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Abstract: In this paper, a novel guidance algorithm based on adaptive convex optimization is
proposed to ensure robustness in the uncertainty of a lunar lander’s parameters and satisfy the
constraints of terminal position, velocity, attitude, and thrust. To address the problem of parameter
uncertainty in the landing process, the parameter-adaptive method is used to achieve online real-
time optimal estimations of specific impulse and mass by the optimal observer, and the estimated
parameters are used to realize optimal trajectory programming. To overcome the difficulty in
constraining the attitude and the thrust level at the final stage in the convex optimization process, a
rapid adjustment phase is added to meet the final attitude and thrust constraints; the target-adaptive
method is used to adjust the target adaptively at the same time. Therefore, the position and velocity
deviations caused by the rapid adjustment phase can be eliminated by the target offset. Finally, the
results of numerical experiments demonstrate the effectiveness of the proposed algorithm.

Keywords: adaptive convex optimization; optimal trajectory programming; parameter uncertainty;
target-adaptive method; lunar landing

1. Introduction

In this paper, an adaptive convex optimization algorithm is presented for the applica-
tion of lunar surface pinpoint landings. Unlike the classical method that directly convexifies
the lunar landing dynamics model with the corresponding constraints into a second-order
cone programming (SOCP) problem, the proposed approach introduces parameter-adaptive
and target-adaptive algorithms to improve the adaptability of the method for parameter
uncertainties and constraints on the final attitude and thrust magnitude of the lander.

To successfully implement autonomous obstacle avoidance and ensure an accurate
and safe landing, the lunar landing process is usually divided into three phases: powered
descent, approach, and landing, as shown in Figure 1 [1–4]. In the powered descent phase,
the lander’s altitude and velocity will be greatly reduced. In the subsequent approach
phase, various sensors on the lander will start to work actively to avoid obstacles and
select the landing site, and a soft landing will be achieved in the final landing phase. These
phases can be subdivided further depending on the mission. Taking Chang’e-3 [2,5–8]
as an example, the lunar lander is in a transfer orbit with an apocynthion of 100 km and
pericynthion of 15 km before the powered descent phase. From near the pericynthion,
it enters the powered descent phase. The main goal of the powered descent phase is to
reduce the altitude and velocity of the lander as much as possible. During the powered
descent phase, the altitude is reduced from 15 km to 2.4 km and the velocity is reduced from
1.7 km/s to approximately 50 m/s [9,10]. This phase typically consumes approximately
80% of the lander’s fuel, so the guidance algorithm for this phase requires minimizing fuel
consumption with the initial lander state error and model uncertainty and achieving the
entrance state requirements for the subsequent approach phase at the end.
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Figure 1. Typical lunar landing process. 

To save as much fuel as possible during the powered descent phase, the linear tan-
gent guidance law with suboptimal fuel characteristics was adopted for the Chang’e-3 
probes. However, the linear tangent guidance law cannot control the flight distance; in 
fact, the allowable landing area of Chang’e-3 is a rectangle area, 356 km long and 91 km 
wide, in Sinus Iridum [11]. This clearly does not meet the mission requirements of future 
lunar exploration for high-precision landings. 

China plans to establish a manned lunar base in the future, which requires the lander 
to be able to land with pinpoint accuracy near the base [12]. In addition, as the exploration 
of the moon progresses further, lunar landers need the ability to land precisely near high-
science-value targets with complex terrain [13,14]. 

All of these goals require the next-generation lunar lander to have the capability of 
precision pinpoint landing. The quality of trajectory planning and the accuracy of the 
guidance algorithm have a direct impact on the final landing accuracy and fuel consump-
tion during the powered descent phase, where most of the lander’s kinetic and potential 
energy are dissipated. Due to their critical importance, these algorithms have received 
extensive attention from various institutions and individuals [15]. 

Current lunar surface landing guidance algorithms are divided into explicit and tra-
jectory optimization algorithms. Explicit guidance algorithms are typically represented by 
augmented Apollo powered-descent guidance (A2PDG) [16], fractional-polynomial pow-
ered descent guidance [17], and zero-effort-miss/zero-effort-velocity (ZEM/ZEV) guid-
ance [18–20]. These algorithms have good autonomy for real-time adjustments and anti-
interference capabilities and can guarantee terminal guidance accuracy. 

Compared to explicit guidance algorithms, numerical optimization algorithms based 
on optimization principles design nominal trajectories according to certain objectives and 
constraints. These methods typically consume less fuel and are more robust. In particular, 
convex optimization algorithms have been widely studied and applied owing to their pol-
ynomial computational complexity and theoretical global optimality [21,22]. 

The method presented in [22] transforms the Mars landing problem into a convex 
optimization problem, ensuring convergence to the optimal solution within a limited 
number of iterations. As a result, subsequent research has focused on extending this 
method to more complex dynamics, constraints, free-final-time problems, and other re-
lated areas. These improvements aim to enhance the robustness and applicability of the 
algorithm [23,24]. The determination of the optimal time-of-flight required for convex op-
timization was further specified in [23]. As reported in [24], by combining convex optimi-
zation with the pseudo-spectral method, the number of nodes and CPU time is reduced, 
and the accuracy of the operation is improved by reasonably selecting the set of nodes. 

Furthermore, other improvements have been investigated to extend the applicability 
of the method under different conditions, such as complex dynamics environments, or to 
add functions, such as hazard avoidance. In [25], convex optimization and curvature ad-
justment strategies were combined to ensure obstacle avoidance while reducing fuel 
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To save as much fuel as possible during the powered descent phase, the linear tangent
guidance law with suboptimal fuel characteristics was adopted for the Chang’e-3 probes.
However, the linear tangent guidance law cannot control the flight distance; in fact, the
allowable landing area of Chang’e-3 is a rectangle area, 356 km long and 91 km wide, in
Sinus Iridum [11]. This clearly does not meet the mission requirements of future lunar
exploration for high-precision landings.

China plans to establish a manned lunar base in the future, which requires the lander
to be able to land with pinpoint accuracy near the base [12]. In addition, as the exploration
of the moon progresses further, lunar landers need the ability to land precisely near high-
science-value targets with complex terrain [13,14].

