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Abstract: Automation in Air Traffic Control (ATC) is gaining an increasing interest. Possible relevant
applications are in automated decision support tools leveraging the performance of the Air Traffic
Controller (ATCO) when performing tasks such as Conflict Detection and Resolution (CD&R).
Another important area of application is in ATCOs’ training by aiding instructors to assess the
trainees’ strategies. From this perspective, models that capture the cognitive processes and reveal
ATCOs’ work strategies need to be built. In this work, we investigated a novel approach based
on topic modelling to learn controllers’ work patterns from temporal event sequences obtained by
merging eye movement data with data from simulation logs. A comparison of the work phases
exhibited by the topic models and the Conflict Life Cycle (CLC) reference model, derived from
post-simulation interviews with the ATCOs, indicated that there was a correspondence between the
phases captured by the proposed method and the CLC framework. Another contribution of this
work is a method to assess similarities between ATCOs’ work strategies. A first proof-of-concept
application targeting the CD&R task is also presented.

Keywords: data science; complexity and machine learning in Air Traffic Management (ATM); human
factors; situation awareness; conflict detection and resolution; en-route control; air traffic control;
eye-tracking

1. Introduction

The creation of models that capture Air Traffic Controllers’ (ATCOs) work patterns
when solving particular problems, such as Conflict Detection and Resolution (CD&R) tasks,
is gaining increasing attention from the research community. The motivation is manifold.
Air Traffic Management (ATM) is currently progressing rapidly toward automation and
digitalisation assistance to support the ATCO. Examples are AI-supported decision-making,
which helps en-route ATCOs to solve conflicts or the Arrival Manager, proposing an
inbound sequence of arriving movements, and many more that come along with remote
tower technologies [1,2]. Automation has the purpose of relieving the ATCO from workload
or decreasing uncertainty in the work quality by addressing a sub-task. Besides the desired
effects, a side-effect of automation is that parts of the task spectrum that were not in the
scope of the intended change may also be affected. Additional undesired effects include
automation bias/complacency and out-of-the-loop effects [3]. This is critical, as ATCOs
perform their work under efficiency and safety constraints and need to manage their
attention and cognitive resources according to the traffic situation at hand.

Further research is needed to find methods that build models to capture controllers’
activity patterns, with a focus on visual attention. Existing techniques still do not provide
enough support to system designers and safety assessors in understanding the effects of
automation in the ATCOs’ work strategies. This concerns in particular the sequence of
decision logic, involving the actions of information gathering, perception, and clearances.
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Another aspect is that automatic activity pattern recognition, in the ATCOs’ methods of
working, can be used to create benchmarks and aid the assessment of training efforts.
Alternatively, the evaluation of the influence of performance-shaping factors such as stress
and fatigue can also benefit from such built knowledge. To build such models is, how-
ever, a non-trivial problem, since work patterns can involve many different activities
(e.g., giving clearances, acquiring information about aircraft separation, etc.), and the
events’ composition can be significantly affected by time and other external factors. In
addition, humans tend to solve problems by interweaving different work steps, leading
often to concurrent and overlapping activities.

Though several authors have proposed models to capture the cognitive processes
and problem-solving strategies of the controllers, those models either are not learned
automatically from data collected in conjunction with the problem solving [4–7] or the
models are mostly used to replicate controller strategies [8,9]. What we aimed to achieve
is a method that reveals controllers’ work strategies as patterns learned from raw data.
More concretely, this work puts forward a method to extract ATCOs’ work phases and their
characteristic work patterns underlying the CD&R task, from collected eye-tracking data
and simulator logs. To this end, an unsupervised learning technique was used based on
topic modelling [10] applied on temporal sliding windows over event streams obtained
by merging the eye-tracking data with the simulator logs. Combining the two datasets
allowed us to identify look events as dynamic areas of interest and compare them with the
information cues [11] collected in ATCO interviews. An advantage of the proposed method
is that it caters to the possible concurrent and overlapping activities of ATCOs’ work. In
addition, we propose an approach to assess similarities between ATCOs in terms of the
strategies used to solve a task. This aspect can be particularly relevant for ATCO training as
their individual strategies can be contrasted with, e.g., best-practices or more-experienced
ATCOs’ problem-solving approaches. Evaluating the effect of automation on the ATCOs’
strategies can be another potential application area of our method.

A statistical procedure revealing common aspects in a heterogeneous population of
individual strategies is another contribution of this research. Finally, the learned work
phases were then validated by comparison with the steps and information cues of the
Conflict Life Cycle (CLC) proposed in [11].

This paper is structured as follows. In Section 2, we review the related work. The
experimental setup used for the data collection is outlined in Section 3. Section 4 presents a
topic-modelling-based method to reveal and characterise ATCOs’ work phases from the
data. The results are provided in Section 5, followed by a discussion in Section 6. The
conclusions, limitations of the presented method, and future work are given in Section 7.
Note that Section 3 only gives an overview of the practical experiment conducted for data
collection, to aid the reader’s understanding of the remaining sections of this paper. The
experimental design utilised is thoroughly described in [11].

2. Related Work

In this work, we deal with data in the form of event sequences, i.e., sequences of
discrete events, each of which is characterised by an event type, a timestamp, and a
duration. In the current context of Air Traffic Control (ATC), an event is, for instance,
looking at a specific waypoint or activating the aircraft separation tool at a certain point
in time.

Several authors [12,13] have used techniques based on sequential pattern mining
for pattern identification in event sequences. Perer and Wang, for example, proposed
Frequence [14], an interactive tool built around the SPAM algorithm for detecting and
visualising frequent patterns from event sequences. Vrotsou and Nordman [15] introduced
Eloquence, a prototype system, based on an adapted pattern-growth approach, for interac-
tively exploring patterns. Through a visual interface, the system allows a user to apply local
constraints, grow patterns stepwise, and thus, steer the search according to their analysis
interest. The approach was applied to ATC for exploring patterns in tower control in [16].
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Overall, these approaches are highly sensitive to the order in which events appear when
identifying patterns, and consequently, they are less-suitable to model activities where the
events’ order is less strict. Therefore, considering that the eye-tracking data we dealt with
in this work are characterised by continuous back-and-forth shifts between elements on the
screen, we did not pursue this approach.

