
Citation: Bastas, A.; Vouros, G.A.

Data-Driven Modeling of Air Traffic

Controllers’ Policy to Resolve

Conflicts. Aerospace 2023, 10, 557.

https://doi.org/10.3390/

aerospace10060557

Academic Editors: Michael Schultz

and Judith Rosenow

Received: 5 May 2023

Revised: 7 June 2023

Accepted: 9 June 2023

Published: 13 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Data-Driven Modeling of Air Traffic Controllers’ Policy to
Resolve Conflicts
Alevizos Bastas * and George A. Vouros

University of Piraeus Research Center, Department of Digital Systems, University of Piraeus,
18534 Piraeus, Greece; georgev@unipi.gr
* Correspondence: alevizosb@gmail.com

Abstract: With the aim to enhance automation in conflict detection and resolution (CD&R) tasks
in the air traffic management (ATM) domain, this article studies the use of artificial intelligence
and machine learning (AI/ML) methods to learn air traffic controllers’ (ATCOs) policy in resolving
conflicts among aircraft assessed to violate separation minimum constraints during the en route phase
of flights, in the tactical phase of operations. The objective is to model how conflicts are being resolved
by ATCOs. Towards this goal, the article formulates the ATCO policy learning problem for conflict
resolution, addresses the challenging issue of an inherent lack of information in real-world data,
and presents AI/ML methods that learn models of ATCOs’ behavior. The methods are evaluated
using real-world datasets. The results show that AI/ML methods can achieve good accuracy on
predicting ATCOs’ actions given specific conflicts, revealing the preferences of ATCOs for resolution
actions in specific circumstances. However, the high accuracy of predictions is hindered by real-world
data-inherent limitations.

Keywords: air traffic management; conflict detection and resolution; machine learning

1. Introduction

Different initiatives worldwide, such as NextGen [1] in the US and SESAR [2] in
Europe, have been investigating the implementation of automation to enhance the efficiency
and cost-effectiveness of the air traffic management (ATM) system, which is due to the need
to increase the airspace capacity, and thus the density and complexity of traffic. Air traffic
control (ATC) in the air traffic management (ATM) domain, according to International
Civil Aviation Organization (ICAO) Annex 11 [3], is “a service provided for the purpose of:
(a) preventing collisions: (1) between aircraft, and (2) on the maneuvering area between
aircraft and obstructions; and (b) expediting and maintaining an orderly flow of air traffic”.
The provision of safe ATC services determines traffic volume, which must not exceed
the capacities declared. However, capacities should be utilized to the maximum extent
due to increased demand and the need for the optimal utilization of resources, without
compromising the efficiency and safety of flights. This trade-off introduces challenging
issues in the aviation industry, where artificial intelligence and machine learning (AI/ML)
can provide solutions.

To maintain safety and prevent collisions between aircraft—a consequence of increased
traffic—the ATM system imposes specific separation minima constraints between aircraft,
both at the horizontal and vertical axes. When surveillance systems are used, the minimum
required horizontal separation is 5 NM and the vertical minimum separation is 1000 ft
(300 m) below Flight Level (FL) 290, and 2000 ft (600 m) from FL290 and above. The Air
Traffic Service (ATS) authority may reduce or increase the separation minima based on the
surveillance systems’ capabilities, and situations between aircraft [4].

A loss of separation is defined as the violation of separation minima in controlled
airspaces, whereas a conflict is defined as a predicted violation of the separation minima.

Aerospace 2023, 10, 557. https://doi.org/10.3390/aerospace10060557 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10060557
https://doi.org/10.3390/aerospace10060557
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0001-5451-622X
https://doi.org/10.3390/aerospace10060557
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10060557?type=check_update&version=1

Aerospace 2023, 10, 557 2 of 24

As described in [5], tactical conflict detection and resolution (CD&R) is executed by
Executive Controllers (ECs). These are air traffic controllers (ATCOs) who detect and
resolve conflicts in their respective sectors, which are their Areas of Responsibilities (AoRs).
The resolution of conflicts happens in coordination with downstream sectors, so as not
to increase traffic in these sectors. In a flight-centric ATC, such as the one considered
in this article, the detection and resolution of conflicts may happen independently from
sectors, while sectors can provide further spatio-temporal constraints regarding areas of
responsibility, which in the general case can be of any granularity.

To resolve conflicts at the tactical phase of operations, ATCOs issue instructions
regarding changes in the flight trajectory, given (a) the trajectory up to a specific time point,
(b) predictions of the evolution of the trajectory from that time point and on, and (c) the
evolution of conflicts due to traffic. Trajectory prediction is crucial to detecting conflicts,
but the uncertainty of the prediction, together with the error in prediction, grows as the
prediction horizon grows. This implies uncertainties in the assessment of conflicts, as well
as uncertainties in the resolution of conflicts.

As a conclusion, the detection and the resolution of conflicts (i.e., the CD&R task)
involves human expertise and informed judgment. Thus, it is very difficult to hand-craft
criteria which will drive a system to decide whether a conflict deserves a certain reaction at
a particular time point and what the best reaction is (i.e., the one that resolves the conflict
in the most efficient way and with high probability), especially in long-term horizons (i.e.,
beyond 15–20 min).

This work contributes to automating the resolution of conflicts as part of the ATC
(https://www.skybrary.aero/articles/air-traffic-control-service, accessed on 12 June 2023)
service, during the en route phase of flights, promoting the safe, orderly and expedi-
tious flow of air traffic at the tactical phase of operations, modeling ATCOs’ behavior to
resolve conflicts.

Our conjecture is that in safety-critical domains such as ATC, the actions proposed by
automated systems in specific circumstances should be similar to the actions decided and
applied by humans. The authors in [6] show that actions adhering to the operator’s prefer-
ences increase the acceptance rate of the system’s proposed actions and decrease workload.
This has important implications in the automation process, taking into account human
expertise, as well as human-like flexibility and tolerance in reacting to situations. Indeed,
based on these, we believe that by modeling the reactions of ATCOs we can build models
that promote efficacy and trust for automated systems. Decisions that adhere to human
reasoning, preferences and objectives can be made more understandable and intuitively
transparent to human operators. This does not imply that explainability/transparency is
not necessary in this case, but this is not within the scope of this article.

Specifically, this article reports on data-driven AI/ML methods to model the ATCOs’
behavior. Modeling the ATCOs’ behavior, as also proposed in [7], implies learning when
the ATCOs react to resolve a detected conflict, and how they react. This work formulates
the problem of modeling the ATCO policy, specifying how the ATCOs react to resolve conflicts
by issuing specific instructions in specific conflicting situations. This, in conjunction with
predicting when the ATCOs react to resolve a conflict, as is carried out in [7], paves the
way to (a) automating the ATC process, and (b) optimizing the ATC process with respect
to ATCOs’ preferences and modes of behavior, ensuring enhanced decision making for
ATCOs, while leveraging (c) human–AI collaboration in the context of ATC.

