (19) and, therefore, a non-symmetric term is inserted,
which is a penalty for the strong form of the equations of motion:

rgls =
∫

Ωe
τ(v)(ρ0ẘi + q,i)(ρ0v̊i + p,i − ρ0 fi)dVe (24)

with τ(v) being the penalty term, depending on the velocity v:

τ(v) =
1
ρ0

[(
2

∆t

)2
+

(
2‖v‖

h

)2

+

(
4ν

h2

)2
]−1/2

(25)

An important aspect of the penalty term (25) is that, for high values of the Reynolds
number, the iterative velocity v must be used and not the converged value. In [29], a remark
is made concerning the use of converged values, and we notice the loss of the Newton–
Raphson convergence in the presence of high Reynolds numbers. The shortcoming of using
iterative velocities in the stabilization parameter is the required derivative. Since we are
performing these calculations with Mathematica [25] and AceGen [26], this additional task
is easily performed here. This stabilization and several variants have been extensively
studied and benchmarked by T.E. Tezduyar and co-workers (see [27,28,30]). It is now
an established solution for the finite element analysis of fluid flow problems. This and
alternative techniques are discussed in standard textbooks [31]. In (25), the kinematic
viscosity is given by:

ν =
µ

ρ0
(26)

This results in a Petrov–Galerkin formulation that allows equal-order interpolation,
which otherwise would fail the Babuska–Brezzi condition. After introducing the stabiliza-
tion term and performing the discretization with shape functions Nv

K(ξ) for the velocities
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and Np
L (ξ) for the pressures (which coincide in this case, but we retain generality), the fol-

lowing discrete form is obtained:∫
Ωe

wKiρ0Nv
K v̊i dVe

+
∫

Ωe
wKi

[
Nv

K,j
(
2µε̇ij − pδij

)
− ρ0Nv

K fi

]
dVe

+
∫

Ωe
wKiτ(v)ρ0

(
∂ẇ/∂wNv

K + Nv
K,lvl

)
(ρ0v̊i + p,i − ρ0 fi)dVe

−
∫

Γe
wKi Nv

K f τ
i dAe = 0 (27)∫

Ωe
qK Np

Kvi,i dVe +
∫

Ωe
qK Np

K,iτ(v)(ρ0v̊i + p,i − ρ0 fi)dVe = 0 (28)

From (27) and (28), we calculate the forces f w (for the velocity degree-of-freedom) and
f q (for the pressure degree-of-freedom). Since the Newton–Raphson method is adopted
to solve the discrete system, the Jacobian matrix is required. The Jacobian matrix, Ke, is
obtained as follows:

Ke =

[
[Ke]wv [Ke]wp

[Ke]qv [Ke]qp

]
=

[ −∂ f w/∂v −∂ f w/∂p

−∂ f q/∂v −∂ f q/∂p

]
(29)

with

[Ke]wv
KiLj =

∫
Ωe

ρ0Nv
K

[
δij∂v̇/∂vNv

L + Nv
Lvi,j + δijNv

L,lvl

]
dVe

+
∫

Ωe
µ
(

Nv
K,i N

v
L,j + Nv

K,jN
v
L,i

)
dVe + [Ke

stab]
wv
KiLj (30)

[Ke]
wp
KiL = −

∫
Ωe

Nv
K,i N

p
L dVe + [Ke

stab]
wp
KiL (31)

[Ke]
qv
KLi = −

∫
Ωe

Np
K Np

L,i dVe + [Ke
stab]

qv
KLi (32)

[Ke]
qp
KL = [Ke

stab]
qp
KL

where the four stabilization matrices are calculated using Mathematica [25] with the AceGen
add-on [26].