All of these goals require the next-generation lunar lander to have the capability
of precision pinpoint landing. The quality of trajectory planning and the accuracy of the
guidance algorithm have a direct impact on the final landing accuracy and fuel consumption
during the powered descent phase, where most of the lander’s kinetic and potential energy
are dissipated. Due to their critical importance, these algorithms have received extensive
attention from various institutions and individuals [15].

Current lunar surface landing guidance algorithms are divided into explicit and
trajectory optimization algorithms. Explicit guidance algorithms are typically represented
by augmented Apollo powered-descent guidance (A2PDG) [16], fractional-polynomial
powered descent guidance [17], and zero-effort-miss/zero-effort-velocity (ZEM/ZEV)
guidance [18–20]. These algorithms have good autonomy for real-time adjustments and
anti-interference capabilities and can guarantee terminal guidance accuracy.

Compared to explicit guidance algorithms, numerical optimization algorithms based
on optimization principles design nominal trajectories according to certain objectives and
constraints. These methods typically consume less fuel and are more robust. In particular,
convex optimization algorithms have been widely studied and applied owing to their
polynomial computational complexity and theoretical global optimality [21,22].

The method presented in [22] transforms the Mars landing problem into a convex opti-
mization problem, ensuring convergence to the optimal solution within a limited number of
iterations. As a result, subsequent research has focused on extending this method to more
complex dynamics, constraints, free-final-time problems, and other related areas. These
improvements aim to enhance the robustness and applicability of the algorithm [23,24].
The determination of the optimal time-of-flight required for convex optimization was
further specified in [23]. As reported in [24], by combining convex optimization with the
pseudo-spectral method, the number of nodes and CPU time is reduced, and the accuracy
of the operation is improved by reasonably selecting the set of nodes.

Furthermore, other improvements have been investigated to extend the applicability
of the method under different conditions, such as complex dynamics environments, or
to add functions, such as hazard avoidance. In [25], convex optimization and curvature
adjustment strategies were combined to ensure obstacle avoidance while reducing fuel
consumption. In [26], an approach to optimal trajectory design with uncertainty was
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considered. The uncertainty was further considered in [27], where a convex optimization
method was proposed to achieve precise landing of the rocket under different initial states
and various disturbances. An optimal control approach based on learning and theoretical
support was proposed to solve the problem of the on-board fuel-optimal guidance law in
the powered descent phase in [28]. The dimension of the learning space was significantly
reduced by guiding the learning process with the necessary conditions derived from
Pontryagin’s minimum principle, and supervised learning (SL) and optimal control theory
were combined. In [29], a learning-based six-DOF planetary powered descent and landing
method was introduced using reinforcement learning theory. The thrust command of each
engine was mapped to the estimated state of the lander by learning a policy, achieving
precise positioning and soft landing with robustness to noise and parameter uncertainty.
Different discount rates were also introduced to calculate shape and terminal rewards,
significantly improving performance.

In [30], a convex optimal trajectory programming algorithm was improved for appli-
cation to landing on asteroids with irregular shapes and gravitational fields. In [31], an
effective solution for powered-descent guidance was proposed, which considered multiple
constraint conditions, such as attitude and state-triggered constraints. The authors of [32]
utilized a dual-quaternion-based approach to simultaneously handle attitude and thrust
constraints, achieving an integrated design of guidance and control. Building upon these
works, the non-convex trajectory optimization problem, which is difficult to handle, was
solved in real-time by combining continuous convex programming and first-order cone
optimization in [33]. Multiple constraint conditions, including attitude, thrust, and state-
triggered constraints, can be simultaneously handled by this algorithm, which achieves
higher computational efficiency and faster convergence rates.

In this study, we first considered that landers usually fly with uncertainties such as
specific impulse and initial mass [34,35], which can affect convex optimization and reduce
the optimality of the lander trajectory and increase fuel consumption. In addition, various
lunar surface sensors, such as cameras and lidars, typically do not work when the lander
is further away from the moon, which means that the lander has no attitude constraints
at this time. However, as the powered descent phase comes to an end and the lander gets
close enough to the moon, it is usually desired that the lander has a specific attitude so
that it can obtain images and measurements from various sensors for obstacle avoidance
and navigation [9,35–38] and a specific thrust magnitude for a smooth transition to the
subsequent phase [10,39].

On this basis, an adaptive convex optimization algorithm for lunar landing guidance is
proposed. In the proposed algorithm, we first consider the effect of parameter uncertainty
during the flight of the powered descent phase. Thus, an optimal observer using accelero-
metric measurements was designed to estimate the specific impulse and real-time mass
of the lander and eliminate uncertainty. After this observer convergence is reached, the
lander’s trajectory is replanned online on the basis of the new parameter values. This algo-
rithm utilizes the optimal observer to obtain the optimal estimation of the system state and
parameters, compensating for parameter uncertainty. In contrast to learning-based methods,
this algorithm does not require training datasets and can provide more precise estimations
due to its mathematical model-based nature. Furthermore, the optimal observer-based
approach can offer error quantification and correction for estimations, thereby improving
the robustness of the algorithm. Additionally, unlike the approach in [31–33] that introduces
attitude constraints throughout the entire flight, this paper inserts a rapid adjustment phase
at the end of the trajectory generated by the classical convex optimization algorithm. This
method does not introduce attitude constraints in the convex optimization process, nor
does it require integrated guidance and control design. Instead, the rapid adjustment phase
at the end of the trajectory, generated by the classical convex optimization algorithm, is
used to constrain the lander’s attitude (primarily pitch angle) and thrust magnitude. The
deviation of the position and velocity caused by the rapid adjustment of the attitude and
thrust is eliminated by adaptively adjusting the power descent phase target to meet the
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requirement of approaching the phase entrance window. Compared with classical methods,
the proposed approach in this paper, which incorporates a rapid adjustment phase and a
target-adaptive algorithm, only requires the lander to have a specific attitude at the end
of the powered descent phase, rather than imposing unnecessary constraints on attitude
range throughout the entire flight. This provides the lander with greater flexibility for
adjusting attitude during flight, leading to more efficient fuel consumption. Moreover, it
avoids the need for six-DOF guidance and a control-integrated design, which reduces the
design complexity and system complexity, as well as the state dimension. This results in a
smaller computational load and better real-time performance of the guidance system.