Others have merely described raw sequences [17] in tower ATC; or used questionnaires
for a self-assessment of sequences [18]; or used pre-defined sequences that are compared
with pre-defined areas of interest [19]. Another simplified approach is to use dwell times
on pre-defined screen positions [20] or search entropy (rather than specific patterns) [21]
to establish the degree of task expertise. All of these approaches could benefit from
some way of also measuring and estimating or establishing reference gaze patterns more
automatically.

Approaches have been suggested based on regular expressions for exploring event
patterns with more-relaxed conditions regarding the order of events. Zgraggen et al., for
example, proposed (s|qu)eries [22], a visual query interface for creating expressive queries
on event sequence data. Cappers and van Wijk [23] introduced an approach based on
regular expressions allowing the exploration of multivariate event sequences on both the
multivariate data and sequential level. Such approaches, however, are less-suitable for our
purpose since they generally assume that the user already knows what to query for.

Topic modelling [24,25] is an unsupervised machine learning technique that originated
from the field of Natural Language Processing (NLP), and it has had its applications
extended to diverse areas such as bioinformatics [26], computer vision [27], audio, and
music [28]. Nguyen et al. [29] used topic models to identify human activities in event
sequences obtained from server logs. Ozmen et al. applied topic modelling to event
sequences of Electronic Health Records (EHRs). An important distinction is that our
method, in conjunction with topic modelling, uses a sliding window over the sequences of
events to be analysed. In the ATM field, to our knowledge, topic models have only been
applied for automatic analysis of aviation safety incident reports [30]. We did not find any
applications related to ATC.

Several machine learning techniques have been used by researchers to address the
problem of automation in ATC and to learn ATCOs’ work tactics. Conflict detection is the
focus of the work presented in [31], where a method based on classification and regression
was used to predict separation infringements between aircraft. The methods presented
in [8,9,32] focus on learning from ATCOs’ conflict resolution strategies and analyse the
ATCOs given commands collected through human-in-the-loop experiments conducted in a
simulation environment. The framework proposed in [32] is based on an ensemble model
of regressor and classifier chains, i.e., a supervised technique. However, it does not expose
the features of the learned strategies. On the contrary, our method reveals the characteristics
of the ATCOs’ strategies in terms of the tools and elements (e.g., waypoints) looked at.
The systems described in [8,9] use reinforcement learning and convolutional networks,
respectively, and seek to mimic the controllers’ decision logic. Unlike these frameworks,
the approach presented here aims to model controllers’ behaviour, in the form of work
phases and event patterns, considering the CD&R steps of conflict detection, conflict solution
probing, and solution monitoring. A distinctive aspect of our method is that eye-tracking
data were also used, besides the data collected from the simulator logs originated from
human-in-the-loop experiments.

3. Human-in-the-Loop Experimental Setup

The performed study aimed at identifying the work phases from ATCOs’ eye-tracking
look events during a human-in-the-loop en-route conflict scenario and to compare these
work phases with results from follow-up interviews conducted with the ATCOs. The
comparison of subjective interview data and empiric response data to a conflict scenario
shall give proof to the validity of the proposed method.
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Therefore, the study relied only on observations instead of variations that came from
changing the input parameters to intentionally influence the work behaviour. We assumed
that any observed variation of ATCOs’ look events is the result of different backgrounds in
terms of education, work experience, age, gender, and many other factors, which impose
individual work behaviour on each ATCO. If the conflict scenario remains the same for all
ATCOs, any inter-individual variation must be an effect of this individual work behaviour
and, thus, supports the assumption. As we only compared observations, the results are
descriptive in nature without drawing any conclusion about the cause of the observation.
The study design complies as such to the “Simple ex-post facto design” [33], which allowed
us to set the focus on a mere description of the difference and similarity of the work
behaviour between ATCOs in response to the same conflict scenario.

Data were collected from 15 operative ATCOs (5 female, 10 male) with valid licences,
who performed in total 6 working scenarios in randomised order in an en-route air traf-
fic simulator, NARSIM. In comparison, Reference [34] relied on one ATC for the gaze
samples in their study; Reference [21] had 18 domain experts (and a non-expert group);
Reference [17] had 15 retired ATCOs. For further details about the data collection, see
our previous paper with qualitative findings. A detailed description of how the practical
experiment, leading to the data collection, was designed and conducted is given in [11].

In this paper, we continued analysing the collected data [11] from one scenario for
the verification of the qualitative findings. From the 15 ATCOs, we received 14 complete
datasets of eye-tracking data and simulator log data (5 female, 9 male). During this process,
two datasets were created, for each ATCO: a simulator log and an eye-tracking dataset.
Next, each pair of datasets was merged into one data stream (i.e., one data stream was
created for each ATCO). The 14 data streams obtained could then be mined to discover
work phases underlying the working process of the ATCOs.

3.1. The Chosen Scenario

The scenario used for validation was chosen because we had collected qualitative
data from post-debriefings with the ATCOs. Of the 15 ATCOs who completed the simula-
tions and debriefing, 13 ATCOs also completed an additional Retrospective Think-Aloud
commenting session (RTA), while replaying this particular scenario for them. During this
session, their own gaze point was shown in the video depicting where they had been
looking during the scenario. Therefore, a comparison could be made between the merged
datasets and the collected comments about the chosen scenario. For those 13 ATCOs, 4 were
female and 9 were male.

Even though we collected more data in more complex traffic scenarios, we did not
have qualitative comments from the ATCOs about those scenarios to compare with. More
complex scenarios involving several conflicts at a time may appear more realistic to ATCOs.
We decided, however, to choose a simple single conflict scenario because, so far, the CLC
reference model (depicted in Figure 1) has been validated for this particular simple scenario.
Therefore, the ATCOs’ work behaviour and related cognitive modes can be unambiguously
mapped to one of the steps described by the CLC. Using a more-complex scenario with
multiple simultaneous conflicts, on the other hand, may raise the need for a more-complex
cognitive model, where multiple instances of the CLC can interact. This will be explored in
future work, where we intend to extend the cognitive model to include the capability to
map multiple conflicts as well.

