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Abstract: In aerospace engine delivery systems, “one-in-two-out” bifurcation structures are com-
monly used for flow distribution to downstream pipelines. There are two common “one-in-two-out”
bifurcation structures in aircraft engines: the planar orthogonal bifurcation and the spatial orthogonal
bifurcation. By adjusting the flow supply upstream and the cross-sectional diameter downstream, the
flow distribution in the two branches can be adjusted, i.e., the “splitting ratio” changes. In this paper,
a dismantling and flexible experimental system is constructed to measure the pressure signals in each
channel and use non-linear dynamic analysis methods to extract pressure characteristics. The particle
image velocimetry (PIV) technique combined with the fine rope tracing technique is creatively used
to observe the vortex structure in the cross section of the downstream branch. The study found that
for spatial orthogonal bifurcation, the pressure signal characteristics in each channel are basically the
same at larger splitting ratios, regardless of the chirality. As the splitting ratio decreases, the difference
in pressure signal characteristics between the two branches gradually becomes evident and becomes
related to the chirality. Moreover, unlike the planar orthogonal bifurcation structure, a complete large
vortex structure has not been found in the downstream branch of the spatial orthogonal bifurcation
structure, regardless of changes in the splitting ratio, and it is unrelated to the chirality.

Keywords: spatial orthogonal bifurcation; chirality; pressure measurement; nonlinear dynamic
analysis; vortex structure

1. Introduction

The “one inlet and two outlets” bifurcation structure is widely used in fluid transporta-
tion systems. In the fields of construction, industry, and materials preparation, bifurcation
structures are widely used for the distribution of water, steam, and other fluid media [1,2].
In the field of microfluidics, bifurcation structures can also be used for heat exchange
assistance [3–5]. In the fields of medicine and biology, similar structures exist in the car-
diovascular system [6]. In liquid rocket engines, bifurcation structures are common in
propellant supply systems and play a role in flow regulation [7]. According to the relative
position of the three channels, bifurcation structures can be divided into two categories:
planar orthogonal bifurcation (POB, i.e., the three channels are located in the same plane,
also known as “T-junction”) and spatial orthogonal bifurcation (SOB, i.e., the three channels
are arranged according to spatial orthogonal coordinates). The main research focus of the
flow behavior in bifurcation structures is the study of pressure and vortex structures inside
the pipes.

Wang et al. [8,9] built an experimental platform that closely resembles a real circular
cross-section pipe system, bmeasured the pressure signals inside a T-shaped bifurcation
to obtain pressure signals of flow conditions such as bubbly flow and spiral flow and
conducted nonlinear dynamical analysis. Their experimental system features two branches
with identical cross-sectional areas, resulting in equal flow rates within each branch during
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steady-state flow. The essential dimensionless parameter under investigation is the extrac-
tion rate, defined as the ratio of outlet flow rate W3 to inlet flow rate W1. They discovered a
strong association between the disturbance behavior of pressure drop across the main and
branch channels and the aforementioned parameter W3/W1. In practical flow processes, the
cross-sectional areas of the two branches are often intentionally designed differently to meet
downstream flow requirements, leading to the development of asymmetric T-junctions.
In such configurations, the flow rates in the two branches are unequal, necessitating the
introduction of a critical parameter: the splitting ratio, which denotes the ratio of the flow
rate in branch 1 to that in branch 2. Recently, Fang et al. [10] conducted experiments to
study the pressure oscillation phenomena in asymmetric T-junctions and uncovered the
influence of the splitting ratio on these oscillations.

In complex and narrow spaces, such as the delivery systems of liquid rocket engines,
bifurcations must be carefully arranged with a specific spatial angle to ensure proper place-
ment. This has given rise to the development of spatial bifurcations. This study focuses on
the SOB, which is the bifurcation of two branches in space that form a 90-degree angle. Our
investigation has revealed a significant dearth of literature on the pressure characteristics
of this type of bifurcation structure, despite its importance in the aerospace industry. Chi-
rality is an interesting topic when it comes to space orthogonality. Chirality is observed
as a functional difference between structures that can be mirrored and superimposed in
space. This phenomenon is widely present in fields such as quantum chemistry, medicine,
and nuclear physics [11–15]. Despite the importance of chirality in various fields, there
is a lack of research exploring the impact of macroscopic chiral symmetry on fluid flow
inside pipelines, especially when dealing with asymmetric branching pipelines with chiral
symmetry and differing diameters. Hence, as shown in Figure 1, the main objective of this
study is to examine the flow behavior in chiral-symmetric SOB.
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Figure 1. Schematic diagram of the space orthogonal bifurcation with handedness symmetry.