[Ke
stab]

wv
KiLj =

∫
Ωe

τ(v)ρ0Nv
K,jN

v
L [ρ0(v̇i + vi,kvk) + p,i − fi]dVe

+
∫

Ωe
τ(v)ρ0

(
∂ẇ/∂wNv

K + Nv
K,kvk

)
ρ0

(
∂v̇/∂vNv

Lδij + Nv
L,kvkδij + vi,jNv

L

)
dVe

+
∫

Ωe

∂τ(v)/∂vj Nv
Lρ0

(
∂ẇ/∂wNv

K + Nv
K,kvk

){
ρ0[v̇i + (vi,kvk)] + p,i − fi

}
dVe (33)

[Ke
stab]

wp
KiL =

∫
Ωe

τ(v)ρ0

(
∂ẇ/∂wNv

K + Nv
K,kvk

)
δijNL,i dVe (34)

[Ke
stab]

qv
KLj =

∫
Ωe

Np
K,iτ(v)

{
ρ0[v̇i(vi) + vi,kvk] + p,i − fi

}
dVe

+
∫

Ωe
Np

K,iτ(v)
(

∂v̇/∂vNv
Lδij + Nv

L,kvkδij + vi,jNv
L

)
dVe

+
∫

Ωe
Np

K,i
∂τ(v)/∂vj Nv

L
{

ρ0[v̇i(vi) + (vi,kvk)] + p,i − fi
}

dVe (35)
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and

[Ke
stab]

qp
KL =

∫
Ωe

Np
K,iτ(v)Np

L,i dVe (36)

The derivative of τ(v) with respect to a component vi is calculated as follows:

∂τ(v)/∂vi = −
4τ3

h2 vi (37)

A simple backward Euler (implicit) method is used for the time integration. Therefore,
for step n, we have:

v̇n ∼= 1
∆t

(
vn − vn−1

)
(38)

This results, component-wise, as follows:

v̇i(vi) = vi/∆t + Ci (39)

with Ci = −vn−1
i /∆t

and, therefore,
∂v̇i/∂vi = ∂ẇi/∂wi = 1/∆t (40)

The source code for these equations is available in GitHub [32].

4. Turbulence with the Spalart–Allmaras Transport Equation

Turbulence models make use of the distance of a given point in the control volume to
the wall, or to the airfoil. It is well known that, using the Poisson equation, Varadhan [33]
established that an ADF can be generated by the solution of the following problem:

c2
L∇2φ(x)− φ(x) = 0 in Ω (41)

φ(x) = 1 on Γ (42)

with g(x) = −cL log[φ(x)] and d(x) = limcL→0 g(x). Therefore, we can use this ADF to
estimate d(x) for use in turbulence models. Note that, in contrast with geometric algorithms,
the precise point corresponding to the orthogonal projection on Γ is not obtained, only
the distance.

The Spalart–Allmaras turbulence model is a one-PDE turbulence model specific to
aerodynamic flows, developed by two staff members of the Boeing group, see [34,35]. The
model is shown to work well with a variety of turbulent flows, including boundary layers,
separated flows, and wakes. It has been successfully used for aeroacoustic simulations and
conjugated heat transfer simulations. We follow the guidelines provided by the NASA
Langley Research Center Turbulence Modeling Resource [36]. A single equation is solved
for ν̃, which is the mapped kinematic eddy viscosity:

˚̃ν =cb1S̃ν̃ +
1
σ
{∇ · [(ν + ν̃)∇ν̃] + cb2∇ν̃ · ∇ν̃} − cw1 fw

(
ν̃

d

)2
+ ft1∆v · ∆v in Ω (43)

ν̃ =0 on Γ (44)

ν̃|t=0 =ν/10 in Ω (45)

the reason to use ν̃ instead of νt is that the behavior of the latter near the fixed boundaries
is quartic, and a large number of elements would be required near the boundaries. The
significance of terms in Equation (43) is as follows:

• The left-hand-side is the convective derivative of ν̃, which provides the rate of change
of ν̃.
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• The first term on the right-hand-side is the shear-driven turbulence generation, which
occurs due to the velocity profile near solid boundaries.

• The second term on the right-hand-side is the nonlinear diffusion term, which has
a linear part (∇ · [(ν + ν̃)∇ν̃]/σ) and a nonlinear part (cb2∇ν̃ · ∇ν̃/σ). The nonlinear
part was fine-tuned using the parameter cb2 to correctly represent the spreading of
turbulence.

• The third term (with a negative sign) is the destruction term, whose purpose is to
destruct turbulence near a wall. It obviously depends on the distance to the wall d.

• The fourth term is the source, which depends on the square of the velocity difference
∆v and the vorticity, by means of ft1. Note that for fixed walls, ∆v = v. Without this
term, for homogeneous initial and boundary conditions, the equation would produce
a null value of ν̃.