The chosen scenario contained four aircraft: an Airbus 320, a Boeing 737, and two
Boeing 777 s. The scenario is shown in Figure 2. The sector was a square, 55 × 55 nm in
size. The medium-sized Boeing 737 and heavy-sized Boeing 777 were in conflict as their
flight-plans crossed at the same level (FL360) at a 90-degree angle. The other aircraft, on
opposite courses with the ones in conflict, acted as constraints to solving the conflict. The
other Boeing 777 was crossing the sector 1000 ft below the aircraft in conflict, at FL350. The
Airbus 320 was crossing the sector 1000 ft above the aircraft in conflict, at FL370. The simple
solution would be to climb or descend one of the aircraft. However, the other aircraft
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restricted a climb solution or a descend solution. Unless the ATCO intervened, separation
was lost at around 05:34 (5 nm between the two aircraft and closing). The Closest Point
of Approach (CPA) was 0 nm and occurred 05:59 into the scenario. The reason for using a
simple, generic, scenario with only one conflict situation was to test our method with data
collected from a simple-enough, yet realistic and well-understood, scenario. The use of
only one conflict situation means that the collected eye-tracking data mainly reflected this
one situation, making it less prone to noise from the overlapping processes of, e.g., dealing
with multiple conflict situations. Nevertheless, the conflict scenario was typical for the type
of situations that ATCOs in training receive as an introduction to solving conflicts.

Conflict
Detection

Conflict
Solution
Probing

Solution
Implementation

Solution
Monitoring

Resume
Solution

Figure 1. Conflict life cycle presented in [11].
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Figure 2. Scenario involving four movements with two of them in conflict and activated separation tool.

3.2. Simulator Data

The NARSIM simulation platform was used as the en-route ATC simulator to run
the chosen scenario. The primary working instrument involved a 2D situation display
(“radar”-like) of the respective sector, showing the aircraft as squares with trailing dots to
indicate direction on the horizontal plane, sector borders, and waypoints. The interface
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provided support tools in terms of speed vectors, a separation tool (sepTool), and a conflict
display window. The activity of the controllers during the simulations was logged by the
simulator, which included clearances given, aircraft conflicts selected, and the activation
of sepTool. In addition, the screen positions of the graphical objects, such as the aircraft
representations and the simulator conflict-detection tools, were also logged. Aircraft
representations included the aircraft tracksymbol, clickable information label, and various
movement-related graphical elements (which could be turned on and off) to symbolise
direction and separation distance.

3.3. Eye-Tracking Data

While the ATCOs’ interactions using the mouse were logged through the simulator
software, a SmartEye eye-tracking system was used to capture and record participants’
visual activity during the simulation sessions. The equipment recorded eye-gaze move-
ments at a sampling frequency of 60 Hz and calculated the screen coordinates from this.
Thus, the eye-tracking data were measurements of the eye-gaze point coordinates on the
radar screen.

3.4. Merging the Raw Data

The eye-tracking data and simulator log, collected for each ATCO, were then merged
into a Human–Machine Interaction (HMI) stream of visual and mouse interaction informa-
tion. The data-merging process checked for timewise intersections between the coordinates
of the eye-gaze points and the positions of the graphical objects on the screen. Descriptive
look events were created as intersections of gaze points and the graphical objects with similar
timestamps, while unknown (no-match) events were created otherwise. Interaction events
were added to the data stream, whenever the ATCO interacted with the simulator using the
mouse. Such interactions corresponded to information querying (e.g., clicking on a label),
switching graphical support tools on/off (e.g., aircraft separation information), and giving
clearances (e.g., to change direction or flight level). Due to the outlined event-extraction
process, look events always had a duration, while interaction events were treated as instanta-
neous and, therefore, were assigned a short default duration. For this reason, the interaction
events were often very sparse and short.

We refer to some of the properties of the event streams created by the merge process
described above:

• A large number of event types occurring in the merged stream (e.g., over 100).
• The streams are noisy due to a large amount of unknown events. These events were

generated whenever it was not possible to determine the intersections of graphical
objects on the radar with eye-gaze points or when the eye-gaze points fell outside
the radar screen. Between 20% and 36% of the events in each of the generated event
streams were unknown events. In addition, look events with a very short duration
(e.g., below 100 ms) also added noise because one cannot assume in these cases that
the subject could perceive any object on the radar screen [35].

• The was high variability in the data with respect to event duration and frequency. While
some events were rare (some look waypoint events), others occurred hundreds of
times. The standard deviation (sd) for the events’ duration was also high. For instance,
the duration of the look aircraft’s trajectory event look+NAX1662+TRAJ for one of the
ATCOs varied from 16 to 381 ms, sd ≈ 319. We considered that look events with a very
short duration originated from saccades. Therefore, these were eliminated from the
data analysis by setting a minimum duration threshold for look events of 100 ms.

The points above made the search for work patterns from the data streams a challeng-
ing process.

4. Discovery of High-Level Phases for CD&R from HMI Streams Using Topic Modelling

In this section, we describe a method based on topic modelling to discover high-
level work phases performed by ATCOs who solved the air traffic CD&R problem in the
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selected scenario. The analysed data consisted of the HMI event streams (i.e., time series)
obtained by merging eye-tracking data and simulator logs, for each ATCO, as described
in Section 3.4.

The work reported in [11] had two important outcomes, which are used in this section.
Firstly, information cues were identified such as Predicted Top-of-Descent (ToD) and Predicted
Separation Minimum Distance (PSMD). These information cues were used by the ATCOs
to support them in the decision-making process of establishing a strategy for tackling a
simulated aircraft conflict (depicted in Figure 2). As described in [11], the information cues
were derived from ATCOs’ statements obtained by post-simulation interviews, where the
ATCOs described their strategies to tackle the conflict in the chosen scenario. Secondly,
the information cues were then related to the work steps of the CD&R task modelled as a
Conflict Life Cycle (CLC) inspired by the framework proposed by Pawlak [4]. These four
work steps in the CLC presented in [11], and depicted by the four grey areas of Figure 1,
were the main motivation for exploring our topic-model-based approach with four topics.
Through topic modelling, we attempted to elicit the ATCOs’ work phases from the HMI
streams and characterise them in terms of events occurring in the streams. Moreover, the
information cues played a key role in relating a topic model to the CLC. This connection
was then used as part of our validation, described in Section 4.3.