Apart from pressure characteristics, another significant flow feature in bifurcation
structures is the vortex structure present in the cross-section. In recent years, there has
been a large amount of experimental and numerical simulation research on internal flow
in T-junctions in microfluidics. Vigolo [16] was the first to discover, through experiments,
the existence of a stagnant flow region at the junction of the bifurcation in a T-junction,
where low-density solid particles that pass through this region will “suspend” and remain
relatively still. Vigolo believed that there is a region at the bifurcation junction that causes
solid particles to stagnate within a specified range of Reynolds numbers, and the mechanism
of stagnation is that two vortexes are generated at the bifurcation junction, and the reverse
pressure gradient and reflux in the vortex core capture and restrict low-density solid
particles near the junction. In order to clearly delineate the shape of the recirculation region,
numerical simulation methods are needed to simulate the flow process. Chen [17] was the
first to use the direct numeral simulation (DNS) method to study the flow in a T-junction,
quantitatively describing the development of vortices inside the pipe. Ault further studied
the motion trajectory of electrolyzed water bubbles at the bifurcation point of a POB at
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different Reynolds numbers and angles through experiments and combined the results
of numerical simulation to demonstrate the existence of four recirculation regions at the
bifurcation point, each recirculation region is bounded by two stagnation points (SP), one
upstream and one downstream [18]. Based on the above research, Chen [19] used the
same simulation method to study the flow inside a POB at different angles. Chen found
that at the downstream position of the POB, outside of the recirculation region of the
vortex, the streamline will form a spiral structure, called “spiral flow”. He did not conduct
in-depth research and explanation on this phenomenon, but this phenomenon is roughly
consistent with Xiong’ s computational results [20]. The experimental research on vortex
structures in bifurcation structures mentioned above was mainly conducted in small-scale
plane channels, and there is a significant difference between the size of the pipeline in
actual transport systems and the experimental setup. The vortex behavior inside spatial
bifurcation structures has not been considered. Recently, researchers have employed the
PLIF (Planar Laser-Induced Fluorescence) method to visualize and study the flow field
within POB at high Reynolds numbers [21]. Our research also aims to advance the research
on SOB, investigating the internal flow patterns and providing insights for future studies
in the aerospace field.

2. Materials and Methods

The basic experimental system of this article is illustrated in Figure 2. We built a
modular experimental platform to study the pressure characteristics and cross-sectional
vortex structures of SOB. In this figure, 1 is the joint module made of aluminum alloy,
responsible for installing sensors and fixing devices; 2 is the diversion module made of
aluminum alloy, responsible for diverting upstream fluid into two downstream branches,
with internal dimensions identical to the original structure; 3 is the observation module,
a glass tube made of high-transparency quartz glass; 4 is a pressure sensor fixed on the
joint module; 5 is a slide rail that can easily adjust the relative position of each structural
component; and 6 is a sliding block with a locking positioning device. The modules are
clamped together by screws. This plan cannot observe the diversion area, but overall, it
greatly reduces the shear and bending moments borne by the quartz tube and is flexible
to disassemble and assemble without affecting the observation of the flow state in the
downstream branch, greatly improving the efficiency of the experiment.
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The two downstream branches are selected with inner diameters of 18 mm and 22 mm
to ensure the flow can reach a high Reynolds number, and defined as branch 1 and branch 2,
respectively. The different inner diameters result in different flow rates in the two branches.
Currently, there is no research that describes the effect of such flow rate differences on the
formation and development of vortices in the SOB, nor are there any publicly available
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literature that shows the impact on the formation and development of vortices in the POB.
The splitting ratio is defined as the ratio of the mass flow rates in the two branches:

η =

.
m1
.

m2
(1)

In the equation,
.

m1 is the mass flow rate of branch 1,
.

m2 is the mass flow rate of
branch 2, both of which can be directly read from the flow meter in the experimental system.

