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Abstract: The KC-46A Pegasus, a Boeing 767 (B767) commercial derivative aircraft (CDA), is a key part
of the United States Air Force’s (USAF) efforts to modernize their aging tanker fleet. The Department
of Defense (DoD) and the USAF have heavily emphasized the desire and need for Condition-Based
Maintenance Plus (CBM+) to improve aircraft maintenance programs such as the KC-46A. This study
reviews existing CBM+ practices on B767 and related aircraft fleets at Delta Air Lines to identify
initial steps for implementing CBM+ in the KC-46 maintenance program. Specifically, comparative
vacuum monitoring (CVM) sensors are proposed for KC-46A structural health monitoring (SHM)
as a Federal Aviation Administration (FAA)-certified CBM+ technology. As demonstrated at Delta
Air Lines Technical Operations (Delta TechOps), CVM sensors satisfy the technological, procedural,
financial, and regulatory requirements to advance KC-46A SHM and serve as a template for future
CBM+ initiatives.

Keywords: CBM+; predictive maintenance; USAF; CVM; SHM; CDA

1. Introduction

The KC-46A Pegasus is a United States Air Force (USAF) tanker aircraft designed for
aerial refueling, transportation, and aeromedical evacuation missions. A commercial deriva-
tive aircraft (CDA) of the Boeing 767 (B767), the KC-46A leads the USAF strategy to supple-
ment and ultimately replace their aging tanker fleet. The KC-46A can carry 200,000 pounds
of fuel and refuel nearly every U.S. and allied aircraft. As of July 2022, 61 of 179 planned
aircraft are fielded at various USAF and Air National Guard bases which operate and
maintain KC-46A aircraft [1].

The sustainment program for the KC-46A will make up the majority of the long-term
operating cost and is critical for the U.S. military’s operational readiness [2]. KC-46A sus-
tainment includes the maintenance program, logistical supply chain, supporting personnel
and equipment, and many other activities. Required inspections and maintenance tasks are
driven by a combination of utilization and calendar day limits. For example, a particular
task might be due at 300 flight hours or 90 days, whichever comes first. While many of the
maintenance tasks can be completed at operating bases (referred to as field maintenance),
some more in-depth tasks require the aircraft to be serviced at a maintenance depot.

To modernize and improve KC-46A sustainment, the USAF’s KC-46A System Pro-
gram Office (SPO) intends to implement a Condition-Based Maintenance Plus (CBM+)
program to advance corrective and preventative maintenance activities toward a diagnos-
tic/prognostic model. The goal is to efficiently maintain aircraft while remaining focused
on mission effectiveness. To realize this goal as a CDA, KC-46A CBM+ activities are based
on a reliability-enhanced, Federal Aviation Administration (FAA)-certified maintenance
program. This paper presents unique implications and opportunities for the KC-46A SPO
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when interacting with the FAA, Boeing (the KC-46A original equipment manufacturer
(OEM)), and other B767 operators.

Department of Defense (DoD) CBM+

The Office of the Secretary of Defense’s CBM+ handbook defines CBM+ as follows:

“The application and integration of appropriate processes, technologies, and knowledge-
based capabilities to improve the reliability and maintenance effectiveness of DoD systems
and components. At its core, CBM+ is a culture that seeks to perform maintenance based
on evidence of need provided by Reliability Centered Maintenance (RCM) analysis and
other enabling processes and technologies. CBM+ uses a systems engineering approach
to collect data, enable analysis, and support the decision-making processes for system
acquisition, sustainment, and operations”. [3]

This definition aligns with Department of Defense (DoD) policy requiring CBM+
to be a “principal consideration in the selection of maintenance concepts, technologies,
and processes for all new weapon systems, equipment, and materiel programs based on
readiness requirements, life cycle cost goals, and RCM-based functional analysis formulated
in a comprehensive reliability and maintainability engineering program” [4].