4.1. Topic Models’ Overview

We start by giving a brief overview of topic models. Topic modelling [24,25] is a
machine learning technique with its roots in the field of Natural Language Processing (NLP).
Its purpose is to automatically annotate large archives of documents with themes, usually
called topics. Discovered topics are denoted as probability distributions over the words
occurring in the analysed documents. Additionally, each document is also associated with
a probability distribution over the extracted topics, reflecting the intuition that documents
are usually composed of several topics, though topics may occur in different proportions in
each document. For example, consider that the documents are newspaper articles. Then, a
topic T0 could be expressed as 0.3× price+ 0.2× market+ 0.28× capital+⋯, where price,
market, and capital are words in the articles. The distribution over topics (as retrieved by
the model) for an article could be 0.6× T0 + 0.35× T1 + 0.05× T2, assuming the model is set
to retrieve three topics T0, T1, and T2.

More formally, topic models reveal the hidden structure in an observed collection of
documents. The hidden structure corresponds to the revealed topics, the per-topic word
probability assignments p(wj∣Ti), and per-document topic assignments p(Ti∣dk). These
probabilities can be interpreted as the importance of a word wj in a topic Ti and the impor-
tance of a topic Ti for a document dk, respectively. The relation between the probability of
a word wj to occur in a given document dk is expressed as p(wj∣dk) = p(wj∣Ti) × p(Ti∣dk),
such that the probabilities p(wj∣dk) can be estimated directly from the observed collection
of documents by counting the words in each document. However, the computation of
the hidden structure, in the form of the probability distributions p(wj∣Ti) and p(Ti∣dk),
is an intractable problem because the number of possible assignments of each observed
word to topics is exponential. Consequently, existing topic-modelling algorithms can only
compute approximations of these distributions by different methods. In our work, we
used the well-known algorithm named Latent Dirichlet Allocation (LDA) [10], which is
based on a sampling procedure. More concretely, the implementation of LDA offered by
the open-source Python library Gensim was used in the presented work. LDA has two
hyperparameters corresponding to Dirichelet distributions, α and β, which represent prior
values for the document–topic and topic–word distributions, respectively. An empirical
Bayes method can be used to estimate these distributions from the data [10]. We used
this technique to automatically set the values of α and β. Table 1 shows a summary of the
settings used for training in this study.
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Table 1. Hyperparameters used for topic model training with LDA in Gensim library.

Parameter Value

Number of topics (k) 4
α estimated by LDA from data
β estimated by LDA from data
Epochs 20
Iterations 400

Topic-modelling algorithms can also be seen as soft clustering methods, where dis-
covered topics correspond to clusters and the probability distributions for per-document
topic assignments reveal to which extent documents may belong to different clusters. Like
popular clustering algorithms, several topic-modelling algorithms such as LDA require
the user to pre-select the number of topics to be uncovered from the observed documents.
Unlike clustering algorithms, there is no need to define a distance measure.

Next, we describe how topic modelling was used to analyse the event streams.

4.2. Phases’ Estimation from HMI Event Streams

The HMI data streams, obtained by merging eye-tracking data with simulator logs,
were time series of events. Each event was a tuple of three elements (id, t, d), where id
is the event name, t is the start time of the event, and d is its dwell time measured in
milliseconds (ms). As described in Section 3.4, there were two main types of events, look
events and commands. For instance, cmd+SAS9961+show_TRAJ indicates that the ATCO,
at some point in time, activated the tool that shows the flight leg for SAS9961. The data
streams also contained noise in the form of unknown events.

Addressing realistic CD&R problems, as posed in the scenario prepared for this work,
is a non-trivial task. Due to the complexity of the cognitive processes involved, it seems
reasonable to assume that the procedure for solving a conflict between two aircraft involves
several work phases (or steps). Our goal was to discover such possible work phases,
when they were activated and deactivated, and reveal which event patterns occurred in
the phases.

The method we propose here was based on topic modelling, and its main stages are
illustrated in Figure 3. First, we needed to create “documents” from the event streams
(Figure 3a). To this end, we used a sliding window of 30 s. The window slides over a
stream by shifting five seconds each time, as illustrated in Figure 4. Then, the subsequence
of events within each window Wi corresponds to a document. The size of the time window
was chosen empirically. Considering the fast pace and quick changes of ATCOs’ tasks and
the high resolution of the event streams, 30 s was deemed a reasonable time that would
capture potential work patterns.

To be able to obtain meaningful results, the data in each time window had to be cleaned
from noisy events. Therefore, unknown events and look events with a dwell time of less than
100 ms were eliminated from each window. It is reasonable to assume that the participant
could not have perceived an object on the simulator display if the event’s duration was
below 100 ms [35]. Using the HMI event streams extracted for the 14 participants in our
study, we then obtained 1268 documents with an average size of ∼166 words (events)
per document.

The topics to be retrieved from the collection of documents can be seen as phases
in the work performed by the ATCOs while solving the aircraft conflict in the scenario
chosen for this study. It is then possible to discover when each of the phases was activated
(including the “activation’s level”), for each participant. Recall that each document was
associated with a time window of 30 s on a participant’s event stream. More concretely, the
following procedure was performed (Figure 3b). After the analyst had chosen the number
of work phases (topics) k > 1, a topic model was trained using the “documents” obtained
from the event streams of all the other 13 participants, apart from a chosen participant P.
Next, the model was applied to each of the “documents” obtained from the event stream of
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participant P. In this way, the topic model maps each time window obtained from P’s data
with a probability assignment of phases. In other words, by applying the model to P’s data,
one obtains a time series of k-D vectors, where each vector represents the level of activation
of each phase within a time window.

(a)

(b)

Figure 3. The pipeline for the proposed method, where k is the chosen number of work phases
(topics). (a) Generation of a “collection of documents” for an ATCO. (b) Generating a phase activation
graph for an ATCO. Figure 5b shows an example of event patterns characterising work phases.

Figure 4. Sliding windows of 30 s over an HMI stream.