The remainder of this paper is organized as follows. Section 2 presents the lunar
landing process and phase division as well as the dynamics model and briefly describes
how to transform the lunar landing optimal trajectory planning problem into a finite-
dimensional convex optimization problem. Section 3 presents the design of an optimal
estimator to estimate the uncertainties in the lunar landing process to achieve parameter
adaption. Section 4 presents a target-adaptive algorithm that allows the lander to make
rapid adjustments to meet the approach phase entrance requirements without causing
position and velocity deviations. Section 5 presents the numerical results using only
parameter adaption, only target adaption, and integrated simulation. Finally, Section 6
summarizes the conclusions of this study.

2. Problem Formulation
2.1. Guidance System Scheme

The convex optimization algorithm, which is used to plan the optimal trajectory, can
transfer from the given initial state to a predetermined target state on the premise of saving
as much fuel as possible. However, two problems remain.

On the one hand, it is difficult to add the final attitude constraints to the guidance
process, which causes uncertainty in the final attitude. However, when the lander is close
enough to the lunar surface, to navigate and avoid hazards, the sensors and detection
elements usually require the lander to have a certain attitude. Furthermore, the lander
requires a specific thrust for a smooth transition to the subsequent phase. To achieve the
attitude and thrust constraints at the end of the powered descent phase, the powered
descent phase is divided into the main breaking phase and rapid adjustment phase. The
thrust and attitude are smoothly transferred to meet the requirements of the subsequent
phase during the rapid adjustment phase. However, the trajectory generated by convex
optimization depends on the specific impulse, initial mass, and other parameters of the
engine. The uncertainty of the parameters affects the optimality of the trajectory formed
by the convex optimization and the accuracy of the final state. Simultaneously, the rapid
adjustment process also affects the final state. Therefore, it is necessary to adopt an adaptive
convex optimization algorithm to achieve the entrance condition of the approach phase
by automatically adjusting the powered descent phase target and estimating the guidance
parameters in real time to improve guidance accuracy and reduce fuel consumption.

The sequence of the guidance system is shown in Figure 2. The powered descent
phase is divided into the main breaking phase and the rapid adjustment phase. A closed-
loop feedback system is implemented along the optimal trajectory generated by convex
optimization. The nominal trajectory is generated twice: The trajectory generated for the
first time is offline, and only the target-adaptive algorithm is considered. After the online
parameter estimation converges, the adaptive convex optimization is performed according
to the current lander state. Both the target adaption and parameter adaption are considered
during this convex optimization. The lander then carries closed-loop feedback guidance
according to the nominal trajectory. Before the end of the powered descent phase, the lander
enters the rapid adjustment phase. In this phase, the lander adjusts its attitude and thrust
rapidly. In this phase, the lander performs open-loop guidance. As the target-adaptive
adaption has been carried out previously, after the guidance of the rapid adjustment phase
is completed, the lander reaches the target state of the power descent phase.
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2.2. Dynamic Model

As the inertial force does not exist in the lunar center inertial coordinate system, and
to simplify the problem, a dynamic model is established in this coordinate system. Under
this condition, the dynamic model is given by:

.
R(t) = V(t)
.
V(t) = g(t) + Fc(t)/m(t)
.

m(t) = −‖Fc(t)‖/
(

Ispge
)
= −α‖Fc(t)‖

(1)

where R(t) and V(t) are the position and velocity of the lander at time, respectively; Fc(t)
is the thrust; m(t) is the mass; Isp is the vacuum specific impulse; ge is the nominal gravity
acceleration constant of the Earth; g(t) is the gravitational acceleration; and α = 1/

(
Ispge

)
denotes the mass flow coefficient.

As this paper adopts the inverse-square gravity model, and the coordinate system of
the model is in the inertial frame, the gravitational acceleration g(t) varies with the position
during flight. On the one hand, as the flight altitude decreases, the magnitude of the
gravitational acceleration changes. On the other hand, as the latitude and longitude of the
lander change, the direction of the g(t) in the inertial frame also changes. Therefore, in this
paper, the gravitational acceleration is assumed to be a time-varying quantity that changes
along the nominal trajectory of the lander during the approach phase before powered
descent guidance.

The state of the lander must be constrained to ensure vehicle safety during the landing
process. In the landing process, to prevent the lander from hitting the lunar surface, a
height constraint should be introduced:

Rz(t) ≥ hmin (2)

where Rz(t) denotes the height of the lander, and hmin denotes the minimum allowable
height. The thrust constraint can also be introduced as:

Fmin ≤ ‖Fc(t)‖ ≤ Fmax (3)

where Fmin, Fmax are the minimum and maximum thrusts, respectively, provided by
the thruster.

m(t) ≥ mdry (4)
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where mdry is the mass of the lander without fuel in the powered descent phase, and m
(

t f

)
is the final mass of the lander.

Finally, the constraints on the initial and final states of the lander are given as:R(0) = R0 R
(

t f

)
= Rd

V(0) = V0 V
(

t f

)
= Vd

(5)

where R0 and Rd are the initial and target positions, respectively, and V0 and Vd are the
initial and target velocity, respectively.

The trajectory planning problem for lunar landing can be formulated as a two-point
boundary fuel-optimal control problem. By taking the fuel consumption as the landing
performance index and maximizing the final mass m

(
t f

)
, the following objective function

must be minimized:

min J =
∫ t f

0

∥∥∥Fc

(
t f

)∥∥∥/m(t)dt (6)

By combining the dynamic model, constraints, and objective functions in Formulas (1)–(6),
the optimization problem referred to as Problem 1 is expressed as follows.

Problem 1: Continuous-time minimum fuel optimization problem

min J =
∫ t f

0

∥∥∥Fc

(
t f

)∥∥∥/m(t)dt
s.t.
.