New weapons systems are therefore required to balance the yin and yang of RCM
and condition-based maintenance (CBM) approaches, pictured in Figure 1, to build their
CBM+ methodology and arrive at a collaborative enterprise capability integrating processes,
technologies, and knowledge-based applications. Figure 2 illustrates the six functional
activities of CBM+ to iteratively achieve this capability.
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Specifically, RCM is an analytical process that assists maintenance managers in de-
termining appropriate methods of maintenance when considering costs, accuracy, and
availability of required data, as well as the specific failure mechanism being analyzed. CBM
is an established approach to identifying and scheduling maintenance tasks; it employs con-
tinuous or periodic assessment of weapon system condition using sensors or external tests
and measurements through first-hand observation or portable equipment. CBM+ utilizes
both RCM and CBM to satisfy and revise maintenance requirements. It is different than a
strictly CBM strategy in that it incorporates sensor data into RCM analyses to implement
changes and perform trend analysis for a specific aircraft and across a fleet.

The KC-46 SPO’s vision of driving their CBM+ methodology towards a diagnos-
tic/prognostic model will require a concerted effort across both approaches. As shown
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in Table 1, such a model performs maintenance based on remaining useful life (RUL)
forecasts derived from actual stress loads and real-time trend analysis. It requires an agile
supply chain supporting a maintenance and repair enterprise that dynamically schedules
maintenance actions driven by comprehensive data feeds and state-of-the-art prognostic
failure models.

Table 1. Range of maintenance approaches [4].

Category Reactive Proactive

Approach Corrective Preventive Predictive Predictive

Description Fix when
breaks

Scheduled
Maintenance

Condition-Based
Diagnostic

Condition-Based
Prognostic

When No Scheduled
Maintenance

Fixed-time schedule
for inspection, repair,
and overhaul

Maintenance based on
current condition

Maintenance based
on forecast of
remaining life

Why N/A Intolerable failure,
possible to prevent

Based on evidence
of need

Need projected
as probable

How N/A Based on useful life,
forecast/updated

Continuous collection
of condition data

Forecasting based on
actual stress load

Prediction None None Near-real-time trend
analysis

Real-time trend
analysis

To contextualize the KC-46A desired CBM+ future state, the KC-46A SPO, Georgia
Tech Research Institute (GTRI), and Delta TechOps studied how Delta achieved success in its
predictive maintenance activities as a leading B767 commercial operator [5,6]. Specifically,
the research collaboration investigated how Delta TechOps participated in industry activity
with the FAA, OEMs, and other commercial operators to demonstrate and certify CBM+
improvements as an alternate means of compliance (AMOC) for maintenance requirements.
After decades operating the B767 and related aircraft fleets, Delta’s lessons learned in
applying CBM+ are recognized as improving its operational performance and advancing
the regulatory environment to enable predictive maintenance for the KC-46A [7,8]. Lastly,
Blond et al. prescribe a related decision-making framework for the KC-46A maintenance
program which includes CBM+ solutions as an AMOC to optimize a preventative mainte-
nance task [1]. The authors of [9,10] cite these types of practical applications as needed to
build empirical evidence supporting the implementation of CBM across use cases.

2. Approach and Methods

This study was conducted to identify a potential starting point for the USAF to in-
corporate CBM+ into KC-46A maintenance operations. A key sustainment strategy for
the KC-46A program is to adhere to FAA guidelines and utilize the maintenance program
of a B767. In addition to airworthiness, the FAA certified the KC-46A mission systems
(e.g., aerial refueling systems) via a supplemental type certificate (STC) in 2018. This
effort, during which the USAF pushed for FAA certification of the maximum number of
components possible, was designed to “reap the benefits of decades of reliability upgrades
Boeing made to the aircraft for commercial customers” [11]. When considering sustain-
ment, alignment to FAA regulations aimed to increase USAF access to spare parts and
maintenance and training data from commercial operators [11]. Because the KC-46A is a
CDA and adheres closely to FAA guidance, commercial benchmarking was used to identify
CBM+ and structural health monitoring (SHM) opportunities for the KC-46A. Specifically,
Delta TechOps most closely exemplified KC-46A CBM+ opportunities because of their
research into and application of comparative vacuum monitoring (CVM) sensors across the
operator’s long-term use of B767s.