1.1. Related Work

In recent years, numerous studies have explored the challenge of automating the
conflict detection and resolution (CD&R) task, or developing decision support tools to
assist ATCOs in performing the CD&R task. A survey of CD&R for manned and unmanned
aviation is presented in [8]. The authors in [9] present a method for addressing strategic
planning that involves traffic on a continent scale. The proposed method utilizes a hybrid
metaheuristic optimization algorithm that combines the benefits of simulated annealing

https://www.skybrary.aero/articles/air-traffic-control-service

Aerospace 2023, 10, 557 3 of 24

and hill-climbing local search methods, to determine an optimal de-conflicted route and
departure time for each flight.

The authors in [10] address the problem of resolving conflicts at the tactical phase of
operations by using a nature-inspired light propagation algorithm that generates conflict-
free 4D trajectories. In [11], the authors present a genetic algorithm-based approach to
perform conflict resolution during the en route phase of flights and in the tactical phase of
operations, while in [12], the authors resolve conflicts using a lattice-based search space
exploration method. The work presented in [13] predicts the evolution of trajectories at
the pre-tactical phase based on historical trajectories and weather observations by utilizing
a Hidden Markov Model (HMM). The predictions made are used to detect conflicts and
assess the probabilities of states related to conflicts. The authors use a variant of the Viterbi
algorithm to apply resolution actions to flights.

The use of reinforcement learning (RL) techniques to address the CD&R task has
attracted significant interest in recent years. A deep deterministic policy gradient (DDPG)-
based approach is used in [14,15] to resolve conflicts between two aircraft in the presence
of uncertainty. In [16], CD&R is formulated as a multi-agent reinforcement learning
problem, which is solved by a message-passing actor critic model. In [17], the authors
combine kernel-based RL with deep multi-agent reinforcement learning (MARL) to resolve
conflicts by applying speed changes in real time, also considering other factors such as
fuel consumption and airspace congestion. The authors in [18] use a multi-agent deep
deterministic policy gradient (MADPG) to resolve conflicts, also considering time, fuel
consumption and airspace complexity.

In contrast to the above-mentioned approaches, and closer to our approach, are the
methods that somehow consider the ATCOs’ preferences, either in a data-driven way as
in [19–21], or by using rules and procedures derived from human experts as in [22].

In [19], the authors present a conflict resolution approach that operates at the strategic
phase of operations. This work presents a data-driven model that (a) classifies the conflict
resolution maneuvers by considering the relationship between the conflicting aircraft and
(b) clusters the conflict resolution actions in order to discretize them. The centroid of each
cluster is used as a possible solution. Next, an ε-constrained multi-objective optimization
method is used to find the Pareto-optimal solutions that minimize the fuel consumption
and maximize the likelihood of ATCOs to issue a resolution action.

A conflict resolution advisory system that incorporates human preferences is presented
in [20]. To gather resolution actions assigned by humans, the authors utilize an interactive
conflict solver. Then, the proposed methodology trains an RL agent to resolve conflicts
while considering the characteristics of the resolution actions assigned by humans. This
work does not use historical ATCO resolution actions and focuses on the turning point
maneuver, deciding the trajectory change point (TCP), i.e., the point at which an aircraft will
turn towards its initial track, after changing its heading to resolve a conflict. In contrast to
predicting resolution actions issued by ATCOs, here, the authors focus on how the ATCOs
will guide the aircraft to perform a TCP maneuver.

In [21], the authors present a method suggesting personalized resolution actions to
ATCOs. To do so, they train a convolutional neural network (NN) on individual controller’s
data. The data are gathered during human-in-the-loop simulations, where humans assign
resolution actions to solve conflicts. The data used in this study contain solution space
diagrams (SSD), which integrate different features that are critical for the CD&R problem.
To collect ATCOs’ resolution actions, the authors created synthetic traffic scenarios inspired
by real-world traffic flows. These were presented to non-experts (university staff and
students), which solved the conflicts. Resolution actions issued by the participants were
recorded and used to train the convolutional NN.

In [22], the authors present a method that proposes 4D conflict resolution trajectories.
To resolve conflicts efficiently, the authors use rules and procedures provided by human
experts, operational insights and analytical studies. This is different from our approach,
where we model the ATCOs’ behavior as it is revealed by the historical ATCO events.

Aerospace 2023, 10, 557 4 of 24

In our previous work [7], we considered the problem of modeling the ATCOs’ reactions
in the presence of conflicts, focusing on predicting whether and when the ATCOs will react
in the presence of a conflict. Here, our aim is to predict how ATCOs will react in situations
with conflicts, predicting the resolution action the ATCOs will instruct. To achieve this,
we formulate the ATCO policy modeling problem in a data-driven way, and we propose
AI/ML techniques to learn models of ATCO policy in resolving conflicts, exploiting data
recording ATCO events (i.e., conflict resolution actions issued at specific time points) and
historical flight trajectories. This implies learning models that predict which resolution
action the ATCOs will instruct, according to demonstrated conflict resolution actions.

In contrast to the data-driven methods mentioned above, this work advances the state
of the art in CD&R automation, formulating and addressing the problem of imitating the
ATCOs behavior, thus closing the gap between automation in CD&R and ATCOs.

1.2. Contributions

Casting CD&R as a data-driven supervised machine learning problem from the per-
spective of imitating ATCOs behavior is novel, since, as far as we know, there is not any
other work that does so, exploiting real-world data comprising demonstrated historical
flight trajectories annotated with ATCO events. Indeed, as discussed in the related work
section, most of the CD&R approaches are trained, validated and tested in simulated
settings where agents, representing aircraft, learn by interacting with their environment
without considering the ATCO policy.

Complementing our efforts towards imitating ATCOs, described in [7], the objective
here is to predict how the ATCOs will react in specific circumstances, in case they decide
to react.

The specific contributions made in this article are as follows:

1. It specifies the problem of learning the ATCO policy as a supervised imitation learning
task. Considering specific types of resolution actions that may be applied in the en route
phase of flights at the tactical phase of operations, this results in a classification task.

2. It studies alternative AI/ML methods to learn models of ATCOs’ behavior with
respect to the formulation proposed.

3. It evaluates the proposed AI/ML methods using real-world data, addressing the
challenges to imitating ATCOs adequately.

It must be noted that, ideally, learning the ATCO policy problem through a data-driven
learning process necessitates having data of the conflicting situations that occurred and
motivated the recorded ATCO resolution actions. These observations are not included
in the historical dataset, which includes only the flight trajectories after the execution of
the resolution actions. Therefore, to imitate ATCOs adequately, we need to reveal the
conflicting situations that occurred. This is in contrast to detecting conflicts. This work
exploits historical data to assess conflicts that may have occurred, and which caused the
ATCOs’ reactions. This is a rather challenging issue that is addressed and discussed in this
article.