(a) (b)

Figure 5. Activation of work phases for a participant. (a) The X-axis represents time in milliseconds,
while the Y-axis shows the phases’ activation level. For simplicity, levels of activation below 0.2 are not
shown. Clearance and open/close sepTool events are marked out in the figure to provide additional
context to the phase activation levels. (b) Heat map characterising phases in terms of events.
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Table 2 shows some of the sliding windows start and end times (first two columns),
obtained from an HMI data stream. It is possible that the last event starting in a time
window would not have its end time in the same time window. To deal with this situation,
a time window’s duration was stretched to completely accommodate all events starting in it.
The last four columns (named “Phase 0”, “Phase 1”, “Phase 2”, and “Phase 3”) correspond
to the 4D vectors associated with each time window.

Table 2. Sliding windows and corresponding 4D vectors, which are visualised in Figure 5.

Start Time End Time Phase 0 Phase 1 Phase 2 Phase 3

0 30,230 0.9970471 0.0012459053 0.0011321253 0.0005747694

5633 35,805 0.9971619 0.001195153 0.0010889024 0.00055401414

10,666 40,845 0.99707013 0.001232266 0.0011270973 0.000570499

16,048 46,128 0.8306506 0.0011075849 0.16772854 0.00051324465

21,048 51,385 0.6561338 0.001138541 0.3422003 0.0005273581

⋯

4.3. Mapping the Topic Model to the CLC Work Steps

We assumed that each work phase represents a specific cognitive mode that follows
a specific purpose and operator intention, thereby eliciting a significant composition of
events. The probability distribution related to the events of the topic model provided a
significant pattern that could give insight into this purpose and intention, thus giving the
topic model an operationally relevant context. As part of our validation, we related the
topic models determined by the HMI data streams to a reference model, the Conflict Life
Cycle (CLC) model [11]. The work steps of this model represent basic cognitive modes
during a simple CD&R task and 15 related information cues (listed in [11], Table 1) such as
Predicted Top-of-Descent (ToD), Waypoints (WPYs), Predicted Separation Minimum Distance
(PSMD), and others shown in the first column of Table 3.

We followed a two-step procedure: (1) The probability vector representing the per-
phase event probabilities’ assignments, of the phase (topic) model, was mapped to the
information cues (mapped information cues); (2) we determined the degree of matching of
the mapped information cues to the CLC work step specification, as given in Table 2 of the
work presented in [11], relating work steps to their characteristic information cues.

We assumed the 15 information cues (n = 15) to be linearly related to the look events of
the HMI data stream (m = 34), using a transfer matrix An×m involving transfer parameters
aij at each linking position ij. This way, we mapped each look event’s probability to the
corresponding information cue. The model for this method is a “left stochastic matrix”
(A left stochastic matrix represents a real square matrix, with each column summing
to 1), which maps one probability vector x⃗ to another probability vector y⃗, the mapped
information cues. In this specific case, however, both probability vectors were unequally
long, thus forming a non-square (pseudo) stochastic matrix. For a 1:1 relationship (one look
event i matches one information cue j), we set the transfer parameter aij = 1 to maintain the
sum of probabilities per column throughout the mapping. There were a few circumstances
to consider for the case when no 1:1 relation could be determined:

1. If one look event mapped on several r information cues (underdetermined relation),
then the transfer parameters were set for an equal share across all cues using a = 1/r.

2. Multiple look events may map to a single information cue. In this case, we chose to
assign a transfer parameter of a = 1 to each individual relation. A particular cue, thus,
involved several look events by the sum of their probabilities.

3. Look events may not relate to any of the information cues (overdetermined relation).
For this case, we assumed a hidden row “Other”, which was used to catch events that
were not covered by the list of information cues.
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A similar approach was used for further calculating the degree of matching between
the matched information cues and the specifications of three of the CLC work steps: “con-
flict detection”, “conflict solution probing”, and “conflict monitoring”. The step “solution
implementation” of the CLC was not included in the matching. The reason was that this
step was characterised by activities using the voice radio captured by “menu” and “clear-
ance” events, while our focus in this analysis was on look events. For the remaining three
working steps, we determined a second transfer matrix Bn×q, where q = 3 (Table 3).

The calculation of the matrix followed a two-step approach starting with the frequency
of information cues as mentioned by the ATCOs [11]. Starting with the work step spec-
ification, we assumed the frequency of information cues to indicate the significance of
a specific cue for the respective work step, creating a n = 15-long vector. Secondly, the
vector was normalised to a probability vector with a sum of one. This normalisation was
necessary to avoid bias effects resulting from differences in the amount of information cues
involved in the steps. Emphasising the qualitative distribution of work step information
cues for quantifying matches, rather than the frequency of cues alone, now allowed for
a comparison of the assignment results. Third, adding each of them in a column, we
obtained a three-column non-square (pseudo) left stochastic matrix B, shown in Table 3.
The complete mapping and matching operations were rendered as y⃗ = B⊺ ⋅A ⋅ x⃗, providing
a vector of three scalar products, which represented the degree of matching between the
mapped information cues and the CLC work step specification.

Table 3. Transposed transfer matrix B, which maps information cues to the CLC work steps. Derived
from [11], Table 2.

Conflict
Detection (%)

Conflict Solution
(%) Probing

Solution
Monitoring (%)

Flight Level 44.0 02.2 00.0
Destination 04.0 08.7 00.0

Flight Route 24.0 15.2 00.0
Approaching Traffic 12.0 00.0 00.0

Expected Climb 04.0 04.3 00.0
Flight Plan 00.0 06.5 00.0

Predicted ToD 00.0 15.2 00.0
WPYs 08.0 04.3 00.0
PSMD 00.0 26.1 90.0

Traffic Complexity 00.0 04.3 00.0
Expected Change Level Request 00.0 02.2 00.0

Wind 00.0 08.7 00.0
Rate of Descent 00.0 02.2 00.0

Speed 00.0 00.0 10.0
Conflict Window 04.0 00.0 00.0

5. Results: Discovered Work Phases and Event Patterns

For building a model, we had to decide the number of phases (topics) k > 1 that should
be retrieved from the data. Inspired by existing research [4,11] and discussions with experts,
we decided to investigate models with four phases, i.e., k = 4. We are, however, aware
that it might also be reasonable to build models with a different number of phases, such
as k = 2 or k = 3, since the interpretation of the discovered phases lies on the field experts.
For instance, a phase in one model might appear decomposed into sub-phases in another
model with a larger number of phases. The number of phases might also be decided as a
function of the scenario’s complexity.