The solution of (43) allows the determination of the turbulent eddy viscosity as follows:

µt = ρν̃ fv1 with

fv1 =
χ3

χ3 + c3
v1

and

χ = ν̃/ν (46)

Note that the cube of χ, multiplied by ν̃, will produce the intended quartic profile of ν

near the walls. The total viscosity is simply given as the following sum:

µT = µ + µt (47)

This value is a replacement for µ in the equations of the previous section. The remain-
ing quantities are determined as follows:

ft1 = ct1gt exp[−ct2‖W‖2/‖v‖2]
[
d2
(

1 + g2
t

)]
ft2 = ct3 exp

[
−ct4χ2

]
fv2 = 1− χ

1 + χ fv1

fw = g

(
1 + c6

w3
g6 + c6

w3

)1/6

g = r + cw2

(
r6 − r

)
gt = min[0.1, ‖v‖/h‖W‖]

r = min
[

ν̃

S̃k2d2
, 10
]

S̃ = max
[√

2W : W +
ν̃

k2d2 fv2, 0.3‖W‖
]

W =
1
2

[
(∇v)− (∇v)T

]
(48)

where the constants are given in [36], with d being the distance to the wall, as obtained from
the ADF equation. The weak form of (43) is obtained, after integrating by parts, as follows:

∫
Ωe

w
(

˚̃ν− cb1S̃ν̃− ft1∆v · ∆v
)

dVe +
∫

Ωe

wcw1 fw

(
ν̃

d

)2
dVe

−
∫

Ωe

1
σ
[−(ν + ν̃)∇w · ∇ν̃ + cb2w∇ν̃ · ∇ν̃]dVe = 0 (49)
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where w(x) is a test function. The stabilization of (49) follows the same pattern as before:

rν
gls =

∫
Ωe

τ(v)ẘ

[
˚̃ν− cb1S̃ν̃ + cw1 fw

(
ν̃

d

)2
− ft1∆v · ∆v− cb2

σ
∇ν̃ · ∇ν̃

]
dVe (50)

This results in the stabilized weak form:∫
Ωe

w
(

˚̃ν− cb1S̃ν̃
)

dVe

+
∫

Ωe

wcw1 fw

(
ν̃

d

)2
dVe

−
∫

Ωe

1
σ
[−(ν + ν̃)∇w · ∇ν̃ + cb2w∇ν̃ · ∇ν̃]dVe

+
∫

Ωe

τ(v)ẘ

[
˚̃ν− cb1S̃ν̃− ft1∆v · ∆v + cw1 fw

(
ν̃

d

)2
− cb2

σ
∇ν̃ · ∇ν̃

]
dVe

= 0 (51)

After discretization, the residual reads:

f ν
K =

∫
Ωe

NK

(
˚̃ν− cb1S̃ν̃

)
dVe

+
∫

Ωe

NKcw1 fw

(
ν̃

d

)2
dVe

−
∫

Ωe

1
σ

[
−(ν + ν̃)NKi

∂ν̃

∂xi
+ cb2NK∇ν̃ · ∇ν̃

]
dVe

+
∫

Ωe

τ(v)
(

1
∆t

NK + vi NKi

)[
cw1 fw

(
ν̃

d

)2
− cb2

σ
∇ν̃ · ∇ν̃

]
dVe (52)

+
∫

Ωe

τ(v)
(

1
∆t

NK + vi NKi

)[
˚̃ν− cb1S̃ν̃− ft1∆v · ∆v

]
dVe

The solution of (49) makes use of the Newton method, with a very intricate Ja-
cobian. The specific source code is available in GitHub [32] as files turbulence.nb and
turbulence.f90. For the driven cavity, see Figure 2; streamlines for the turbulent case are
shown in Figure 3.

1 m

1 m

v1 = 1 m/s v2 = 0 m/s

L = 0.01 m

µ = 0.2 Ns/m2
ρ0 = 0.2, 20, 2000 kg/m3
h = 1.875, 2.500, 3.750, 5.000 mm

f = 0

p = 0

Figure 2. Driven cavity: relevant data.
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h = 5.00 mm h = 3.75 mm h = 2.50 mm h = 1.875 mm

R
e
=
10
0

h = 5.00 mm h = 3.75 mm h = 2.50 mm h = 1.875 mm
R
e
=
1

h = 5.00 mm h = 3.75 mm h = 2.50 mm h = 1.875 mm

R
e
=
10
00
0

Figure 3. Driven cavity: streamlines for the turbulent case.