The article is structured as follows: Section 2 presents the proposed methodological
steps and the AI/ML methods used for solving the problem. Section 3 presents the
experimental results. Section 4 provides a thorough discussion of the results and challenges,
and finally, Section 5 concludes the article and presents future work.

2. Materials and Methods
2.1. Problem Specification

This section starts with some definitions regarding domain terms, and then proceeds
to specify the ATCO policy modeling problem.

2.1.1. Definitions

A trajectory is defined as a sequence of states ordered in time: T = (s0, s1, ...s|T|).

Aerospace 2023, 10, 557 5 of 24

As the ATCO policy should be agnostic to the specific spatio-temporal (longitude,
latitude, altitude, and timestamp) position of an aircraft, to generalize beyond specific con-
flicting situations with various aircraft relative positions, areas, and flight origin–destination
pairs, models should use states sr,t = 〈stt, vt 〉, t ∈ [0, |T| − 1], where stt specifies aircraft
state features—other than positional—that are relevant to the CD&R task, and vt is re-
stricted to observations regarding conflicts. This is very important to modeling the ATCO
policy, as also presented in Section 2.2.2.

The predicted trajectory Tp indicates the future evolution of the aircraft state with
respect to (a) the current flight conditions (e.g., an initial state with co-occurring trajectories
according to flight plans or other predictions, weather conditions etc.), (b) predictions of
contextual features (e.g., weather forecast at specific points/regions, or predicted trajectories
of other aircraft), and (c) a policy specifying the trajectory’s evolution, i.e., how the aircraft
transitions between states, starting from the current state and on.

The evolution of a trajectory T, from time point t up to t′, is denoted Tt:t′ . A predicted
trajectory from t to t′ is denoted as Tt:t′

p . A set of such predictions, showing the potential

trajectory evolution of Tt:t′ , is denoted by Tt:t′
p .

Regarding the assessment of conflicts between aircraft trajectories, the position of an
aircraft i when the distance between i and another aircraft j is at its minimum is called the
Closest Point of Approach (CPA) (https://www.skybrary.aero/index.php/Closest_Point_
of_Approach_(CPA), accessed on 12 June 2023) of i with regard to j. We refer to the time
at which the CPA occurs as the time at the CPA. In general, the CPA is computed in the
horizontal or vertical axis or in all three dimensions. In this article we compute the CPA at
the horizontal axis following the methodology presented in [15], while also considering the
vertical distance at the CPA in order to detect potential conflicts.

The Crossing Point (CP) (https://www.skybrary.aero/index.php/Vectoring_Geometry,
accessed on 12 June 2023) of a pair of aircraft <i, j> is the point at which the tracks of the
aircraft intersect. The track (https://www.skybrary.aero/index.php/Heading,_Track_and_
Radial, accessed on 12 June 2023) of an aircraft is the projection of the aircraft trajectory on
the surface of Earth.

We revisit CPA and CP in Section 2.2.2, with further details on features that are of
interest to the CD&R task.

Considering a spatiotemporal area SA, we define as neighbor trajectories in SA those
trajectories that co-occur in SA, satisfying the following set CR of constraints regarding
their tracks, CPA and CP.

1. The aircraft have not crossed the crossing point;
2. The tracks of the aircraft cross in less than ctth minutes;
3. The horizontal distance at the CPA is less than cpadhth

NM;

4. The time to the CPA is less than cpatth min;
5. Aircraft altitude difference at the current time point is less than dvth ft.

As shown in Table 1, the parameter ctth is the crossing time threshold, cpadhth
is the

horizontal distance threshold between aircraft at the CPA, cpatth is the time to the CPA
threshold, and dvth is the vertical distance threshold. We set ctth = 20 min, cpatth = 20 min,
and cpadhth

= 15 NM. It must be noted that we use a large horizontal distance threshold
at the CPA (cpadhth

) of 15 NM, in order to include margins of error and uncertainty when
estimating ATCOs’ observations, triggering their reactions. This has been proven successful
in [7] given the lack of information regarding conflicts causing ATCO events in datasets.

As already pointed out, historical data should ideally indicate the observations per-
ceived by ATCOs before applying a conflict resolution action. Such observations should
provide the features that drove the application of a specific action instead of others in
ATCOs’ repertoire of actions, and concern the current situation involving specific aircraft
trajectories, the prediction of the evolution of the trajectories before the “intervention” of
ATCOs, and the assessment of conflicts. However, the historical datasets that this work
exploits, provided by the Spanish ATON (Automated NORVASE Takes) platform, indicate

https://www.skybrary.aero/index.php/Closest_Point_of_Approach_(CPA)
https://www.skybrary.aero/index.php/Closest_Point_of_Approach_(CPA)
https://www.skybrary.aero/index.php/Vectoring_Geometry
https://www.skybrary.aero/index.php/Heading,_Track_and_Radial
https://www.skybrary.aero/index.php/Heading,_Track_and_Radial

Aerospace 2023, 10, 557 6 of 24

only the type of the resolution actions instructed by ATCOs (e.g., change speed), and not the
actions in full detail (e.g., how speed has been changed and for how long), and the effects
of ATCOs’ resolution actions (i.e., the conflict-free trajectory), but not the rationale behind
them. This lack of information presents challenges to the training of AI/ML systems, since
it necessitates recovering the important observations that the ATCOs perceived or assessed,
driving their decision. This entails exploiting expert knowledge to assess traffic as the
ATCOs would, reveal the potential conflicts the ATCOs might have observed, and associate
these potential conflicts with the prescribed resolution actions. Revealing such conflicts
from historical datasets is not a trivial task in the ATC domain, as (a) the evolution of the
trajectories is uncertain and ATCO assessments and practices may vary due to various rea-
sons; and (b) to ensure safety, even when the predicted horizontal distance between flights
at the CPA exceeds the horizontal separation minimum, ATCOs allow margins of error in
perceiving flights. These margins may not be so large as we assume here, but it must be
emphasized that we do so in order to reveal what the ATCOs perceive prior to reaction (i.e.,
to associate potential conflicting situations with resolution actions). In addition to the above
challenges, associating potential conflicting situations with ATCOs’ resolution actions may
introduce noise in the training of AI/ML methods, given the uncertainty in determining
which features of assessed conflicts are those that provided the rationale for the ATCOs’
actions. This issue is further discussed subsequently as the “labels noise” problem.

Table 1. Problem-specific parameters.

Parameter Description Value

ctth The crossing time threshold. 20 min

cpatth

Time to closest point of approach
(CPA) threshold 20 min

cpadhth

The horizontal distance threshold
between aircraft at the CPA. 15 NM

dvth The vertical distance threshold. 1000 ft below flight level
(FL) 420, 2000 ft else

The set of neighbor trajectories Neigh(SA, t) includes aircraft trajectories that cross
SA and are in conflict, as defined below.