R(t) = V(t)
.
V(t) = g(t) + Fc(t)/m(t)
.

m(t) = −‖Fc(t)‖/
(

Ispge
)
= −α‖Fc(t)‖

Rz(t) ≥ hmin m
(

t f

)
≥ mdry

Fmin ≤ ‖Fc(t)‖ ≤ Fmin

R(0) = R0 R
(

t f

)
= Rd

V(0) = V0 V
(

t f

)
= Vd

(7)

2.3. Trajectory Planning Algorithm Based on Convex Optimization

For Problem 1, as shown in Formula (7), because m(t) in the dynamic model appears
in the denominator and the thrust constraint is a nonconvex constraint, Problem 1 is a
non-convex problem. To use the convex optimization method to solve the problem the
model needs to be convexified and converted into a convex problem, specifically, the SOCP
problem. First, logarithmic mass is introduced [22]:

z(t) = ln m(t) (8)

Second, new control variables are introduced:

u(t) =
Fc

m(t)
σ(t) =

‖Fc‖
m(t)

(9)

From Formulas (8) and (9), the dynamic model becomes:
.

R(t) = V(t)
.
V(t) = g(t) + u(t)
.
z(t) = −ασ(t)

(10)
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The objective function becomes:

min J =
∫ t f

0
σ(t)dt (11)

Furthermore, the thrust constraint and mass constraint also become:

Fmine−z(t) ≤ σ(t) ≤ Fmaxe−z(t) (12)

The remaining mass constraint becomes:

z
(

t f

)
≥ zdry (13)

where zdry = ln mdry denotes the logarithmic dry mass.
Furthermore, the control variable constraint must be introduced:

‖u(t)‖ ≤ σ(t) (14)

When the optimal solution is obtained, the control variable must satisfy [40]:

‖u∗(t)‖ = σ∗(t) (15)

where the superscript asterisks indicate the optimal control variables.
To avoid the exponential nonconvex constraint, Taylor expansion can be performed

using Formula (12): {
σ(t) ≥ Fmin(1− z(t) + z0(t))
σ(t) ≤ Fmax(1− z(t) + z0(t))

(16)

where z0(t) satisfies:
z0(t) = ln(mwet − αFmaxt) (17)

where mwet denotes the initial mass of the lander.
The logarithmic mass z(t) must also satisfy the following constraints:

ln(mwet − αFmaxt) ≤ z(t) ≤ ln(mwet − αFmint) (18)

From the preceding convexification of the dynamics and constraints, the fuel-optimal
continuous-time convex optimization problem represented as Problem 2 can be described
as follows.

Problem 2: Continuous-time minimum fuel SOCP problem

min J =
∫ t f

0 σ(t)dt
s.t.
.

R(t) = V(t)
.
V(t) = g(t) + u(t)
.
z(t) = −ασ(t)
‖u(t)‖ ≤ σ(t)
Fmine−z0(1− z(t) + z0(t)) ≤ σ(t) ≤ Fmaxe−z0(1− z(t) + z0(t))
ln(mwet − αFmaxt) ≤ z(t) ≤ ln(mwet − αFmint)
z(t) ≥ zdry
Rz(t) ≥ hmin

R(0) = R0 R
(

t f

)
= Rd

V(0) = V0 V
(

t f

)
= Vd

(19)
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Problem 2 is an SOCP problem obtained by lossless convexification from Problem 1.
This must be discretized before solving. The state and augmented control variables are
defined as follows:

x(t) =

R(t)
V(t)
z(t)

 η(t) =
[

u(t)
σ(t)

]
(20)

Accordingly, the dynamic model of Formula (10) becomes:

.
x(t) = Ax(t) + Bη(t) + Cg(t) (21)

where

A =

0 I 0
0 0 0
0 0 0

 B =

 0 0
I 0
0 −α

 C =

0
I
0

 (22)

To discretize the problem, the time interval
[
0, t f

]
is divided into N intervals with

time increment ∆t; the temporal nodes are tk = k∆t, t f = N∆t, k = 0, 1, 2, . . . , N. In the
time interval [ti, ti+1], the control variables ηi(t) satisfy:

ηi(t) =

{
ϕ(t) t ∈ [ti, ti+1]

0 t /∈ [ti, ti+1]

i = 0, 1, . . . , N − 1
(23)

where ϕ(·) denotes a specific primary function. In the proposed algorithm, the primary
function is taken as a constant function, which means that the control variables remain
unchanged in each interval. The discrete dynamic model is [28,41]:

xi+1 = Φixi + Ψiηi + Θigi (24)

where xi, ui, and gi are x(ti), u(ti), g(ti), and Φi = Φ(ti+1, ti) is the solution of the linear
matrix ordinary differential equation:

d
dt

Φ(t, t0) = AΦ(t, t0), Φ(t0, t0) = I (25)

Ψi and Θi are defined as:

Ψi = Φi
∫ ti+1

ti
Φ(τ, ti)

−1Bdτ

Θi = Φi
∫ ti+1

ti
Φ(τ, ti)

−1Cdτ
(26)

Problem 3 can be obtained after discretization:

Problem 3: Convex finite-dimensional fuel-optimal lunar landing problem

min J =
N−1
∑

i=0
σi

s.t.
xi+1 = Φixi + Ψiηi + Θigi
‖ui‖ ≤ σi
σi ≥ F1e−z0i

(
1− zi + z0i

)
σi ≤ F2e−z0i

(
1− zi + z0i

)
zi ≥ zdry
zi ≥ ln(mwet − αF2ti)
zi ≤ ln(mwet − αF1ti)
Rzi ≥ hmin

(27)
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where σi = σ(ti), ηi = η(ti), zi = z(ti), and Rzi = Rz(ti).

In this way, the lunar landing problem becomes a discrete SOCP problem. If a feasible
solution exists for Problem 3, then this solution also defines a feasible solution for Problem
1 [22], and simultaneously, Problem 3 can be solved globally optimally in polynomial
time [42]. Further discussion on the speed of convergence can be found in [23].

3. Parameter-Adaptive Algorithm

Parameters such as mass and specific impulse must be used in the convex optimization
process of the lander. If the parameters used are inconsistent with reality, the parameter
error will affect the optimality of the landing trajectory and then affect the landing error and
fuel consumption. Therefore, a parameter-adaptive algorithm is proposed in this paper to
estimate the parameters of the lander by constructing an observer, using these parameters
in the convex optimization process to ensure optimality.