The focus of this study is the effect of flow rate ratio variation onflow behavior; and
therefore, there is no need to consider the influence of surface tension. Furthermore, it
is required that the working fluid has good transparency for visualization purposes and
be cost-effective. Considering these factors, water was chosen as the experimental fluid,
with a density of 1000 kg/m3. The maximum valve opening of the downstream valves is
20 mm, and the feedback loop of the PLC inside the valve can control the valve opening in
real-time, ensuring that the flow rates of the two branches are controlled within the given
range. In the experiment, the flow rate of branch 1 is controlled at around 0.4 kg/s, and
the flow rate of branch 2 varies in a relatively large range. At the same time, the pressure
signals on the main branch and the two branches are collected through pressure sensors,
with a sampling frequency of 5000 Hz and a sampling duration of 20 s.

In order to study the effect of chirality on the flow process, chiral symmetric com-
ponents were also designed: in component 1, branch 1 and branch 2 are clockwise at a
90-degree angle, while in component 2, branch 1 and branch 2 are counterclockwise at a
90-degree angle.

3. Results and Discussion

This study focuses on investigating the influence of splitting ratio on the flow patterns
within the SOB. The specific mass flow rates in each branch need to consider the maximum
supply capacity of the supply system (plunger-type water pump) and the actual flow
scaling in real aerospace propulsion systems. Therefore, in this study, the flow rate in
branch 1 is controlled to be around 0.4 kg/s, while the flow rate in branch 2 varies between
0.2 and 0.9 kg/s. This ensures that the dimensionless splitting ratio is distributed between
0.4 and 2. By the way, the Reynolds number in each branch is defined as:

Re =
ρUd

µ
(2)

where ρ is the density of water, U is the flow velocity in the branch, which can be obtained
by measuring the mass flow rate, d is the diameter of the flow branch, and µ is the viscosity
of water. After calculation, it can be found that the Reynolds numbers in both branches are
of the order of 104, indicating turbulent flow. The Reynolds number in the smaller branch
remains around 30,000, while in the larger branch, it varies between 10,000 and 50,000.

To begin with, the pressure signals in each channel under different splitting ratios
were transformed into the frequency domain using FFT to perform a Fourier transform on
the time-domain signals. The power spectral density (PSD) was then used to represent the
vibration amplitude at various frequencies. The PSDs in each channel of both workpieces
1 and 2 under different splitting ratios are shown in Figures 3 and 4, respectively. The
analysis results only retained the low-frequency range of 0–200 Hz.
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The PSD of the pressure signals in different channels under different splitting ratios for
Workpiece 1 is shown in Figure 3. The black, red, and blue lines in the figure represent the
PSD of the pressure signals in the inlet, branch 1, and branch 2, respectively. It can be seen
that the spectral signals in all three channels are generally in the form of wideband signals,
with only peaks appearing near certain frequency values, and the positions of the peaks
are basically the same. When the splitting ratio is above 0.5, three peaks can be observed
in the frequency spectrum within 0–100 Hz, with two more prominent peaks appearing
near 10 Hz and 50 Hz, and the positions of the peaks will shift to a certain extent with the
change of the splitting ratio. When the splitting ratio drops below 0.5, there are basically no
peaks in the main channel signal, and the peaks in both branches mainly appear near 75 Hz
but are still not higher than the corresponding main channel amplitude. At the same time,
the pressure amplitude in the main channel is generally higher than that in the branches.
This indicates that the frequency domain characteristics of the pressure signal are closely
related to the splitting ratio. A larger splitting ratio means that the flow rate in branch 1 is
higher than that in branch 2, which means that more fluid enters the smaller-diameter pipe
under steady-state conditions, causing the three channels of the bifurcation structure to
simultaneously exhibit three “characteristic modes”. As the splitting ratio decreases, the
fluid entering branch 2 increases and gradually becomes dominant, which will smooth out
the peaks in the main channel.
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As shown in Figure 4, it can be observed that Workpiece 2 also has peaks under
different splitting ratios, and when the splitting ratio is above 0.5, the peaks in each channel
also show a trend of being flattened. However, unlike Workpiece 1, when the splitting ratio
drops below 0.5 and the flow rate in branch 2 becomes much larger than that in branch 1,
the frequency spectrum signals in each channel of Workpiece 2 do not become broadband,
but instead form a new peak near 70 Hz, which becomes more prominent with decreasing
splitting ratio. The original peaks in each channel also do not degrade into broadband
but maintain their characteristics. Obviously, the chiral structure significantly affects
the pressure distribution of the flow in the spatial orthogonal bifurcation structure, and
counterclockwise rotation generates more “characteristic modes” than clockwise rotation.