To guide our comparison between the KC-46A and Delta’s B767 fleet, we leveraged
an October 2020 presentation from David Piotrowski, senior principal engineer at Delta
TechOps, which outlined the following four components of a CBM+ initiative: technical,
procedural, financial, and regulatory [7]. Across these four CBM+ domains, progressive
stages of their implementation can be thought of as “crawl, walk, run” phases for the KC-
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46A. The “crawl” phase starts by incorporating SHM technology into aircraft maintenance
tasks as currently written. This stage follows current maintenance practices and adds the
data collected from a sensor into the decision-making process to repair or replace a part.
Next, in the “walk” stage, CVM sensor data can be used to determine when a manual
inspection should be scheduled to validate the sensor data. This stage relies on frequently
monitoring the sensor data to inform dynamic task interval scheduling. Lastly, the “run”
stage relies on continuous monitoring of sensor data and an analysis of failure modes for
individual parts such that maintenance is only conducted when and if required [7].

The purpose of this study is to show how utilizing CVM sensors for SHM is a potential
CBM+ introduction for the USAF KC-46A maintenance program. When considering the
matrix of CBM+ components and the “crawl, walk, run” steps of SHM, the scope of
this study primarily falls in the “crawl” section of the technology component, visually
represented by Table 2.

Table 2. Scope of this study in context of CBM+ components.

Crawl Walk Run

Technical This study
Procedural
Financial

Regulatory

Figure 3 shows the relationship between RCM and CBM+ as defined by the military
standard for RCM [12]. A key takeaway from Figure 3 is that CBM+ technologies are in-
tended to enhance the effectiveness of preventative maintenance based on the technology’s
ability to detect failure mode(s). Regarding CVM sensors, the flowchart was adapted to
show the scope of this study in the KC-46A’s context. This study conducted semi-structured
stakeholder interviews with subject matter experts and surveys of CVM technologies and
CBM+ programs to identify a starting point to move from Step 4 to 5 in Figure 3’s flowchart
(as highlighted in green).
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3. Results

Blond et al. [1,6] informed our survey of relevant CBM+ technologies and programs
by modeling and analyzing a proposed CBM+ environment for the KC-46A. Expanding
on these foundations, we studied sensor-based CBM+ enablers, such as CVM, to identify
potential starting points for the USAF to incorporate CBM+ into KC-46A maintenance
operations. These aircraft health management (AHM) techniques monitor powerplants,
structures, and components to “diagnose faulty states and predict future degradation of the
equipment” [13]. The FAA, via its participation in the International Maintenance Review
Board Policy Board (IMRBPB), has described the process, problem, considerations, assump-
tions, and recommendations for inserting AHM into the KC-46A maintenance program
using the Maintenance Steering Group Third Edition (MSG-3) governing standard [14]. The
International Air Transport Association defines an efficient program as “one which sched-
ules only those tasks necessary to meet the stated objectives. It does not schedule additional
tasks which will increase maintenance costs without a corresponding increase in reliability
protection” [14]. For example, an aircraft health monitoring white paper found that up to
90% of scheduled maintenance tasks result in no finding [13]. The presented conclusion
from this statistic is that “90% of aircraft ground time for systems scheduled maintenance
does not change the condition of the aircraft,” describing the need for a condition-based
maintenance approach to task scheduling [14]. This is especially applicable to the KC-46A
based on its maintenance program’s underperformance in availability, reliability, and
maintainability, as described in [1], and absence of CBM+ activities/improvements.

Powerplant health management began as early as the 1970s with sensors to capture
relevant parameters across different phases of flight. The high cost to repair aircraft
engines spurred development of more advanced methods for monitoring and diagnosing
engine health [15]. In a previous GTRI CBM+ study for the USAF [16], a focus on CBM+
implementation for non-engine components was recommended, as robust powerplant
prognostic health monitoring is currently the industry standard and observed in the KC-
46A. Accordingly, SHM provided a salient alternate for KC-46A CBM+ implementation,
as existing technologies can reliably detect structural failure modes. Delta TechOps also
demonstrates how to collaborate with the FAA and Boeing to implement SHM in Boeing
fleets across the “crawl” and “walk” phases.