Neigh(SA, t) = {Ti, Tj}| There is at least one trajectory point si at time point t in Ti,
and a trajectory point sj at time point t in Tj, such that it holds that the 3D spatial points
of si and sj are in the spatial region of SA and the aircraft’s Tt

i and Tt
j satisfy the set of

constraints CR}.
In addition, given a specific (usually called “focal” or “own”) trajectory Tf and the

spatiotemporal area SA, we define the set of neighbor and thus conflicting trajectories to
Tf in SA at a specific time point t, denoted by Neigh(Tf , SA, t), to be trajectories that (a)
have at least one point close to the focal trajectory point at the time t, using a horizontal
distance measure horizontal_distance and with respect to a distance threshold Dth, and that
(b) satisfy the constraints CR. Formally:

Neigh(Tf , SA, t) = {T| There is a trajectory point si at time point t in Tf and a trajectory
point sj at time point t in Tj such that it holds that (a) the 3D spatial points of si and sj are in
the spatial region of SA, (b) horizontal_distance(si, sj) ≤ Dth, and (c) the aircraft’s Tf and
Tj satisfy the set of constraints in CR}.

It must be noted that although the detection of conflicts is carried out using the aircraft
CPA, the additional rules for the identification of neighbor trajectories allows (a) detecting
conflicts that correspond to the recorded ATCO resolution actions, which are not explicitly
provided in historical datasets, and (b) filtering out aircraft that might be in conflict, but
are not considered by the ATCOs at a specific time point (e.g., because the time to CPA is
large). Rules can be refined when datasets include further information on conflicts.

Aerospace 2023, 10, 557 7 of 24

2.1.2. Modeling the ATCOs Policy

Given a set TE of historical trajectories and a set RAE of historical ATCO conflict
resolution actions (ATCO events) associated with trajectories in TE, our goal is to learn a
model that imitates the ATCOs behavior in terms of these resolution actions.

As described in [7], the problem of ATCOs’ reaction prediction concerns predicting
whether, when, and how ATCOs will react to conflicts involving a particular aircraft exe-
cuting the (focal) trajectory Tt

f , and aircraft flight trajectories in Neigh(Tf , SA, t), given a
spatial area of responsibility SA.

The ATCO reaction prediction problem involves (a) the detection of potential conflicts
with identified trajectories in Neigh(Tf , SA, t), (b) deciding the time point tc for issuing
a resolution action, given the time points at which conflicts occur, and (c) deciding the
resolution action to be applied at that time point, thus shaping the future evolution of the
trajectory for resolving conflicts.

Therefore, in order to be able to imitate the behavior of the ATCOs given TE and RAE,
one should develop models that are capable of the following:

1. Predicting at any trajectory point whether the ATCOs would issue a resolution action;
2. Representing the ATCO policy, predicting the resolution action the ATCOs would

decide, if any.

As already pointed out, while the work in [7] focuses on learning models of AT-
COs’ timely reactions, stated in the first problem above, in this article we focus on the
second problem.

Specifically, the problem of modeling the ATCO policy is about deciding at any time
point tc how the ATCOs will react, i.e., what conflict resolution action will apply in a focal
trajectory T1:tc

f , given conflicts involving that trajectory and trajectories in Neigh(Tf , SA, tc).
As already discussed, ATCO events indicate the type of conflict resolution action

instructed, e.g., speed change, and do not indicate further details about the resolution
action. The actual resolution action cannot be revealed from the available data sources, due
to a lack of information regarding the evolution of the trajectories if no resolution action
applies, in conjunction with the uncertainty of how the trajectory evolves. Therefore, the
specific problem addressed here is about predicting, at any time point tc in the en route
phase and in the tactical phase of operations, the type of conflict resolution action that ATCOs
apply in T1:tc

f (focal trajectory), given conflicts involving the trajectory T1:tc
f and trajectories

in Neigh(Tf , SA, tc).
Casting the imitation problem as a classification problem, conflicts are classified accord-

ing to the type of ATCO resolution actions in a supervised way, according to demonstrated
ATCO events. Here, the task does not take into account the evolution of the conflicts, but
only the characteristics of the conflicts when they occur. This entails a major difference of
the classification task from the “classical” ATCO imitation task: the classification task pre-
scribes a resolution action as learned by demonstration samples, but without considering
the effects of this action. This may provide limitations to the generalization abilities of the
classification task, as it does not exploit the fact that in similar conflicting situations the most
valuable actions are those that shape trajectories in ways similar to those demonstrated.
Further work must address this important issue.

2.2. Learning the ATCOs Policy

Figure 1 depicts the methodological steps proposed to learn the ATCO policy in a
data-driven way.

The data pre-processing stage associates the available data sources of historical, flown,
and thus conflict-free trajectories and ATCO events. The pre-processed datasets are used
for training and testing the AI/ML models.

Aerospace 2023, 10, 557 8 of 24

The trajectory evolution and conflict detection stage estimates for any trajectory T, at
any time point t, including its potential evolution Tt:t′

p up to a time point t′ > t, identifies
potential neighbor trajectories within the area of responsibility (defined to have caused
conflicts), and computes state features for the conflicts assessed to be associated with
the historical ATCO events. (The data pre-processing and trajectory evolution and conflict
detection stages are similar to those described in [7] but are repeated here for reasons of
article conciseness.)

Finally, having detected potential conflicts associated with ATCO events, the ATCO
policy models are trained and tested at the modeling and testing ATCO policy stage.

Subsequent sections present the data sources used, as well as each of the stages.

Figure 1. Methodology stages for learning the ATCO policy.

2.2.1. Data Sources

Exploited data sources include (a) historical surveillance data (IFS) from the Spanish
ATC Platform SACTA (Automated System of Air Traffic Control), and (b) historical ATCO
events about resolution actions that the ATCOs assigned to flights (ATON, Automated
NORVASE Takes).

Surveillance data contain radar track points, which indicate the position of the aircraft
(longitude, latitude, and altitude) and the timestamp, as well as information that allows the
identification of flights, such as the callsign and the origin and destination airports.

The ATCO events dataset contains information related to conflict resolution actions
assigned to flights by ATCOs. This identifies the flight (specifying the callsign and ori-
gin/destination airports), specifying the timestamp and the type of resolution action
assigned to that flight:

< callsign, origin airport, destination airport, resolution action type >.
This information allows associating ATCO events (thus, resolution actions) with

specific trajectory points.
In particular, an ATCO event for a resolution action (RA) is associated with a trajectory

(T) if the following conditions are met:

1. RA.callsign = T.callsign
2. RA.departure_airport = T.departure_airport
3. RA.destination_airport = T.destination_airport
4. Timestamp of the first T point ≤ timestamp of RA ≤ timestamp of the last T point.

Given that the above conditions hold for T and RA, the RA is associated with the
trajectory point that is temporally closer to it.

Figure 2 illustrates a case of associating an ATCO event with a trajectory. The table
displays the attributes of the ATCO event, while the aircraft’s trajectory is represented
by the blue line. The red point represents the trajectory point that is closest in time to
the ATCO resolution action, along with its corresponding timestamp. Furthermore, the
timestamp of the ATCO event is provided together with the timestamps of the first and last
point of the trajectory.