We adopted a control volume consisting of a rectangle, including the airfoil geometry,
as shown in Figure 4. The chord line has a 1 m length. For α = 5◦ and the optimized airfoil,
we present the results in Figure 5 for the optimized airfoil. The velocity contour plots for
the conditions are presented in Figure 4 along with the velocity lines in the neighborhood
of the airfoils. A video of the optimized case flow for Re = 1× 107 is available on the video
repository [37].

v = 0

p = 0

α

α

10
m

v

v

α = 5◦

α 18 m

v

Airfoil

Re = 1× 106, 5× 106, 1× 107

Figure 4. Control volume for the airfoil analysis.
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-1.048e+01

-3.188e+00

4.100e+00

1.139e+01

1.867e+01
v_x

(a) Re = 1× 106

-5.985e+01

-1.998e+01

1.989e+01

5.975e+01

9.962e+01
v_x

(b) Re = 5× 106

-1.032e+02

-2.995e+01

4.334e+01

1.166e+02

1.899e+02
v_x

(c) Re = 1× 107

Figure 5. Velocityin the x direction for Re = 1× 106, Re = 5× 106 and Re = 1× 107 with the
optimized airfoil for α = 5◦.

The convergence of results for the eddy viscosity µ̃ and pressure p using three distinct
meshes (17,400, 34,737, and 57,211 nodes) shows that smoothness increases with mesh
refinement. Figure 6 shows the convergence of these fields.
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Figure 6. Convergenceof µ̃ and p with mesh refinement.

5. Machine Learning and Optimization

The optimized airfoil optimization procedure consists of two stages: in the first stage,
the relation between the CST parameters and the lift/drag ratio is established by machine
learning. In the second stage, this function is maximized. In the first stage, we resort
to the machine learning algorithm to actually construct a regression relating CL/CD with
10 parameters defining the upper and lower faces of the airfoil. The optimization processes
in the second stage are based on the dual annealing algorithm. We make use of the libraries
TensorFlow [38,39], SciPy, and NumPy. Optimization is performed with the function
SciPy.optimize.dual_annealing. It uses a generalization of simulated annealing with a
final gradient-based local search stage. CL/CD gradients are available from the machine
learning model. In practice, the machine learning system makes use of a large set of input
and output data, relates it statistically, and establishes the rules for regression. More data
and better data will produce a better regression [39]. We note that, although possible (see,
e.g., [10,40], the intent here is not to use full-feature machine learning to replicate the finite
element simulations, but rather to extract the CL/CD ratio.

In summary, the machine learning algorithm involves three parts:

1. Parameter inputs, which are the 10 parameters of the CST representation for the
complete set of UIUC airfoils.

2. Outputs, which are images under a function of the inputs, in this case, CL/CD.
3. Assessment method: this is required to measure the evolution of the iterations toward

the result.

The data collection was performed with the flowchart in Figure 7. A total of 1598
airfoils from the UIUC database were considered valid for this application. Specific features
of the machine learning procedure are as follows (see also [41]):
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• CST [22] parameterization with 10 parameters, which are both the inputs in the learning
process and the design variables.

• Data source: UIUC database [9].
• Four angles of attack were tested, 0, 1.25, 2.50, and 5.00 degrees.
• Set partitioning is as follows: 80% for training and 20% for testing.
• The type is “Regression Classification”.
• Activation function is “ReLU”.
• Kernel initializer is a uniform distribution with HeUniform class.
• Four dense layers.
• 6000 epochs.
• Loss function is “MAE”.
• Adam optimizer for the stochastic gradient descent.

Figure 7. Collecting the data for the machine learning algorithm.

We make use of the deep learning framework, the Keras CNN dense neural network,
which is adequate for regression. The network diagram is shown in Figure 8 for 8 inputs
(omitting ∆ζl and ∆ζu).