3.1. SHM Implementation

In conjunction with the DoD standard for RCM processes, the USAF CBM+ handbook
details the activities and resources involved in KC-46A SHM implementation. Figure 4
shows the USAF CBM+ process highlighted with key considerations for developing an
SHM test case [17].

The callouts identify key points in SHM implementation for the KC-46A. They include:

• Maintenance data from supply, depot, and flight line maintenance activities as a critical
input to provide feedback to decision-makers on the performance of a preventative
maintenance task.

• Information technology solutions to support CBM+ data integration and analysis
using the KC-46A enterprise decision-making environments, titled the Pegasus Fleet
Management Tool (PFMT) and Predictive Analytics and Decision Assistant (PANDA),
and maintenance information systems (referred to as G081, G097, and G099).

• The decision-making framework defined in [1] to identify the SHM advancements
which will be most impactful in improving the KC-46A maintenance program.

Upon CBM+ deployment in the last step of the USAF’s CBM+ process, we propose
the KC-46A SHM test case follow a similar progression to Delta TechOps’ “crawl, walk,
run” approach, given its success in the commercial market. This progression is designed to
increase the use of SHM sensor data in Figure 4’s process to advance from a preventative to
a predictive maintenance strategy for selected KC-46A structural maintenance tasks. This
approach is summarized in Figure 5.
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3.2. Comparative Vacuum Monitoring (CVM)

The commercial airline industry and Delta TechOps have advanced SHM using CVM
sensors for crack detection on aircraft structures since 2005 [7]. These sensors rely on
pressure differences between small vacuum galleries between the sensor and aircraft
structure. CVM sensors can be combined in series to monitor large sections of an aircraft
structure, strategically placed by the aircraft operator, and can provide continuous or
periodic data monitoring.

From 2005 to 2013, Delta TechOps conducted durability testing on six CVM sensors in
hard-to-reach areas of a B767 empennage. These sensors, along with CVM sensors installed
on another 20 Delta aircraft, flew over 1 million flight hours without environmental or
functional failures [7]. The CVM data collection procedure “was designed to be easy” with
a handheld vacuum source and flow meter device with the versatility to accommodate
periodic or continuous monitoring [7,14]. Quickly accessing the CVM connection terminals
reduced the maintenance cost of this structural inspection from a multi-day special hangar
visit with risks of damaging systems/structures removed for manual inspection to approxi-
mately 15 min per connector in a line maintenance environment. Additionally, the CVM
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sensor and associated air tube installation did not structurally alter the aircraft or require
aircraft power, which kept the procedure from requiring FAA approval for installation.
These CVM capabilities, shown in Figure 6, provide the data feeds necessary for the KC-46A
to progress through the “crawl, walk, run” stages of CBM+.
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In March 2022, the FAA issued a supplemental type certificate (STC) for CVM sensors
on B737-800 Wi-Fi antenna support structure inspections. This STC declared the first and
only FAA-approved SHM sensor for crack detection, demonstrating its potential viability
for the KC-46A [8]. In addition to many years of operational testing at Delta TechOps, lab
demonstrations of CVM sensors supported the STC’s approval through enhanced detection
of structural cracks compared to human visual inspection. Sandia National Laboratories
conducted over 200 fatigue tests on 2.54 mm thick aluminum sheets representing aircraft
structures. The tests exceeded the crack detection goal with no reported false-positive
readings [18].

3.3. KC-46A CVM Applications

During the “crawl” phase of KC-46A CVM applications, retrieving the sensor data can
be added to an existing inspection of a desired structural component on a small number of
aircraft. The chosen area should be time-intensive to visually inspect, maximizing the return
on investment (ROI) of installing the sensor. For example, an Air Transport Association
(ATA) Chapter 53 intrusive “special regular inspection” requires 30 tasks just to access the
area under inspection.