Aerospace 2023, 10, 557 9 of 24

Figure 2. Trajectory points (blue points) and an associated air traffic controller (ATCO) event. Table
columns correspond to the callsign, the departure (apt_from), and the destination airports (apt_to),
the resolution action type (mwm_code), the unix epoch timestamp (the number of seconds that have
elapsed since 1 January 1970, midnight UTC (Universal Time Coordinated)/GMT (Greenwich Mean
Time)) (time_annotation) and the sector in which the resolution action was taken (sector). The red
point shows the aircraft’s trajectory point (with the timestamp) associated with the ATCO event.

2.2.2. Detection of Conflicts, States, and ATCOs’ Resolution Actions

Addressing the ATCO policy modeling problem in a data-driven way, the training
process necessitates having data associating ATCOs’ observations regarding conflicts with
specific reactions. As pointed out, these observations are not recorded in a historical dataset.
In this stage, we aim to reveal the conflicts that would occur if the ATCOs would not react
at a time point t. It involves revealing the cases where a trajectory T1:t

f is in conflict with

another trajectory T1:t
x and that are assessed to violate the separation minima according to

estimated trajectory predictions, Tt:t′
f p and Tt:t′

xp .
To detect potential conflicts between trajectories, the CPA between pairs of flights is

computed using the speed and course information included in the radar tracks. Then, the
violation of separation minima is checked. The CPA is computed at the horizontal axes
following the methodology presented in [15]. The vertical distance between the aircraft at
the CPA is computed using the vertical speed of the aircraft.

Motivated by the bibliography on CD&R ([14–17]), states include features (shown in
Figure 3) comprising the relative bearing b f with regard to a fixpoint (defined subsequently),
the distance d f from that fixpoint, the magnitudes of the aircraft horizontal (sh) and vertical
(sv) speed, and the vector vi = 〈ei1, . . . , eik〉, where each eij includes features of conflicts
with neighbor trajectories Tj:

eij = 〈dhcpaj , dvcpaj , tcpaj , dcpj , tcpj , sin(aj), cos(aj), sin(bj), cos(bj)〉

As Figure 3 depicts, dhcpaj and dvcpaj are the horizontal and vertical distances of the
ownship from an aircraft j at the CPA, and tcpaj is the time of the ownship to CPA. dcpj

is the distance between the ownship and the aircraft j when the first of these is at the
crossing point, and tcpj is the time until the first of the aircraft is at the crossing point. The
intersection angle between the two trajectories is aj, and bj is the relative bearing of the
ownship with regard to the aircraft j at the CPA.

The f ixpoint is the 2D point at which the boundary of the considered spatiotemporal
area SA crosses the line connecting the origin and the destination airports. The fixpoint
provides a reference point and allows features to be independent from the airspace and
origin–destination pair considered. In doing so, the models trained are generic.

Aerospace 2023, 10, 557 10 of 24

Therefore, the state at a time point t of a flight trajectory Ti (ownship) is of the
following form:

sr,t = (< b f , d f , sh, sv >, t,< ei1, . . . , eik >)

where the observation vectors eij are defined for every Tj ∈ Neigh(Ti, SA, t).
Neighbors are sorted in ascending order with regard to dhcpaj and the first values of k

are considered. In this work, k is set to 3.

Figure 3. Features enriching a trajectory point with regard to the aircraft flying a neighbor trajectory
Tj. The fixpoint is the 2D point at which the boundary of the spatiotemporal area SA crosses the line
connecting the origin and the destination airports.

The resolution action types considered are as follows:

- A1: “Speed change resolution action”
- A2: “Direct to waypoint resolution action”
- A3: “Radar vectoring resolution action”

These types, according to the ATCO events dataset, are the most frequent ones, pro-
viding most of the examples, constituting 96% of the total set of resolution actions in the en
route phase of operations.

2.2.3. Learning the ATCO Policy

According to the formulation of the ATCO policy learning problem as a classification
task, the goal is to predict the type of the resolution action a prescribed by the ATCOs at
any point tc, where a state sc with conflicts occurs. Therefore, the aim is to learn a model
that maps states sc to conflict resolution action types a. Formally, the inputs of the models
are states, as specified in Section 2.2.2, i.e., sc = (〈b f , d f , sh, sv〉, 〈ei1, ..., eik〉), and the outputs
are resolution action types. The samples for training the AI/ML models are states labeled
with resolution action types.

To learn such models we consider the methods described in the next sections.

Neural Networks

Neural networks [23] (NN) are function approximators able to model complex non-
linear functions, and have been applied with great success in many regression and classifi-
cation problems, as well as for imitating experts’ behavior using behavior cloning [24,25].

Aerospace 2023, 10, 557 11 of 24

Although closely related to our objective, behavior cloning solves a sequential decision
problem. In this work, given the historical samples, the classification models predict only
the type of the resolution action at a specific conflicting state, without considering subse-
quent aircraft states. A neural network is trained using gradient descent [26–28], tuning its
learnable parameters towards optimizing a loss function based on the training examples
provided. Different loss functions are applied to different tasks. For our purposes, we
apply a common loss function used for classification tasks: the cross-entropy loss. Formally,
the following objective is minimized:

LCE = −∑N
i p(a|sc)logq(a|sc),

where a denotes the resolution action type, p the probability distribution of resolution
action types given trajectory states, as revealed by the dataset, and q the corresponding
distribution as predicted by the model.

For our purposes, this “simple” NN classifier is augmented with an attention module.
The attention module is a convolution layer based on a multi-head dot product atten-
tion kernel [29] that models interactions between the ownship and the aircraft executing
neighbor trajectories. Specifically, this module introduces vectors of learnable parameters
(weights), denoted by WQ, WK, and WV , for the projection of features into “queries”, “keys”
and “values”, respectively. Dot product attention kernels model interactions by performing
dot product multiplication between the query and key values. In the single head attention
case, queries, keys, and values are represented with single vectors. In multi-head attention
kernels, these vectors are split into a number of vectors, equal to the number of heads. Con-
sidering M attention heads, the interaction between the ownship i and one of its neighbors
j ∈ Neigh(i, SA, tc) is modeled by the attention head attm

ij , where m indexes one of the M
heads, as follows:

attm
ij =

exp(τWm
Q hi(Wm

K hj)
T)

∑k∈Neigh(i,SA,tc)∪{i} exp(τWm
Q hi(Wm

K hk)T))
(1)

where τ is a scaling factor and WQ is multiplied with a hidden representation hi of the
ownship’s features 〈b f , d f , sh, sv〉 and WK is multiplied with a hidden representation hj of
the ownship neighbours’ features, eij. The hidden state hi results from passing the input
features 〈b f , d f , sh, sv〉 from an encoding layer, while hj results from passing the input
features eij from an encoding layer (a dense layer is used in our case). The M attention
heads are combined to the output of the attention module as follows:

h′i = σ(concatenate[∑
j∈Neigh(i,SA,tc)∪{i}

attij
mWm

V hj, ∀m ∈ M]) (2)

where the σ function is a neural network layer. In our case query, key and value projections
and the σ function are implemented using dense layers of 128 nodes each.