3.1. Model of the Uncertainty

During landing, some uncertainties exist in the engine working conditions, processing
technology, oxidant, and fuel state; therefore, some uncertainty exists in the specific impulse
of the lander. At the same time, owing to the volatility of the fuel carried by the lander and
the weight of the crew and materials, the initial mass also has uncertainty; therefore, the
mass in the flight process also has uncertainty. Therefore, the proposed algorithm uses the
online measured value of the accelerometer to estimate the contrast impulse and mass.

Assuming that the specific impulse remains constant during flight, the mass flow
coefficient is also constant. Subsequently, the mass and mass flow coefficients of the lander
satisfy the following differential equations:{ .

m = −Fc(t)α.
α = 0

(28)

where Fc(t) = ‖Fc(t)‖.
Taking the measurement of the accelerometer as an observation, the observation

equation is:

y =
Fc(t)
m(t)

(29)

Let Θ = [m α] = [Θ1 Θ2]; then, Formulas (28) and (29) can be written as:
.

Θ = f (Θ, Fc), y = h(Θ, Fc) (30)

where

f (Θ, Fc) =

[
−FcΘ2

0

]
, h(Θ, Fc) =

Fc

Θ1
(31)

3.2. Observer Design

The system (30) is nonlinear, and more precisely, its measurement equation is non-
linear. In this study, considering that the steady-state behavior of the Kalman filter is
unbiased and optimal [43], an optimal observer based on an extended Kalman filter was
designed. Considering the optimal observer designed for the system (30), the model of the
observers is: .

Θ̂ = f
(
Θ̂, Fc

)
+ H(t)

[
y− h

(
Θ̂, Fc

)]
(32)

The Jacobian matrix of f (Θ, Fc) and h(Θ, Fc) in Θ̂ is:

AJ =
∂ f
∂Θ

=

[
0 −Fc
0 0

]
CJ =

∂h
∂Θ

=

[
− Fc

Θ̂2
1

0

]
(33)
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The observation gain matrix is set as:

H(t) = P(t)CT
J R−1

o (34)

where P(t) is the solution to the Riccati equation:{ .
P = AJP + PAT

J + Q− PCT
J R−1

o CJP
P(t0) = P0

(35)

where P0, Q, and Ro are positive-definite symmetric matrices. By combining the differential
Formulas (32) and (35), Θ̂ converges to Θ.

To avoid drastic changes in the parameters, which leads to the drastic fluctuation
of guidance parameters and the loss of smoothness in the guidance process, the second
component is smoothed by the integral sliding window:

Θ̂2′ =
1

Tw

∫ t

t−Tw
Θ̂2(τ)dτ (36)

4. Target-Adaptive Algorithm

It is usually necessary for the lander to have a specific thrust and attitude at the end of
the powered descent phase to facilitate the operation of various lunar surface sensors and
to transition smoothly to the subsequent approach phase. The classical convex optimization
algorithm typically imposes constraints on the thrust range and attitude throughout the
entire flight process, rather than requiring the lander to have a specific thrust magnitude
and direction at the end of the powered descent phase. To address this issue, this paper
proposes a target-adaptive algorithm based on convex optimization for real-time trajectory
planning. During most of the powered descent phase, the lander’s control system adjusts
the attitude in real time based on the thrust direction commanded by the guidance system
to ensure that the lander’s thrust direction is consistent with the command. In the last
several seconds of the powered descent phase (generally 10~20 s), the lander switches to
open-loop guidance and rapidly adjusts its attitude and thrust to smoothly transition to the
desired thrust and attitude in a linear manner over time.

Due to the fact that the lander switches to open-loop guidance in the final seconds
of the powered descent phase, adjusting the attitude and thrust rapidly to achieve the
desired values, it naturally deviates from the nominal values in terms of thrust direction
and magnitude. Consequently, the lander’s final state at the end of the powered descent
phase deviates from the desired position and velocity. To address this issue, the target offset
technique is proposed in this paper, which intentionally shifts the constraints on the final
target state of the convex optimization to enable the lander to reach the original ideal target
state, which has not been offset, after the rapid adjustment phase of open-loop guidance.

The flight process of the lander is shown in Figure 3. Assuming that the lander flies
along the initial nominal trajectory, as indicated by the black line in Figure 3 at the beginning,
after entering the rapid adjustment phase, because the attitude and thrust no longer refer
to the nominal command designed by the nominal convex optimization algorithm, the
position and velocity of the lander inevitably deviate from the ideal position and velocity
along the black dotted line. The actual lander final state Rp, Vp also deviates from the
target state, Rd, Vd. The target-adaptive algorithm adopts the target offset technology. After
setting the target to Rd,new, Vd,new, the convex optimization trajectory is re-planned. The
final nominal trajectory is indicated by the blue line in Figure 3. The lander flies along the
nominal trajectory through closed-loop guidance during the main breaking phase. In the
rapid adjustment phase, owing to the rapid adjustment of attitude and thrust, the lander
also deviates from the nominal trajectory along the blue dotted line. However, owing to
the target offset technology, the lander reaches the target state after rapid adjustment.
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The specific algorithm for target adaption is as follows: the target position and velocity
of the lander are Rd and Vd, respectively. Then, Rd, Vd are considered as the target values
of the convex optimization for trajectory programming. On the basis of the current optimal
trajectory, it is assumed that the last Ts will enter the rapid-adjusted phase so that the
final attitude and thrust of the lander meet the constraints. However, the final position
and velocity of the lander deviate from the nominal state owing to the insertion of a rapid
adjustment phase compared with the nominal trajectory. Assuming that the times before
and after the rapid adjustment are tini and tend, the ideal initial and end thrust values
are Fc,ini and Fc,end, and the initial and end pitch angles are ϑini and ϑend, respectively.
As the lander generally does not exhibit lateral movement during landing, its yaw angle
changes little; therefore, the yaw angle is assumed to change along the original yaw angle
profile. Simultaneously, the roll angle is independent of the thrust direction and can be
set arbitrarily. Therefore, the effect of roll angle is not considered in this process. During
the rapid adjustment phase, the thrust and pitch angles change uniformly according to the
program instructions: 

Fc = ∆Fcτ + Fc,ini
ϑ = ∆ϑτ + ϑini
Ψ = Ψ(τ)

(37)

where τ = (t− tini)/(tend − tini) represents the nondimensional time, and ∆Fc = Fc,end − Fc,ini,
∆ϑ = ϑend − ϑini represent the change values of thrust and pitch angle, respectively, to be
adjusted in the rapid adjustment phase.