Figure 4 also shows that the synchronous variation of the frequency spectra in branches 1
and 2 in Workpiece 2 is weaker than that in Workpiece 1, especially when the splitting ratio is
above 1. It can be seen that the pressure amplitude in branch 1 is higher than that in branch 2,
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which may be related to the larger flow rate in branch 1, but this degree of separation was
not observed in Workpiece 1.

The above analysis was performed on the pressure signals from a statistical perspective.
To further analyze the differences in the characteristics of the pressure signals, a nonlinear
dynamical method is needed to study the behavior of the attractors in phase space in each
channel and under different working conditions in Workpiece 1 and Workpiece 2, as shown
in Figures 5 and 6. The autocorrelation function is a common statistical measure used
to quantify the similarity between a signal and a delayed version of itself. It is typically
calculated by multiplying the corresponding values of the signal and its delayed version,
and then summing up these products over a certain range of delays. The autocorrelation
function provides a more intuitive representation of the periodic characteristics of the data
and serves as the basis for subsequent phase space reconstruction.
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As shown in Figure 5, the results of the PSD analysis are consistent with the autocor-
relation functions. The main channel and the two branches exhibit similar trends in both
periodicity and amplitude, and the pressure signals in branch 1 and branch 2 show basically
the same changes. When the splitting ratio is greater than 0.47, the pressure signals in
different channels all exhibit good autocorrelation, with periodic crossings of the zero-scale
line. When the splitting ratio decreases below 0.47, significant changes are observed in
the autocorrelation of the three channels, gradually changing from periodic crossings of
the zero-scale line to oscillating and decaying near the zero-scale line. The reason for this
phenomenon may be that when the splitting ratio decreases to below 0.47, the attractor
shape inside the dynamical system undergoes a transformation, but the specific reason still
needs to be further analyzed using phase space trajectories.
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From Figure 6, it can be observed that in workpiece 2, as the split ratio decreases, the
autocorrelation of the pressure signals in each channel also changes. Particularly when the
split ratio is equal to 0.55, it exhibits similar oscillatory decay behavior as in workpiece 1 at
small split ratios. However, unlike workpiece 1, the autocorrelation signals in workpiece 2
continue to exhibit strong periodicity below a split ratio of 0.5 instead of oscillatory decay.
Similar to the PSD signals, the autocorrelation functions of the two branches in workpiece
2 also do not exhibit complete synchronization when the split ratio is large, and their
difference is much more significant than in workpiece 1. However, with the increase in
flow rate in branch 2, their synchronization is corrected.

After obtaining the autocorrelation functions, in order to achieve the optimal visual-
ization effect of the phase space trajectory, the time delay is usually selected as the value
corresponding to the first crossing of the zero-scale line in the autocorrelation function.
In this paper, the time delay is uniformly selected as 200. The reconstructed phase space
trajectories of workpiece 1 and workpiece 2 are shown in Figures 7 and 8, respectively.
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In Figure 7, it can be observed that the attractor shapes of the pressure signals in the
three channels are similar in phase space, with the attractor volume of the main channel
being significantly larger than that of the two branch channels, which is related to the
larger pressure fluctuations in the main channel. When the flow split ratio is relatively
large, the positions of the attractors in the phase space of the three channels can be clearly
observed: branch 2 is located between the main channel and Branch 1, with a lower flow
rate in Branch 2. However, as the flow split ratio decreases, the phase space trajectory of
branch 2 gradually approaches that of branch 1, and when the flow split ratio is around
0.5, the two trajectories completely overlap. The figure also shows that when the flow split
ratio is 0.46, the attractors of the main channel and the two branch channels are all affected
to some extent, but they all return to their previous shapes at smaller flow split ratios.
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Figure 7. Phase space trajectories at different splitting ratio of Workpiece 1.