The architecture of the NN, with and without the attention module, and the hyperpa-
rameters, are specified in Figure 4.

Specifically, the NN classifier without the attention module comprises two dense
hidden layers with 64 nodes, each with tanh activation and L2 (weight decay) regulariza-
tion [30]. The NN with the attention module passes the output of the attention module to
the NN classifier. Figure 4 specifies how the hyperparameters of the networks are set. In
order to avoid overfitting, an early stopping mechanism has been used: This is a regular-
ization technique that determines the best amount of epochs to train. Based on the early
stopping algorithm described in [31], the model’s training is stopped when the validation
error does not improve, and the model is retrained on the training and validation sets for
the best number of epochs.

As already pointed out, it is likely that labels (i.e., historical ATCOs resolution action
types) of revealed conflicts are noisy, containing trajectory states that are wrongly associated
with a resolution action type. Noisy labels can be introduced by (i) the data, as is often

Aerospace 2023, 10, 557 12 of 24

the case with real-world data, and by (ii) the conflict detection methodology, which may
reveal conflicting situations that do not correspond to the actual ATCO events indicated in
the dataset.

Hyper-
parameter Description Value

Learning
rate

Scales
the step
of the

optimization

0.0003

Loss
function

The
minimization

objective

Cross
entropy

(a) NN hyperparameters

(b) The NN classifier
architecture

(c) The NN+att classifier architecture
Figure 4. The neural network (NN) and neural network with attention (NN+att) hyperparameters
(a), the NN classifier without attention (b), and the NN classifier with attention (c). DenseQ, DenseK ,
and DenseV denote the query, key, and value projections, respectively.

According to the survey presented in [32], noise is categorized as instance-independent
label noise or instance-dependent label noise. Instance-independent label noise could depend
on the label, called label-dependent or asymmetric noise, or could be uniform among all
classes, called symmetric noise. Different methods deal with different types of noise in various
ways. Some methods change the network architecture to model label noise [33], while others
apply forms of regularization to increase models’ robustness, as in [34]. Others propose robust
loss functions, as in [35]; make adjustments to the loss function, as in [36]; or select training
samples that are noise-free with high probability, as in [37].

To address label noise, we opted for the self-evolution average label (SEAL) method,
which is a label refurbishment method presented in [36]. SEAL trains an NN multiple times
from scratch. At each SEAL iteration, the model’s output on all samples for each epoch is
recorded. Then, for each sample, SEAL computes the average output value over all epochs.

Aerospace 2023, 10, 557 13 of 24

This value is considered to be an approximation of the true (not noisy) label and is used as
the sample’s label for the next SEAL iteration. In this work, we use five SEAL iterations.

SEAL has the following advantages: It can deal with high rates of noise, does not
need a noise-free validation set (in contrast to other methods), uses all training samples (in
contrast to sample selection methods), and is robust to instance-dependent noise, which is
the most complex form of noise. SEAL is a good fit in our case, as a noise-free subset of the
dataset is not available and label noise is likely to be instance-dependent.

Active passive loss functions presented in [35] provide an alternative way to address
label noise, and were also tested in this work. An active passive loss function is the
weighted sum of an active and a passive loss function. Formally, it has following form,
LAP = α ∗ LActive + β ∗ LPassive, where α, β > 0 are coefficients that balance the two loss
functions and L denotes a loss function. A loss function is considered active if it only
optimizes the model’s learnable parameters with regard to the correct labels of the sample.
It aims to increase the probability the model assigns to the sample’s label. Passive loss
functions aim to decrease the probability the model assigns to at least one incorrect label.
For the active passive loss function to be robust to label noise, both the active and the
passive loss functions should be robust. Functions that are not robust to label noise can be
made robust using the following normalization form, Lnorm = L(f (x), y)/sumK

j=1L(f (x), j),
where f denotes the model, x is the model’s input, y represents the corresponding labels
and K is the number of different labels.

Random Forest and Gradient Tree Boosting

Decision trees (DT) [38] are models used for classification and regression. In this work,
we use decision tree ensembles such as random forest (RF) and gradient tree boosting (GTB)
for classification.

Classification trees predict a label by using sequences of rules exploiting the input
features. At each step, a rule regarding a specific feature is tested and the answer determines
the next rule that will be tested, creating a tree-like structure of rules where rules correspond
to tree nodes. Rules are inferred based on the training samples. Algorithms for creating
decision trees must determine the rules that best divide the training instances in separate
classes. To do so, splits of the training samples produced by potential rules are assessed by a
gain function. The gain can be expressed using different criteria, e.g., Gini, and each time the
rule with the maximum gain is selected. Samples are split until leaves are pure, containing
samples of one class only, or until leaves contain the minimum number of samples. Given a
DT, the probability of each class for a given input can be predicted by testing which rules
apply to the input features, until reaching a leaf and then calculating the fraction of training
samples of the class that correspond to that leaf. The structure of the tree determines how
the training instances are divided into different classes and thus determines the effectiveness
of the tree in terms of the accuracy of the predictions made. Deep trees with many rules may
overfit the training set and fail to generalize properly, whereas small trees may underfit the
training set, providing inaccurate predictions. Table 2 reports the hyperparameters used in
creating DTs for the RF and GTB ensembles used in this work.

RF [39] is an ensemble of decision trees [38] trained individually on the training set
to perform classification or regression tasks. For classification tasks, the output class is
decided either by voting, selecting the class predicted by most trees, or by using an average
of the predicted probabilities for each class. In this work, the prediction is computed as the
average predicted probability for each class of the decision trees.

Trees are trained on a subset of the training set built by drawing samples with replace-
ments. This is known as bootstrapping and it results in reducing the variance at the cost of
increasing the bias. A technique used to reduce the variance of a RF model is the random
input selection, according to which nodes are split during the construction of the trees
using a random subset of the input features. In this work, we use both techniques.

As in many real-world datasets, our dataset is imbalanced, as samples corresponding
to a resolution action type, specifically resolution action type A3, constitute a small pro-

Aerospace 2023, 10, 557 14 of 24

portion of the data. Many classification algorithms cannot accurately predict the minority
class of imbalanced datasets as they minimize the overall error and tend to ignore rare
samples. In [40], the authors proposed balanced RF and weighted RF to deal with the class
imbalance problem. Balanced RF balances the bootstrap samples by randomly selecting the
same sample number for all classes. On the other hand, weighted RF assigns weights to
each class, giving higher weights to minority classes in order to penalize errors made on
samples of the minority classes more heavily.

In this work, we use the RF and weighted RF implementation of scikit-learn and the
balanced RF implementation of imbalanced-learn. The hyperparameters have been set as
shown in Tables 2 and 3.