Collected data from ATA Chapter 53 inspections performed during the KC-46A’s
C-check and associated CVM sensors can be stored in PFMT, a KC-46A repository for
maintenance and engineering data, to justify advancing to SHM’s “walk” and “run” phases.
PFMT is a platform to collect, analyze, and compare the results of manual inspections and
CVM sensor data to support CBM+ initiatives.

Mimicking Delta’s “crawl” phase, it is recommended that engineers retrieve CVM
sensor readings periodically rather than formally adding the step to a maintenance task.
This gradual development will also inform PFMT requirements and future CBM+ efforts.
In the “walk” stage, the USAF could capitalize on the time savings by collecting the sensor
readings as an approved alternate inspection method (i.e., AMOC) on flight lines before
graduating to continuous, remote monitoring in the “run” phase.
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Moving from the technical to the procedural domain of CVM applications for the
KC-46A, the USAF can benefit from the lessons learned during Delta’s CVM installations
and the downstream effects on their maintenance requirements. Future work in this area
should consider which specific maintenance tasks and inspections could be completed with
CVM sensors. Furthermore, the USAF can leverage Delta’s procedures as a template to
adapt the installation and monitoring to fit within DoD requirements.

Regulatory considerations for the KC-46A should consider how the recent FAA certifi-
cation process can be adapted for identified USAF applications. This is critical to aligning
the KC-46A sustainment strategy to the commercial regulatory environment governing
Boeing maintenance programs such as the KC-46A. Lastly, CVM financial benefits must be
identified in terms of readiness increases and cost savings in depot and field maintenance
operations to measure its ROI.

Overall, the large commercial push for CVM research and SHM applications make it
a favorable starting point for the USAF because the industry’s momentum will ease the
burden of the USAF’s future research. Figure 7 summarizes our research contributions for
CVM as a use case to advance CBM+ in the KC-46A maintenance program.
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3.4. Operationalizing CBM+

To implement CBM+ in KC-46A operations, CVM sensors are recommended to inform
the RUL of structural components. Tailoring these RUL degradation rates to each applica-
tion can develop crack growth models to drive maintenance actions. Scaling this approach
across the KC-46A fleet enables enterprise scheduling of structural maintenance actions
during depot and field maintenance activities.

Figure 8 proposes a predictive maintenance architecture for the KC-46A CBM+ pro-
gram which takes in several data sets and uses various algorithms (i.e., optimization,
CBM, and machine learning (ML)) to create actionable alerts and metrics for this type of
enterprise-wide scheduling optimization [19]. Considering that data are the critical input
for the entire system, KC-46A users will have to apply CVM and leverage commercial
results, such as those observed at Delta TechOps, to answer the following questions:

1. Do the data exist?
2. Do the data cover the appropriate fleet and timespan?
3. Do the data have high enough quality—or will they require extensive preparation?
4. Is the data set large enough for training and cross validation?



Aerospace 2023, 10, 587 9 of 11Aerospace 2023, 10, x FOR PEER REVIEW 10 of 12 
 

 

 
Figure 8. Proposed KC-46A CBM+ predictive maintenance architecture (Adapted from [19]). 

Recommendations to enable these CBM+ capabilities and address many of the chal-
lenges described by [10] for the KC-46A include the following: 
1. Develop, Communicate, and Execute a KC-46A CBM+ Roadmap: To provide strate-

gic direction and planning to the KC-46A sustainment enterprise, the CBM+ 
Roadmap presented by the KC-46A SPO during this study is recommended to be 
developed, communicated, and executed by a CBM+ working group. The roadmap 
provides the required details to begin establishing CBM+ capabilities to support the 
KC-46A maintenance and reliability program. 

2. Industry Engagement: With the USAF being the largest future operator of the B767, 
KC-46A leadership is recommended to advocate for CBM+ capabilities to Boeing and 
the FAA through industry engagements such as the Industry Steering Committee and 
Maintenance Review Board. These engagements communicate the operational de-
mands to regulators, OEMs, and technology vendors for CBM+ capabilities to ad-
vance existing maintenance strategies. As discussed, Delta Air Lines successfully 
demonstrates how to engage industry partners when integrating CBM+ improve-
ments across the technical, operational, regulatory, and financial domains. Addition-
ally, the latest MSG-3 revision includes a CBM+ type analysis to evaluate AHM capa-
bilities for maintenance tasks. 