Input Layer ∈ �� Hidden Layer ∈ �� Hidden Layer ∈ �� Hidden Layer ∈ �� Output Layer ∈ �¹

Figure 8. Structure of the dense DNN used for airfoil optimization.
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The reasons for these options are as follows. The UIUC database contains a total
of 1621 airfoils but we found that 23 were unsuitable for parameterization by the CST
algorithm. Since at least a single CST patch is needed for each surface, the minimum
number of CST parameters is 10. Further increasing the number of parameters would
create difficulties for the machine learning stage. The number and values of angles of
attack are aligned with what is typical in recreational airplanes, ensuring that simulations
preclude stalling. The type of procedure is “Regression Classification” since the purpose of
simulation here is to be reproduced by the machine learning model. The “ReLU” activation
function is adopted due to the vanishing gradient issue that occurred with other functions.
Since an optimization algorithm (with a final gradient-based stage) is run on top of the
machine learning model, this advantage is important. In addition, due to sparsity, good
performance is achieved with the “ReLU” activation function. The layer and epoch numbers
are the results of the experimentation.

A flowchart for the algorithm following the data collection depicted in Figure 7 is
shown in Figure 9.

Read CL/CD 
from the CFD 

result file

Remove 
outliers

Determine Al_min/max 
and Au_min/max for 

the whole 1598 airfoils

Perform the random 
splitting 80/20 for the 

training/testing

Invoke Keras.Sequential with 4 
dense layers, he_uniform 
initializer, ReLU activation 

Compile model with Loss=MAE 
and Optimizer=ADAM 

Obtains a model fit with 
Epochs=6000 and predict the 

final MAE 

Using bounds obtained in step 3 with 
SciPy.optimize.dual_annealin

g to obtain the optimal CL/CD

Outputs the optimal parameters to 
the geometry-to-preprocessor 

function

Figure 9. Machine learning algorithm after simulation and data collection represented in Figure 7.

6. Results and Discussion of Airfoil Optimization

With a lightweight airplane, such as the MC12 Cri-Cri airplane shown in Figure 10,
efficiency is paramount, even at the expense of lift. High values of CL/CD can be observed
in recreational airplanes. By complying with this requirement, we are fulfilling two re-
quirements, one is to maximize efficiency and the other is to avoid stalling. In this type of
analysis, attention is focused on the behavior of the boundary layer, known as the layer of
fluid close to a surface, a layer that strongly depends on the Reynolds number, the shape of
the airfoil, and its inclination. Evaluating the boundary layer has the objective of reducing
resistance measured by the resistance coefficient CD, composed of two effects, pressure
resistance δ∗ and frictional resistance CL [42].
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Actual airfoil: Wortmann FX 72-MS-150B

Figure 10. Colomban MC12 Cri-Cri airplane. Airfoil Wortmann FX 72-MS-150B p = {−0.071566,
0.064309,0.087768,0.37435,0.24168,0.53136,0.47846,0.37806}.

Using Keras/TensorFlow [38,39] combined with global optimization, it is possible
to train and then optimize the value of CL/CD using (i) XFOIL [18] results or (ii) FEM
RANS [19]. In terms of optimization, the toolkit from SciPy was adopted with the function
optimize.dual_annealing. We show the evolution of loss and MAE (mean absolute error)
in TensorFlow [38], as functions of the epochs, from which we have 6000, in Figure 11 for
the four considered angles of attack: α = 0◦, 1.25◦, 2.50◦ and 5◦. The precision is sufficient
for obtaining airfoil profiles in parametric form, which are superior to those in the UIUC
database [9].

Optimized airfoils, each exhibiting positive curvature, are depicted in Figure 12.
When analyzing the optimized airfoil for α = 0◦, the positive curvature stands out. This
configuration, despite being obtained for α = 0◦, subjects the airfoil to higher pressure on
the lower surface compared to the upper surface, producing a positive lift. There is a
certain bounce on the leading edge, which, together with the curvature and its thickness,
alter the behavior of the boundary layer, trying to keep it close to the airfoil, inhibiting
separation. It should be noted that, as the angle of attack increases, the curvature tends
to not be as pronounced; this happens due to the progressive increase in the contribution
of the angle of attack to the increase in lift, leaving the airfoil to have such a pronounced
curvature to compensate for this need. This observation is even clearer for the 5◦ case. It is
known [42] that, at small angles of attack, thinner airfoils are preferable; at higher angles of
attack, thicker airfoils are preferable. Comparing with the CST-parameterized versions of
the UIUC database (pristine versions can be significantly different), both FEM and XFOIL
show better CL/CD results, see Table 1, with similar performances for this target. In terms
of CL alone, this table also shows that significant differences exist for very similar airfoils.
Specific parameters are shown in Table 2 and can be tested in XFOIL by the reader.
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Figure 11. Evolutionof MAE in TensorFlow for α = 0◦, 1.25◦, 2.5◦ and 5◦.