Table 2. Hyperparameters of the decision trees used for the random forest (RF) and gradient tree
boosting (GTB) algorithms. Descriptions are from scikit-learn.

Hyperparameter Description RF Value GTB Value

criterion
The function to measure

the quality of a split. gini
friedman

mse

max_depth

The maximum depth of the tree.
If None, then nodes are expanded until

all leaves are pure
(containing one class only)
or until all leaves contain

less than min_samples_split samples.

None 3

min_samples_split
The minimum number of samples
required to split an internal node. 2 2

min_samples_leaf
The minimum number of samples

required to be at a leaf node. 1 2

min_weight_fraction_leaf

The minimum weighted fraction
of the sum total of weights
(of all the input samples)

required to be at a leaf node.

0 0

max_features

The number of features to consider
when looking for the best split.

If “sqrt”, then max_features
is equal to the square root of
the total number of features.
If None, then max_features

is equal to the number of total features.

sqrt None

max_leaf_nodes

Trees grown with max_leaf_nodes in
best-first fashion. Best nodes are

defined as a relative reduction in impurity.
If None then unlimited
number of leaf nodes.

None None

min_impurity_decrease
A node will be split if this split

induces a decrease in the impurity
greater than or equal to this value.

0 0

ccp_alpha

Complexity parameter used
for minimal cost-complexity pruning.

The subtree with the largest cost
complexity that is smaller than

ccp_alpha will be chosen.
When 0, no pruning is performed.

0 0

Aerospace 2023, 10, 557 15 of 24

Table 3. Hyperparameters used for the random forest (RF) algorithm. Descriptions are from scikit-learn.

Hyperparameter Description Value

n_estimators The number of trees in the ensemble. 100

bootstrap

Whether bootstrap samples are used
when building trees.

If False, the whole dataset
is used to build each tree.

True

oob_score
Whether to use out-of-bag samples

(samples that have not been used when bootstrapping)
to estimate the generalization score.

False

class_weight
Weights associated with classes.

If None, all classes are
supposed to have weight one.

None

max_samples

If bootstrap is True,
draw a number of samples from the training set
to train each base estimator. If None, then draw

a number of samples equal
to the size of the training set.

None

random_state

Controls both the randomness
of the bootstrapping

of the samples used when building
trees (if bootstrap=True)

and the sampling of
the features to consider

when looking for the best split
at each node

(if max_features < total number of features).

None

Gradient boosting (GB) [41] is a machine learning method that constructs an addi-
tive model consisting of the weighted sum of multiple base models called base learners.
More formally, the model learned using the gradient boosting method is of the form
F(sc) = ∑L

l=0 βlh(sc; pl), where sc is the set of input variables, h(sc; pl) is the base learner
functions with learnable parameters pl , and βl represents learnable expansion coefficients.

GB starts with a simple initial guess for F0(sc), usually a constant function, and
optimizes the following objective:

(βl , pl) = arg min
β,p

NoO f Samples

∑
i=1

Ψ(ai, Fl−1(sci) + βh(sci , p)) (3)

with Fl(sc) = Fl−1(sc) + βnh(sc; pl) for l = 1, ..., IT, where Ψ denotes a loss function, ai the
true output value corresponding to sci , and IT the number of iterations.

Gradient tree boosting (GTB), which is used in this work, is a specific case of this
approach where decision trees [38] are used as the base learners.

In this work, we use the GTB implementation of scikit-learn. Tables 2 and 4 report
on hyperparameters.

Aerospace 2023, 10, 557 16 of 24

Table 4. Hyperparameters of the gradient tree boosting algorithm. Descriptions are from scikit-learn.

Hyperparameter Description Value

n_estimators The number of trees in the ensemble. 100

loss The loss function
to be optimized. log_loss

learning rate Shrinks the contribution of each tree. 0.1

subsample The fraction of samples to be used
for fitting the individual base learners. 1

init

An estimator that is used to compute
the initial predictions.

If None, the initial estimator
predicts the classes’ priors.

None

validation_fraction

The proportion of training data
to set aside as the validation set

for early stopping.
Only used if n_iter_no_change

is set to an integer.

Not used

n_iter_no_change

Used to decide if early stopping
will be used to terminate training

when the validation score does not improve.
If None, early stopping is disabled.

None

random_state

Controls the random seed given
to each Tree estimator at
each boosting iteration.
In addition, it controls

the random permutation of the
features at each split.

None

tol

Tolerance for early stopping.
When the loss is not improving

by at least tol for n_iter_no_change iterations
(if set to a number), the training stops.

1× 10−4

3. Results
3.1. Experimental Setting

To evaluate the proposed methods, we simulate a flight-centric setting restricted
to a rectangular area covering the Iberian Peninsula, as Figure 5 shows. Cells of size
0.5× 0.5 degrees (longitude and latitude) segregate this area, creating an index of the
positions of trajectories in each cell at each time point. This allows fast access to the
trajectories of each cell at each time point, making the identification of neighbor trajectories
computationally more efficient. For each point of a focal trajectory, only the neighbor
trajectories within a distance threshold Dth of five cells in longitude (approx. 231 km) and
latitude (approx. 308 km) are considered. This has as the effect that the area specified by
Dth in SA “follows” the focal trajectory points, i.e., the movement of the ownship.

Figure 5 shows the SA area considered. The focal trajectory of the ownship is indicated
by red (dark gray in grayscale) and other trajectories are the neighbor trajectories in
Neigh(Tf , SA, t). The ownship position (i.e., the focal trajectory point) at time t is shown
in white (middle point). The area defined by Dth with respect to the ownship’s position
is depicted by the red rectangle in SA. The yellow dot in the upper part of the grid is
the fixpoint.

Aerospace 2023, 10, 557 17 of 24

Figure 5. The SA area and the area defined by Dth (red rectangular area) with regard to the ownship’s
position (white dot).

To evaluate the effectiveness of the methods in predicting the type of the ATCOs’
resolution actions, we perform five-fold cross-validation, splitting the trajectories into 20%
test trajectories and 80% training trajectories. We report on the mean precision, mean
recall, and mean f1-score for the resolution action types, A1, A2, and A3, and also the mean
Matthews Correlation Coefficient (MCC) across all folds.

Considering the true and predicted classes as two random variables, the MCC is the
correlation coefficient between these random variables. For binary classification problems,
the MCC is calculated as follows:

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

where, TP, FP, FN, and TN, denote the number of true positives, false positives, false
negatives, and true negatives, respectively. Therefore, MCC equal to 1 indicates a perfect
prediction and 0 a random prediction.

In the multiclass case, MCC is calculated as follows:

MCC =
c× s−∑K

k pk × tk√
(s2 −∑K

k p2
k)× (s2 −∑K

k t2
k)

(5)

with C being the confusion matrix for K classes, tk = ∑k
i Cik the number of times class k

truly occurred, pk = ∑K
i Cki the number of times class k was predicted, c = ∑K

k Ckk the total
number of samples correctly predicted, and s = ∑K

i ∑K
j Cij the total number of samples.