According to Formula (36) the output thrust vector of the lander is given by:

Fc(τ) =

Fc sin ϑ sin Ψ
Fc sin ϑ cos Ψ

Fc cos ϑ

 (38)

According to the thrust vector output Fc(τ), the position Rini, velocity Vini, and mass
mini of the lander in the initial stage of the rapid adjustment phase, the predicted position
Rp, and velocity Vp can be obtained.

As the process of the rapid adjustment phase lasts only 10~20 s, the mass of the
lander changes little during this process. Consider a typical 7500 N variable-thrust engine
with a specific impulse of 309 s as an example. Its full-thrust output is 20 s, and the fuel
consumption is approximately 50 kg. If the initial mass of the lander is 5000 kg, the mass
change is only 1%. Therefore, in the prediction process, the mass of the lander is regarded
as unchanged and is calculated using the average mass of the rapid adjustment phase. First,
the average mass is predicted as follows.

As the mass satisfies:
.

m = −αFc(t) (39)
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the final mass m2 can be obtained as:

mend = mini −
1
2

α∆FcT − αFc,iniT (40)

and the average mass is:

m =
1
2
(mini + mend) (41)

Therefore, the predicted position and velocity changes of the lander are:{
Rp = 1

m

∫ T
0

∫ t
0 Fcdτdt + 1

2 gT2 + ViniT + Rini

Vp = 1
m
∫ T

0 Fc(τ)dτ + gT + Vini
(42)

If the nominal target states without any offset are R̂d and V̂d, the position and velocity
deviations caused by the rapid adjustment are:{

∆R = R̂d −Rp
∆V = V̂d − Vp

(43)

In the proposed algorithm, the target bias method is used to adjust the target-state
deviation; that is, the new landing target is set as:{

Rd,new = Rd + kR∆R
Vd,new = Vd + kV∆V

(44)

where kR and kV are feedback correction coefficients for the target position and target
velocity, respectively.

According to the new landing targets Rd and Vd obtained previously, convex opti-
mization is performed again to obtain the optimal trajectory. After the optimal trajectory is
obtained, the position and velocity deviations are recalculated. This process is repeated
until the final position and velocity deviations are less than certain values.

According to the preceding discussion, a closed-loop guidance system is shown in
Figure 4. Its main guidance loop compares the nominal trajectory generated by convex
optimization with the trajectory generated by guidance and carries out position and speed
feedback on the basis of the nominal guidance command so that the lander does not leave
the nominal trajectory in the presence of interference force and output uncertainty and
successfully reaches the target state.

Simultaneously, the parameter-adaptive module uses the information measured by
the accelerometer and the output data of the thruster to estimate the online parameters
through a nonlinear optimal observer. The estimated parameters converge to the real value
with the accumulation of acceleration measurement data. To avoid violent oscillation of
the estimated parameters, the estimated parameters are smoothed by the sliding-window
integral smoother, and then the parameters are transmitted to the convex optimization
system to generate a new nominal trajectory. In the subsequent guidance process, the
lander uses a new nominal trajectory for closed-loop feedback guidance. This module
improves the adaptability of the guidance to mass and specific impulse uncertainty.

In addition, the target-adaptive module first performs pre-convex optimization in
the convex optimization process, and according to the convex optimization trajectory,
the final state of the main breaking phase is obtained, namely, the state of the lander
at the t f − T moment. It is assumed that the attitude and thrust of the lander linearly
and smoothly transit to the target attitude and thrust. This transition leads to deviation
∆R and ∆V of the target state of the lander. Therefore, the target of the lander deviates
according to Formula (44), and convex optimization is performed again until the final state
deviation of the lander is less than the given value. The trajectory formed at this time is the
nominal trajectory, and the lander conducts closed-loop feedback guidance according to
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this trajectory. This module ensures the terminal attitude and thrust-constraint ability of
the lander.
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5. Simulation Results and Discussion

This section describes the three numerical simulations that were conducted to verify
the effects of parameter adaption and target adaption and the integrated guidance effect.

5.1. Parameter-Adaptive Algorithm

Owing to the existence of many uncertainties, the flight parameters of the lander may
be inconsistent with the nominal parameters, which can degrade the optimality of the
convex optimal trajectory and consume additional fuel. The parameters are set as shown in
Table 1 with references from [10,39,44]. Due to the ignition of the descent engine at perilune,
the initial vertical velocity of the lander is zero.

Table 1. Lander parameters in parameter-adaptive simulation.

Parameter Value

Nominal initial mass 3000 kg
Actual initial mass 3010 kg

Mass of the lander without fuel 1200 kg
Nominal specific impulse 300 s
Actual specific impulse 305 s

Initial position [−557,254, 120, 15,000] m
Initial velocity [1700, 0, 0] m/s
Target position [0, 1200, 2400] m
Target velocity [0, 50, −50] m/s

Minimum thrust 2000 N
Maximum trust 7500 N

Accelerometer noise 0.001 mg

The estimation results of the optimal observer for the mass and specific impulse are
shown in Figures 5 and 7. As the measurements are directly related to the mass, the
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convergence of the mass estimates is rapid, as shown in Figure 5, converging to the true
value within 0.5 s, and then tracking the gradual decrease in the true value as the fuel
is consumed. By contrast, because the integration of the mass flow coefficient (specific
impulse) is related only to the measured value, the convergence rate of the specific impulse
is slower than that of the mass. As shown in Figure 7 and Table 2, convergence can be
completed in approximately 10 s. Under the initial conditions of this simulation example,
the mean value of the final mass estimation error is −0.0059 kg, and the standard deviation
of the error is 0.2333 kg; the mean value of the final specific impulse estimation error is
−0.0315 s, and the standard deviation of the error is 0.601 s. Furthermore, note that there is
a fluctuation of approximately ±5 s in the estimated specific impulse curve after 500 s. This
result was due to a sudden change in the thrust curve at this time, as shown in Figure 6.
Thus, the matrix AJ in Formula (35) changed, and accordingly, the matrix P changed, which
according to Formula (35) affected the corresponding observed gain matrix H and thus
caused an unexpected change in the observed value.
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Table 2. Parameter estimation error.