In Figure 8, it can be observed that the arrangement of attractors in the phase space
of Workpiece 2 is similar to that of Workpiece 1 when the bifurcation ratio is relatively
large: the attractor volume of the main channel is the largest, and the attractor of branch
2 is located between the two. Similarly, as the bifurcation ratio decreases, the attractor of
branch 2 will move closer to branch 1. However, when the bifurcation ratio decreases to
around 0.45, it can be observed that the shapes of all three attractors are stretched, and the
shape of the attractor of branch 2 is stretched to span across the main channel and branch 1.
To verify whether the above phenomenon actually occurs, the method of constructing a
Poincaré section can be adopted to study the trajectory of the high-dimensional dynamical
system in a low-dimensional space. Following the description by Kantz et al. in their
monograph [22], the phase space trajectories and Poincaré sections complement each other
as high-dimensional and low-dimensional features of the dynamical system, respectively,
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providing a more comprehensive representation of the system’s characteristics. Hence,
they are jointly presented in the paper. The Poincaré sections of the pressure signals in each
channel of Workpiece 1 and Workpiece 2 under different bifurcation ratios are shown in
Figures 9 and 10.

The results of the Poincaré sections in Figures 9 and 10 confirm the phenomena
observed in the phase space trajectories. The attractors in both workpieces 1 and 2 do
exhibit changes with the variation of the flow ratio. This is related to the different angles of
the bifurcation in the two workpieces. In the flow process, the fluid is subject to different
inertial forces in different directions, leading to different oscillation phenomena within the
bifurcation, and causing differences in the pressure signals.

To visualize the vortex structures in spatially orthogonal bifurcations and planar
orthogonal bifurcations, the PIV technique was used to observe the cross-sections. The
colormap represents the magnitude of vorticity, while the arrows indicate velocity vectors.
The results show that in POB, at certain flow split ratios, the formation and breakdown
of larger vortex structures, as shown in Figure 11a, can be observed. However, in SOB,
only flow behavior with non-uniform vorticity distribution, as shown in Figure 11b, can
be observed in both branches, but the formation and breakdown of vortex structures
are absent.
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To simplify the observation process and verify the results obtained from PIV, a string-
tracing method was used to observe the number of times the string wraps around in the
branch. The basic principle of this technique can be found in Fang et al. [10]. The biggest
advantage of using this technique is that it makes it very easy to observe the generation
of vortex structures inside the branches. The study showed that in the POB, the strings
in branch 1 and branch 2 exhibit a wrapping phenomenon under specific flow conditions,
as shown in Figure 12a. However, in the SOB, the behavior of the strings in branch 1 and
branch 2 is as shown in Figure 12b.

Based on the PIV and string-tracing results, it can be concluded that the vortex struc-
tures in the downstream branches only occur in the POB and are not affected by chirality.
This suggests that, compared to the POB, the space orthogonal bifurcation can suppress
the formation of vortex structures in the downstream branches. However, the specific
mechanism still requires further investigation.
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4. Conclusions

We constructed a split-type experimental system to investigate the flow behavior
inside a chiral symmetric spatial orthogonal bifurcation and measured the pressure signals
and vortex formation patterns at a certain cross-section in each channel. Our study revealed
the following findings:

1. Chirality structure affects the pressure signal characteristics inside the spatial orthog-
onal bifurcation, especially when the bifurcation ratio is smaller than 0.5. This effect
can be observed in the frequency spectrum, autocorrelation function, phase space
trajectory, and Poincaré section. This phenomenon may be related to the different
directions of inertial forces.

2. The SOB structure eliminates the large vortex structure in the downstream branch.
Through PIV technology and fine wire tracing technology, the vortex structure ob-
served in the planar orthogonal bifurcation cannot be observed in the spatial orthogo-
nal bifurcation. The mechanism behind this phenomenon is not yet fully understood
and requires further research at the mechanism level.

This study first investigates the flow behavior of chiral symmetric SOB under different
bypass ratios, taking into account the practical engineering background. It provides a
comprehensive examination and serves as a reference for future research.
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