3. Determine the Data Environment to Develop CBM+ Capabilities: Across this study, 
we observed a need to consolidate KC-46A data and reliability/maintainability anal-
ysis into a more collaborative data environment. We recommend establishing a mod-
ern computing environment, such as PFMT, as the authoritative decision support 
system for the KC-46A CBM+ program. Doing so enhances the enterprise execution 
of CBM+ activities to realize its benefits. 

4. Discussion 
This study proposes CVM sensors as a starting point for the USAF to implement 

CBM+ in the KC-46A maintenance program. Primary evidence supporting this recom-
mendation includes the FAA’s approval of CVM sensors for SHM, successful commercial 
demonstrations of CVM at Delta TechOps, and CVM’s ROI for high-cost KC-46A struc-
tural inspections. Technical, procedural, regulatory, and financial considerations are eval-
uated to scale CVM in optimizing the KC-46A maintenance program. 

The same approach is recommended to advance from preventative to predictive 
strategies on KC-46A powerplant and component maintenance actions. For example, 
RCM analysis should be conducted on engine diagnostic/prognostic data to adjust and 
improve engine preventative maintenance tasks. Robust predictions based on relevant 

Figure 8. Proposed KC-46A CBM+ predictive maintenance architecture (Adapted from [19]).

Recommendations to enable these CBM+ capabilities and address many of the chal-
lenges described by [10] for the KC-46A include the following:

1. Develop, Communicate, and Execute a KC-46A CBM+ Roadmap: To provide strategic
direction and planning to the KC-46A sustainment enterprise, the CBM+ Roadmap
presented by the KC-46A SPO during this study is recommended to be developed,
communicated, and executed by a CBM+ working group. The roadmap provides
the required details to begin establishing CBM+ capabilities to support the KC-46A
maintenance and reliability program.

2. Industry Engagement: With the USAF being the largest future operator of the B767,
KC-46A leadership is recommended to advocate for CBM+ capabilities to Boeing and
the FAA through industry engagements such as the Industry Steering Committee
and Maintenance Review Board. These engagements communicate the operational
demands to regulators, OEMs, and technology vendors for CBM+ capabilities to
advance existing maintenance strategies. As discussed, Delta Air Lines successfully
demonstrates how to engage industry partners when integrating CBM+ improvements
across the technical, operational, regulatory, and financial domains. Additionally, the
latest MSG-3 revision includes a CBM+ type analysis to evaluate AHM capabilities
for maintenance tasks.

3. Determine the Data Environment to Develop CBM+ Capabilities: Across this study, we
observed a need to consolidate KC-46A data and reliability/maintainability analysis
into a more collaborative data environment. We recommend establishing a modern
computing environment, such as PFMT, as the authoritative decision support system
for the KC-46A CBM+ program. Doing so enhances the enterprise execution of CBM+
activities to realize its benefits.

4. Discussion

This study proposes CVM sensors as a starting point for the USAF to implement
CBM+ in the KC-46A maintenance program. Primary evidence supporting this recom-
mendation includes the FAA’s approval of CVM sensors for SHM, successful commercial
demonstrations of CVM at Delta TechOps, and CVM’s ROI for high-cost KC-46A structural
inspections. Technical, procedural, regulatory, and financial considerations are evaluated
to scale CVM in optimizing the KC-46A maintenance program.

The same approach is recommended to advance from preventative to predictive
strategies on KC-46A powerplant and component maintenance actions. For example, RCM
analysis should be conducted on engine diagnostic/prognostic data to adjust and improve
engine preventative maintenance tasks. Robust predictions based on relevant data sets
(e.g., maintenance data, aircraft sensor data, etc.) are recommended to be documented in
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PFMT and optimally scheduled during depot and field maintenance activities based on
resource and operational constraints. These types of CBM+ initiatives should be prioritized
based on the ROI relative to cost savings and readiness improvements to realize a future-
state predictive maintenance environment for the KC-46A fleet.
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