5.1. Individual Participant Analysis

Our first goal in the data analysis process was to investigate the “behaviour”, in terms
of work phases, of individual participants. To this end, we built a model using the data
streams of 13 participants and applied the obtained model to a participant P left out of
the training set. Figure 5a shows the phases’ activation over time for a participant, named
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here as P14. The per-window phase assignments are called here the phases’ activation
weight (which correspond to the probabilities retrieved by the model). We observed that,
during the first 57 s, Phase 0 was activated to be then replaced by a short time period where
Phase 2 dominated (for ∼20 s). Then, Phase 3 became the dominant phase (i.e., the activated
phase with higher probability) for ∼174 s. Finally, from approximately Second 251, Phase 1
became dominant, though around Second 320, both Phases 1 and 2 seemed to be equally
dominant. The fact that several phases can be activated simultaneously can be explained
by the probabilistic nature of topic models, more concretely LDA. In practice, the work
steps shown in Figure 1 might occur as concurrent and overlapping activities, instead of
well-separated steps. Humans often tend to address problems by executing one task, going
on to another task, to later come back to a previously initiated task. In addition, the end
of one phase and the start of another may also overlap. The fact that several phases can
be activated simultaneously in a topic model, which can be explained by its probabilistic
nature, is an advantage of topic modelling in this context.

Another advantage of using topic modelling in our proposed method is that it also
caters to revealing possible phases’ descriptions in terms of events, as shown in Figure 5b.
In other words, this figure is a visual translation of the events’ per-phase (or word per-
topic) probability assignments discovered by the model. From this figure, we can conclude
that looking at the SAS9961 and THA960 label bases, looking at the trajectories of NAX1662,
UAE151, and THA960, and looking at the waypoints NOBER, TARED, and LEBIM are between the
most-distinctive features of Work Phase 0. This can be interpreted as the ATCO gathering
information about the current traffic situation by monitoring the radar screen. Looking
at the Medium-Term Conflict Detection tool (MTCD) is a very distinctive feature of the final
Phase 1, together with looking at the NAX1662, THA960, and UAE151 tracksymbols (or label
bases), indicating that the ATCO might be monitoring the aircraft after conflict resolution.
We also observe in Figure 5b that looking at the separation tool tips of aircraft UAE151 and
NAX1662 was between the events with larger probabilities in Phase 2. We hypothesised that
the transition from Phase 1 to Phase 2 (around Second 57) was an indication that the ATCO
identified a conflict between aircraft UAE151 and NAX1662. It is interesting that looking at
the waypoint OSUKA was more relevant in Phase 2 than in Phase 1. This is compatible with
our observations that the ATCO’s gaze points tend to be very centred on the middle of
the sector, close to the centre waypoint OSUKA, after the conflict has been detected. This
waypoint is located near where the aircraft will be at their closest point of approach to
each other. Finally, looking at the separation tool tips of aircraft UAE151 and NAX1662 and
looking at the MTCD between these two aircraft were the most-distinctive features of Phase 3.

5.2. Summarising Work Phases for All Participants

Attempting to draw conclusions directly from all participants’ phase graphs (i.e., in
our case, 14 graphs similar to the one shown in Figure 5a) was neither easy nor scalable.
The large variability on the way the different phases overlapped during certain periods
of time was possibly a consequence of the controllers’ personal strategies and individual
decision-making processes.

A statistical approach was then used to leverage the investigation of common aspects
related to how participants tackled the CD&R problem in the chosen scenario. Figure 6
depicts four time-distributed boxplots, each involving the median, lower, and upper
quartiles, as well as the lower and upper whiskers in one diagram. Each of the boxplot
diagrams is associated with a work phase. This was calculated using the respective phases
of 14 participants and indicated the cross-participant variance over the period of the
trial. By comparing the variance across participants and time in this way, the systematic
progression of the phases became clear, with periods alternating with each other and
high- and low-amplitudes becoming apparent. This suggested that phases featured certain
periods of dominance, indicating prevailing working patterns and related cognitive modes,
as outlined by the CLC model.
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Figure 6. Time-distributed boxplot of phases for all participants.

For proving the order of dominance, we chose to use statistical tests that compared
the variance of all phases (represented by the probabilities) using a non-parametric one-
sided Mann–Whitney U-test. This tests the alternative hypotheses of whether a particular
phase a is higher than another phase b (H1 ∶ a > b) using p-value ≤ 0.05. Periods of
statistical significance are highlighted by the light grey boxes in Figure 6. The temporal
distribution of the significant periods followed the phase sequence 0-3-2-1 over the duration
of the experiment.

5.3. Assessment of Phases’ Distinctiveness

We also investigated how well-“separated” (distinct) the phases uncovered by the
model were. This question can be answered by associating a vector with each phase
representing the per-phase event probability assignments ⟨w0, w1, . . . , wm⟩, where m > 0
is the total number of events (features) used. The cosine similarity between the vectors
representing two phases, f1 and f2, was used to quantify the similarity between f1 and f2,
i.e., how distinct they were in therms of their events’ characterisation. Figure 7 depicts the
results obtained in this study. It shows that Phases 2 and 3 were the most-similar (lowest
distance), while Phase 0 was quite distinct from all other phases. We could say that Phase 3
shared characteristics with Phases 1 (e.g., look at the MTCD) and 2 (e.g., look at the sepTool
tips), which is also reflected by the phases’ description shown in the heat map of Figure 5b.

Figure 7. Cosine pairwise distance for the model’s 4 phases.
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5.4. Phases’ Validation Using the CLC Model

The degree of matching between the mapped information cues and the CLC work
steps was calculated based on the assignments of the events per-phase. Applied to all
phases, four vectors y⃗ could be determined, which are shown in Table 4. This result is
discussed in Section 6.

Table 4. Percentage matching between the mapped information cues and the CLC work step specification.