Mean of Error Standard Deviation of Error

Mass −0.0059 kg 0.23 kg
Specific impulse 0.031 s 0.60 s

Depending on the convergence rate, it takes approximately 10 s for the parameter
estimation to reach convergence. Therefore, matrix P was tested from the beginning of
the estimation to 10 s later. In addition, if the abrupt thrust change point occurs before
convergence, it should be re-regarded as the start time, leaving 10 s at the abrupt change
point to allow the parameter estimation to converge. The matrix P is checked 10 s after the
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start time, and if the matrix P satisfies P11 < ε1 and P22 < ε2, the observer is considered to
have achieved convergence on the parameter estimates. After convergence, the onboard
computer uses this parameter estimation result to re-plan the optimal trajectory and uses
this trajectory as the basis for closed-loop feedback guidance.

Comparisons of whether to use the parameter-adaptive algorithm are shown in
Figures 8–10. It can be seen that with either feedback guidance with the optimal tra-
jectory formed by convex optimization based on nominal parameters or online estimated
parameters, the lander can reach the predetermined target state. In the case where the
parameter-adaptive algorithm is not used, the actual parameters are different from the
nominal parameters used for convex optimization. The uncertainties in the thrusters and
output devices cause the lander to deviate from the nominal trajectory, and the velocity and
position feedback loops correct the deviation so that the lander finally reaches the intended
target. When the parameter-adaptive algorithm is used, the lander actively estimates each
parameter with uncertainties and re-inputs the parameter estimates into the onboard com-
puter to form a nominal trajectory again, thereby reducing the uncertainty in the landing
process, improving the landing accuracy, and simultaneously ensuring the optimality of
the landing trajectory.
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The simulation results are listed in Table 3. In this simulation, when no parameter
adaption was adopted, the final X-direction position error, Y-direction position error, and
altitude errors of the lander were 0.8568 m, −0.0373 m, and −1.172 m, respectively, and
the final X-axis speed error, Y-axis speed error, and vertical speed error were −0.5780 m/s,
−0.2046 m/s, and 0.2805 m/s, respectively. In the case of adopting parameter adaption,
the three-axis position error of the lander trajectory was −0.01574 m, −0.067 m, and
0.051 m, and the three-axis speed error was −0.013 m/s, −0.073 m/s, and 0.0058 m/s.
The uncertainty of the end state of the lander was greatly reduced. With respect to fuel
consumption, the final remaining mass was 0.34 kg more with the parameter-adaptive
algorithm than without it because the parameters used for optimal trajectory planning
by convex optimization are closer to the actual parameters when the parameter-adaptive
algorithm is used. In conclusion, the parameter-adaptive algorithm can improve the
accuracy of the final state while also resulting in a slight reduction in fuel consumption.

Table 3. Final state of lander.

Mean of Error Standard Deviation of Error

X-direction position error 0.8568 m −0.157 m
Y-direction position error −0.373 m −0.067 m

Altitude −1.172 m 0.051 m
X-axis speed error −0.5780 m/s −0.013 m/s
Y-axis speed error −0.2046 m/s −0.073 m/s

Vertical speed error 0.2805 m/s 0.0058 m/s
Final remaining mass 1566.60 kg 1566.94 kg

5.2. Target-Adaptive Algorithm

The target-adaptive algorithm places the state of the lander exactly at the predeter-
mined target state after the rapid adjustment phase by actively performing the target offset.
The relevant simulation parameters are presented in Table 4 [10,39,44].

Table 4. Lander parameters in target-adaptive simulation.

Parameter Value

Initial mass 3000 kg
Mass of the lander without fuel 1200 kg

Initial Position [−557,254, 120, 15,000] m
Initial velocity [1700, 0, 0] m/s

Minimum thrust 2000 N
Maximum thrust 7500 N
Specific impulse 300 s
Target position [0, 1200, 2400] m
Target velocity [0, 50, −50] m/s

Target pitch angle 82◦

Target thrust 3500 N
Adjustment time 10 s

The simulation results are shown in the following figures, and the three-axis thrust
curves are shown in Figure 11. As shown in the figures, compared to the original optimal
trajectory without the rapid adjustment phase, the two curves with the rapid adjustment
phase exhibit a rapid change in thrust in the last 10 s, in addition to the typical max-min-
max thrust switch caused by the convex optimization. This rapid change was due to the
rapid linear adjustment of the attitude angle and thrust magnitude. The total thrust curve
is shown in Figure 12a. It can be seen that the total thrust of the original optimal trajectory
ended near 6800 N, and the final thrust was approximately 3500 N after rapid adjustment,
which is conducive to the subsequent phase. Figure 12b further shows the fuel consumption
and lander mass. As the proposed algorithm adds a rapid adjustment phase to ensure
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that the lander meets the final attitude and thrust constraints, the trajectory must not be
optimal, and the algorithm inevitably consumes more fuel compared to the original optimal
trajectory formed by convex optimization. As depicted in Figure 12b, the addition of a rapid
adjustment phase to the original trajectory for the purpose of uniformly reducing the thrust
magnitude at the end resulted in the lowest fuel consumption and a final mass of 1584.1 kg.
However, at this point, the lander had already deviated from the desired state and failed
to achieve the desired position and velocity. Nonetheless, the fuel consumption of the
original trajectory and the target-adaptive adjustment trajectory were nearly equivalent,
with respective final masses of 1578.8 kg and 1578.7 kg. This observation highlights that
the target-adaptive algorithm can effectively ensure that the lander conforms to the final
attitude and thrust constraints with a minimal additional fuel cost (i.e., only 0.1 kg) in
comparison to the original trajectory.
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Figure 12. Thrust curve and mass curve: (a) thrust curve; (b) mass curve.