(a) 0◦

(b) 1.25◦

(c) 2.50◦

(d) 5.00◦

Figure 12. Optimized airfoils as a function of α for Re = 1.08333× 106 (our FEM analysis).
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Table 1. Optimized CL/CD and corresponding CL for the optimized airfoils.

(a) CL/CD for Re = 1.08333 × 106

Optimized

α XFOIL CST CL = FEM CST CL = Best-in-Database ? CL =

0 160 160 105

1.25 223 222 219

2.50 190 200 179

5.00 174 174 173

(b) CL for Re = 1.08333 × 106

α XFOIL CST FEM CST

0 0.98 0.61

1.25 1.12 1.08

2.50 0.93 1.04
5.00 1.49 1.49

Table 2. Optimal parameters for each α (8 out of 10, since two parameters are always close to zero
for the UIUC database [9]).

Method α p

XFOIL

0 {−0.06220,+0.17723,+0.01487,+0.35473,+0.13862,+0.26888,+0.21769,+0.48022}
1.25 {−0.05168,+0.16828,+0.02512,+0.36842,+0.15012,+0.25799,+0.20649,+0.46556}
2.50 {−0.06417,+0.12845,+0.04564,+0.23788,+0.11283,+0.19201,+0.27182,+0.33103}
5.00 {−0.11054,+0.12032,−0.07856,+0.26166,+0.29534,+0.37376,+0.49289,+0.31190}

FEM

0 {−0.03657,+0.09307,+0.01908,+0.14870,+0.11846,+0.20004,+0.19177,+0.28882}
1.25 {−0.04173,+0.15715,+0.03088,+0.35488,+0.14013,+0.24550,+0.19497,+0.45997}
2.50 {−0.05352,+0.13974,+0.03518,+0.25026,+0.12340,+0.19195,+0.28454,+0.31778}
5.00 {−0.12164,+0.10912,−0.06778,+0.26281,+0.30829,+0.36001,+0.49893,+0.32502}

For the four optimal airfoils, we use SIMPLAS [19] with uniformly imposed velocity
and initial conditions; v = 15{cos α, sin α}. Meshes are refined locally, as shown in Figure 13.

α = 0.00◦ α = 1.25◦

α = 2.50◦ α = 5.00◦

Figure 13. Locally refined meshes for the optimal FEM analysis of airfoils.
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Velocity profiles for all four optimized airfoils resulting from the FEM analysis are
shown in Figure 14. We can observe the aforementioned effects. For the ADF g(x), Figure 15
shows the results.

α = 0.00◦ α = 1.25◦

α = 2.50◦ α = 5.00◦

Figure 14. Steady state analysis: velocity profiles.

g(x)

α = 0.00◦ α = 1.25◦

-1.382e+00

-1.036e+00

-6.908e-01

-3.454e-01

0.000e+00
g(x)

-1.382e+00

-1.036e+00

-6.908e-01

-3.454e-01

0.000e+00
g(x)

α = 2.50◦ α = 5.00◦

-1.382e+00

-1.036e+00

-6.908e-01

-3.454e-01

0.000e+00
g(x)

-1.382e+00

-1.036e+00

-6.908e-01

-3.454e-01

0.000e+00
g(x)

Figure 15. Steady state analysis: g(x).
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7. Conclusions

From a representation point-of-view, specifically in the case of CL/CD, as well as in
the shape optimization of airfoils, we achieved great success. An unconditionally stable,
fully implicit time integrator was adopted. The use of Petrov–Galerkin finite elements
(FE) for these applications presented no instabilities and the vortices were close to what
was obtained in the finite volume analysis. The machine learning algorithm, which used
6000 epochs, was moderately successful, as not all CST versions of the airfoils in the UIUC
database were reliable. Optimization produced better airfoils than those present in the
UIUC database; these advancements were in line with the known details that are the rule
of thumb within the recreational aircraft community.
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