Phase 0 Phase 1 Phase 2 Phase 3
Conflict Detection 11.9 09.9 06.1 06.4
Conflict Solution Probing 07.8 11.3 16.9 15.4
Solution Monitoring 01.6 18.3 44.8 40.0

5.5. Assessment of Similarities between Participants

Participants may differ in the progress of the phases over time. This is an indicator of
differences in their work methods and the cognitive modes applied by the ATCO. In this
context, an important question is how ATCOs’ work strategies, as reflected by a model,
can be compared. Answering this question gives a basis to find (dis)similarities between
participants in terms of their work phases.

To answer this question, we looked at the time series of the 4D vectors, for each
participant. Recall that each vector represents the phases’ activation, on a sliding window,
over a participant’s event stream. Assume that the sequence of time windows WP

0 , WP
1 , . . .,

for a participant P, are sorted in chronological order and that #W denotes the number
of sliding windows over P’s event stream. Without loss of generality, we can assume
that #W is equal across participants. Based on the representation of time windows as
vectors, we propose the following parameterizable function to assess similarity between
two participants P and P′:

#W
⊕
i=0
(
Ð→
WP

i ≈

ÐÐ→

WP′
i ) , (1)

where ≈ is a function to quantify the similarity between the 4D vectors associated with
two time windows (WP

i and WP′
i , over the event streams of two participants P and P′) and

⊕ is an aggregation function over the pairwise similarities.
In our study, we experimented with the cosine similarity for the sliding windows’

similarity function ≈ and averaged as aggregation function⊕.
To demonstrate the proposed concept, we look into the concrete question of how

similar (or dissimilar) other participants were compared to participant P14 in Figure 5.
Figure 8 depicts the answer to this question by ordering the participants based on their
similarity to P14. We can see that Participants 3, 4, 1, 11, and 7 were the most-similar to
participant P14, while Participant 12 seemed to be the most-dissimilar.

Figure 8. Heat map showing the similarity of P14 to all other participants. Distance was obtained as
one minus the similarity.

Figure 9 shows clearly noticeable differences in the activation of the work phases
for Participants 14 and 12. The initial Phase 0 was activated for almost double the time
for Participant 12 compared to Participant 14. Moreover, during the period of time from



Aerospace 2023, 10, 595 15 of 20

∼200 ms to ∼400 ms, Phase 2 was the dominant phase for Participant 12, while Phase
1 dominated during this period of time for Participant 14. Phase 3 was quite short for
Participant 12 compared to Participant 14.

(a)

(b)

Figure 9. Phase activation graphs for two participants illustrating possible differences between
individuals’ strategies. (a) Phase activation graph for the participant of Figure 5. (b) Phase activation
graph for Participant 12.

6. Discussion

Event streams, collected from 14 ATCOs, for the life cycle of the CD&R task were
analysed in this work. We explored four phases in the CD&R tasks accomplished by
the participants in our experiment. In addition, our method sought to identify the main
features, i.e., events, related to each phase (see Figure 5b).

Though performance measures have been developed for topic models [36,37], we did
not search for an optimal hyperparameter combination (e.g., via grid search) to generate
the topic models, which could optimise some of these measures. The main reason was that,
in this study, we focused on introducing our work as a novel ATC approach. Moreover, we
had only access to data for 14 participants who performed a scenario of about eight minutes
long once. As such, it was not feasible to divide the data into training, test, and validation
datasets. Therefore, the results presented here should be seen as the first promising steps in
our proposed approach, and further refinement is left as future work.

As one can see in the example in Figure 5b, the event patterns featuring the discovered
work phases tended to be described in terms of look events. The main reason for this was
that clearances and other types of commands given by the controller are infrequent when
compared to look events, e.g., an ATCO may give four or five clearances, while she/he
may have looked dozens of times at a waypoint. This drawback of our current method can
be addressed by using a measure based on term frequency–inverse document frequency
(tf-idf) when training a topic model, instead of the term frequency used now. The measure
tf-idf captures rare words in a corpus and, consequently, facilitates the integration of less-
frequent events, such as clearances, in the patterns. Moreover, boosting the possibility of
including rare events in the patterns’ description also makes it easier to investigate the
correlation of commands with the phases, e.g., whether certain commands act as triggers for
the end of one work phase and the start of another. For instance, we visually inspected the
phases’ activation graphs, for the 14 controllers in our study, in conjunction with commands
to add (remove) sepTool, for aircraft in conflict (Figure 5a shows the graph for P14). We
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then concluded that adding sepTool marked the end of the dominance of Phase 0 for all
participants, but three, while removing sepTool coincided with the start of the dominance
of Phase 1 in all cases.

Though the model built extracted four work phases (i.e., parameter k = 4), the as-
sessment of the phases’ distinctiveness shown in Figure 7 pointed out that two of the
phases, Phases 2 and 3, were rather similar. A possible explanation is that the “solution
implementation” step of the CLC was mostly associated with non-look events (such as
clearances) and, therefore, could not be detected by the built model.

Comparing Extracted Work Phases with the CLC Steps

The statistical analysis started with time-distributed boxplots, which visualised the
variance across all 14 participants. Periods of significant dominance were identified that
indicated the prevailing composition of events in the stream. The order of when phases
experienced dominant time periods revealed the participant’s approach to dividing a
comprehensive task into a sequence of sub-steps with dedicated activities, evoking each
significant event pattern. A possible explanation was provided by the four CLC work steps
outlined in [11], which was used to determine which subtasks were obligatory for CD&R
and were likely to be related to a change in the work pattern. A second approach was
based on the mapping of probability vectors from the phase model to the CLC work step
specification. The advantage was to find a relation of the phase model with the qualitative
characteristics, as described in Section 4.3.

The fact that periods of dominance followed the phase sequence 0-3-2-1, as shown in
Figure 6, provided a first indication of the associated work steps. Conflict identification
was a step that the participant strove for at the beginning, indicating Phase 0. This was
supported by the model, where Phase 0 relied specifically on events with the NAX and UAE
labels (the conflict pair), as well as en-route symbols, which contain information about the
flight level and heading toward the CPA. This is backed by the results shown in Table 4,
assigning the highest probability to Phase 0 for conflict detection.