The change in the attitude angle is shown in Figure 13. Figure 13a shows the change
in the yaw angle. As the rapid adjustment phase does not adjust the yaw angle, the three
curves in Figure 13a almost coincide, and the yaw angle itself changes less under the
calculation example shown in this paper and can be maintained at approximately 180◦.
Figure 13b shows the pitch angle curve; according to the original optimal trajectory, the
pitch angle was adjusted from 55◦ to 66◦ at an almost uniform speed in the last 10 s. After
inserting the rapid adjustment phase, the lander quickly adjusted the pitch angle from
approximately 66◦ to approximately 82◦ in the last 10 s, reaching the target attitude angle,
which can meet the requirements of sensor alignment to the ground for navigation, obstacle
avoidance, and autonomous landing site selection in the next flight phase.
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As the rapid adjustment phase is inserted at the end of the main braking phase, it
inevitably causes the state to deviate from its target state. To avoid this situation, the
proposed algorithm adopts a target offset to correct it. The speed curves are shown in
Figure 14. As seen in the figure, the original optimal trajectory without the rapid adjustment
phase reaches the expected target state, that is, the X-axis speed is 50 m/s, the Y-axis speed
is 0 m/s, and the vertical speed is −50 m/s. The speed curve after adding the rapid
adjustment phase coincides with the original curve at first, but after the rapid adjustment
begins, the speed curves gradually deviate from the original curve, and after finishing the
rapid adjustment phase, all the speeds deviate from the desired target state; the X-axis speed
is 60 m/s, Y-axis speed is 0.05 m/s, and vertical speed is−57 m/s. After the target-adaptive
adjustment, because the landing target state used in the convex optimization is not the
predetermined target state at this time, the deviation of the speed curve is generated at the
beginning compared to the original nominal curve. However, after the rapid adjustment
phase, the final speed is exactly the predetermined target speed, so the final speed error is
eliminated by the target-adaptive technique. The position curves are presented in Figure 15;
for the same reason as that for the speed curve, the original optimal curve could successfully
reach the intended landing position of [0, 1200, 2400] m. However, the state of the lander
gradually deviated from the nominal value in the rapid adjustment phase, so the lander
finally reached the position of [23.89, 1200.2, 2376] m. After target adaption, the lander
finally reached the target position.
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5.3. Integrated Simulation Verification

In this experiment, 1000 Monte Carlo shooting simulations were performed to verify
the deviations caused by the parameter uncertainties and rapid adjustment phase, with the
simulation parameters listed in Table 5 [10,39,44].

Table 5. Monte Carlo shooting simulation parameters.

Parameter Value

Nominal initial mass 3000 kg
mass error 3σ 30 kg

Nominal specific impulse 300 s
Specific impulse error 3σ 15 s

Mass of the lander without fuel 1200 kg
Initial position [−557,254, 120, 15,000] m

Initial position error 3σ [50, 50, 50] m
Initial velocity [1700, 0, 0] m/s

Initial velocity error 3σ [5, 5, 5] m/s
Target position [0, 1200, 2400] m
Target velocity [0, 50, −50] m/s

Minimum thrust 2000 N
Maximum trust 7500 N

Accelerometer noise 3σ 0.001 mg
Thruster output noise 3σ 50 N

The statistics of the simulation results are shown in Figures 16–19. Figures 16a, 17a and 18a
show the distribution of the position error, and it can be seen that the error is largest in
the X direction and smallest in the Y direction. It can also be seen that the position error
with adaptions is almost unbiased, that is, its mean value is zero, whereas its position error
without adaptions is biased. This result is due to the addition of the rapid adjustment phase
after the main braking phase, which performs the rapid adjustment of attitude and thrust
causing the position to deviate from its target. In contrast, the adaptive convex optimization
algorithm uses a target-adaptive algorithm that actively performs a target offset to compen-
sate for this part of the violation, such that the position error can be unbiased. In addition,
because the adaptive convex-optimized guidance uses a parametric adaptive algorithm
that compensates for the specific impulse and initial mass uncertainty, the variance in the
landing position error is smaller when the convex-optimized algorithm is used, and the
three-axis position error is within 11.23 m with a more concentrated distribution.
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Figure 19. Fuel consumption error distribution.

Figures 16b, 17b and 18b show the lander velocity error distribution, which has a
smaller variance and less bias for the same reasons as the position distribution with the
adaptive convex optimization algorithm. Its three-axis velocity error was within 0.05 m/s.

Figure 19 shows the distribution of fuel consumed by the lander. It can be observed
that the fuel consumption distribution is almost the same with and without the adaptive
convex optimization. In fact, the fuel consumption distribution during flight depends
mainly on the optimality of the trajectory and distribution of the specific impulse. In the
case of the adaptive convex optimization algorithm, the adaptive algorithm optimizes the
planned trajectory by estimating the specific impulse and lander mass online, which saves
fuel. However, the trajectory is out of the optimal trajectory owing to the insertion of the
rapid adjustment phase to satisfy the target thrust magnitude and attitude, which increases
fuel consumption. From the simulation results, the fuel consumption with and without
adaptive convex optimization were almost the same for the simulation conditions used in
this example.
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6. Conclusions

In this paper, an adaptive convex optimization-based trajectory planning method
is proposed to address the problem in which the optimality of the planned trajectory is
impaired by the difference in specific impulse and mass from the nominal value when the
conventional landing optimization algorithm is applied to lunar surface landing guidance,
and it is difficult to constrain the terminal attitude and thrust magnitude. Parameters
such as specific impulse and mass are estimated online by parameter adaption, and these
parameters are used in the convex optimization process to ensure the optimality of the
planned trajectory. The target state, such as lander position and velocity, does not deviate
when the attitude and thrust magnitude of the lander are constrained at the end moment by
inserting a rapid adjustment phase through the target-adaptive algorithm. The simulation
results show that the parameter-adaptive algorithm can improve the optimality of the
planned trajectory and save fuel, and the target-adaptive algorithm can satisfy the target
thrust magnitude and attitude constraints through rapid adjustment without causing
deviation of position and velocity. The integrated verification shows that the proposed
algorithm can improve the landing accuracy without increasing fuel consumption; the final
position error was less than 11.23 m, and the velocity error was less than 0.05 m/s.
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