Phase 1 was difficult to assign to a work step because the period of dominance was
situated after the conflict pair had passed the CPA, as indicated in Figure 6. At this point,
the CLC did not provide sufficient information on appropriate work steps that adequately
describe this particular period. The logic of the CLC would have the participant seek and
detect the next conflict, which was not supported by the simple conflict scenario. From the
phase model, it can be seen that the “label base” and the “track symbol” were characteristic
look events that had a broad qualitative match through the solution-monitoring step, as
indicated by Table 4. It appeared that Phase 1 indicated more-passive monitoring at the
end of the scenario, including the post-conflict phase when movements exceeded the CPA,
and the participant activity transitioned to a subsequent phase-out of the scenario with a
final set of look events. Interestingly, the MTCD received considerable attention during this
phase, which was confirmed also by the participants during the interviews [11]. The reason
was that the conflict did not disappear from the MTCD window after it was resolved. This is
a simulator glitch that attracted the participants’ attention.

Phases 2 and 3 showed the highest degrees of activity in the period between conflict
detection and the conflict pair passing the CPA. Following the sequence logic of the CLC
work steps, these phases could include several work steps: conflict solution probing, solution
implementation, and solution monitoring. From Figure 6, it seems that, besides the periods of
dominance, Phases 2 and 3 featured a particular overlap in the time frame from 01:00 till
03:00. This overlap did not allow a clear assignment of the phases without further hints.
The results shown in Figure 7 also indicated that Phases 2 and 3 were not so distinct from
each other. A further look into the matching results (Table 4) revealed Phases 2 and 3 to
have a predominant match with the solution-monitoring step. On the other side, conflict
solution probing matched also in large part Phases 2 (16.9%) and 3 (15.4%), which emphasises
the focus on the separation tool vector tip and the MTCD window.
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A possible explanation for the ambiguity was provided by the CLC, where work steps
solution implementation and solution monitoring may iterate several times within a short time
period. This was to implement an initial solution plan based on a series of predefined
time-distributed clearances (work step “resume solution”). Even corrective clearances
along the way are conceivable, if separation margins turn out to be insufficient. This loop
could have a considerably high switching frequency, which is probably too high for the
selected time window 30 s to distinguish the change between these work steps.

In contrast, in Phase 2, clearances were usually given that focused on the period
immediately preceding the CPA and showed corresponding visual activity on the part of
the participant. Both Phases 1 and 2 showed a large overlap, not giving the same amount of
separation sharpness as, e.g., Phases 0 and 3. A possible explanation is a highly individual
variation of the transition time of switching, where some participants chose to switch over
to a passive final scan pattern early, whereas others remained in a more active work step
until the CPA and then switched. Allocating the phases with the corresponding work steps,
the CLC suggested the order of appearance accordingly as 0-3-2-1.

To conclude this section, we refer to another possible validation method based on a tem-
poral comparison of the distribution of subjective CLC work steps with the corresponding
work phases. This presumes the availability of the CLC work steps mapped to “timelines”,
which define periods of time when certain cognitive modes appear to be predominant.
Such timelines represent ATCOs’ estimations when they believed they performed con-
flict detection, solution probing, solution implementation, or solution monitoring. These
timelines of the CLC work steps would then provide a ground truth against which the
results of the proposed method could be compared based on temporal distribution and
consistency. The similarity function (1) proposed in Section 5.5 could be used to assess the
similarity between the ground truth and the timeline of work phases inferred by the model
for an ATCO. This evaluation procedure could be repeated in a leave-one-participant-out
fashion. The retrospective think-aloud session supported this approach, as demonstrated
in [11], by using the recordings of the simulation in playback mode, allowing the ATCO to
identify specific steps and transitions between the steps of the CLC themselves and, thus,
to produce these timelines.

7. Conclusions and Future Work

The work presented proposed a method based on topic models to reveal ATCOs’ work
phases and their characteristic work patterns during CD&R tasks. The topic models were
built from data in the form of event sequences, which were obtained by merging the eye
movement data with the data from the simulation logs.

To identify and analyse the work patterns, our method puts focus on how ATCOs
divide their attention across individual areas of interest while performing a task. In our case,
attention to areas of interest corresponded to attention to the interface features of aircraft
involved in a conflict, as well as to interactions with the interface objects (e.g., clicking
on menus). By studying the interactions of the ATCOs with the simulator’s interface, we
extracted information about the work actions being performed, while attending to objects
relevant to a conflict.

Applying the proposed topic-modelling-based approach proved highly promising
as it made it possible to extract work phases directly from the data with associated event
patterns. These work phases can then be used as a basis for the comparison of the behaviour
of individual ATCOs, to assess how similar their work strategies are. Aggregate group pat-
terns can be compared using time-distributed boxplots, and individuals’ detailed patterns
can be compared using a similarity function. Moreover, the proposed approach allowed for
cross-comparisons to be made between subjective statements by ATCOs concerning their
work patterns with the identified work patterns from the data. Finally, our approach made
it also possible to determine what features were most important to be able to ascertain that
a specific pattern is active.
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To investigate the support for our proposed approach and its identified work phases,
we related it to the work steps in the CLC model. We found correspondences between the
phases and the CLC work steps. Here, Phase 0 best matched conflict detection, while Phase
1 best matched solution monitoring. From the previous discussion and data interpretation,
we assumed that solution monitoring and solution implementation are strongly alternating
activities covered by Phases 2 and 3. These processes cannot be sharply separated with the
built model because of the high frequency of changes between them.

To conclude, this paper introduced a novel ATC approach for the identification of
ATCOs’ work phases. While the initial feedback received was encouraging, there are a
number of interesting extensions that could be explored as future work. Firstly, upcoming
extensions of this work should also adopt the validation method referred to at the end of
Section 6. Secondly, this study focused on a single conflict being present on the display;
future work should address situations with more conflicts. Thirdly, an interesting question
to explore is the effect of interface adjustments that move information in the interface, which
are associated with specific work phases, further apart. Further, in more applied studies,
the sensitivity of this approach to expertise could also be explored, by evaluating, for
example, how well it can show differences between experienced and competent controllers
versus novices who require more training. Additionally, it would be interesting to use the
method presented here (in particular, the possibility to assess work strategies’ similarities)
to study the effect of automation on the individual work approaches of controllers. Finally,
we plan also to find a rational process to help the analyst select the number of phases in the
mining activity.
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