Aerospace 2023, 10, 557 18 of 24

3.2. Datasets and Pre-Processing

Following a data-driven approach and exploiting data with flown trajectories, ATCO
events must be associated with potential conflicts that have been assessed to exist, either
at the point of the ATCO event or in a time window of window_duration seconds prior to
the ATCO event. However, there are cases where there is an ATCO resolution action for a
trajectory but no potential conflicts can be revealed. We filter out these cases. The trajectory
point (if any) in the specified time window at which a potential conflict is revealed and is
temporally closest to the point of the ATCO event is considered to be the actual resolution
action point (mentioned as RATP).

The data include aircraft trajectories flown in 2017 between five different origin–
destination pairs: Malaga (LEMG)–Gatwick (EGKK), Malaga (LEMG)–Amsterdam (EHAM),
Lisbon (LPPT)–Paris (LFPO), Zurich (LSZH)–Lisbon (LPPT), and Geneva (LSGG)—Lisbon
(LPPT). In our study, we consider the en route phase of flights, and thus we filter out
resolution actions and trajectory points corresponding to the climb and descent phases
of the flights. In addition, we consider only trajectories that have at least one ATCO res-
olution action of the considered types and an associated RATP. This results in a total of
793 resolution actions associated with 634 trajectories, consisting of 326 “speed change”,
374 “direct to”, and 79 “radar vectoring” actions.

It must be noted that although the available ATCO events dataset covers the Spanish
airspace, the proposed method is generic, and can be applied in any airspace.

3.3. Experimental Results

This section presents the experimental results achieved by the AI/ML methods con-
sidered, in a comparative way.

Table 5 reports the experimental results achieved by the neural network classifier with
an attention mechanism (NN+att) and without attention (NN), in addition to the random
forest (RF) and the gradient tree boosting (GTB) algorithms. The columns report the 95%
confidence interval of precision, recall, f1-score, and MCC with regard to the resolution
action types of ATCOs.

As shown in Table 5, the RF method achieves the best results in terms of the mean
MCC and f1-score achieved on the test set, with a mean MCC equal to 0.51 and a mean
f1-score equal to 0.73 for resolution action type A1, 0.76 for resolution type A2, and 0.38 for
resolution action A3. The second-best results are provided by the GTB algorithm, achieving
a mean MCC value of 0.48 and a mean f1-score 0.69 for resolution action type A1, 0.74 for
resolution type A2, and 0.48 for resolution action type A3.

The NN algorithms reported a reduced mean MCC and f1-score compared to RF and
GTB. Among the variations tested, the NN+att achieves a mean MCC value of 0.44 and
mean f1-score of 0.66, 0.72, and 0.41 for resolution action types A1, A2, and A3, respectively.

The effect of the attention module on the accuracy of the predictions, compared against
the variant without attention (NN) is positive: the mean values of the MCC and f1-score
increase and the confidence interval becomes narrower. This implies better and more
stable performance (reduced standard deviation for independent experiments) among the
different folds. This improvement implies that the modeling of interactions between the
ownship and its neighbors using a convolution layer results in more useful representations
of states.

Considering the capacity of the models, we observe that RF and GTB methods achieve
a strong positive correlation between true and predicted A1, A2, and A3 resolution action
types on the training set, with MCC values ranging from 1 to 0.96, respectively. The f1-
scores are also high for RF and GTB, with values in the interval [0.94, 1]. The MCC and
f1-scores of NN and NN+att computed for the training set are not so high, due to the early
stopping mechanism.

Aerospace 2023, 10, 557 19 of 24

Table 5. Experimental results achieved by the neural network classifier with an attention mechanism (NN+att) and without attention (NN), in addition to the
random forest (RF) and the gradient tree boosting (GTB) algorithms. Columns report the 95% confidence interval of precision, recall, f1-score, and MCC with regard
to the resolution action types of ATCOs.

Method Dataset Precision Recall f1-Score MCC

A1 A2 A3 A1 A2 A3 A1 A2 A3

NN train 0.81± 0.05 0.86± 0.04 0.83± 0.04 0.86± 0.04 0.87± 0.03 0.58± 0.11 0.83± 0.04 0.87± 0.04 0.68± 0.08 0.72± 0.07
test 0.59± 0.06 0.70± 0.09 0.57± 0.11 0.71± 0.12 0.63± 0.10 0.32± 0.11 0.64± 0.06 0.66± 0.07 0.40± 0.09 0.37± 0.09

NN+att train 0.75± 0.02 0.78± 0.10 0.83± 0.08 0.74± 0.18 0.85± 0.04 0.44± 0.03 0.74± 0.11 0.81± 0.05 0.58± 0.04 0.59± 0.10
test 0.61± 0.05 0.77± 0.06 0.53± 0.12 0.73± 0.11 0.70± 0.13 0.33± 0.09 0.66± 0.03 0.72± 0.06 0.41± 0.10 0.44± 0.05

RF train 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
test 0.68± 0.04 0.76± 0.08 0.92± 0.13 0.78± 0.07 0.77± 0.00 0.26± 0.12 0.73± 0.05 0.76± 0.04 0.38± 0.15 0.51± 0.07

GTB train 0.96± 0.01 0.98± 0.01 1.00± 0.00 0.99± 0.01 0.98± 0.01 0.89± 0.02 0.97± 0.01 0.98± 0.01 0.94± 0.01 0.96± 0.01
test 0.67± 0.06 0.74± 0.06 0.68± 0.14 0.72± 0.05 0.75± 0.02 0.38± 0.06 0.69± 0.04 0.74± 0.03 0.48± 0.06 0.48± 0.04

Aerospace 2023, 10, 557 20 of 24

4. Discussion

Given the results reported in Section 3.3, we make the following observations:

• All methods have difficulty in predicting the A3 resolution action type accurately.
• The number of samples might be small, especially for training NN models.
• As discussed in Section 2.2.3, we deal with historical data that do not demonstrate

the conflicts occurred; thus, it is likely that the labels (in our case, historical ATCO
resolution action types) of revealed conflicts are noisy.

Regarding the first issue, considering that resolution action type A3 is the minority
class, we studied the application of different techniques that deal with class imbalance to
improve the results of the best method. Specifically, we used sample weights, i.e., RF with
class weights, and resampling, i.e., balanced RF (https://imbalanced-learn.org/stable/
references/generated/imblearn.ensemble.BalancedRandomForestClassifier.html, accessed
on 12 June 2023). We observed that such approaches achieved better results for the minority
class but reduced the accuracy of the predictions for the other classes, resulting in a reduced
overall accuracy. Specifically, balanced RF achieved a mean MCC score of 0.44 and f1-scores
of 0.65, 0.72, and 0.42 for resolution action types A1, A2, and A3, respectively.

Considering the second issue, we augmented the training data by using the trajectory
points at which a conflict is detected, in a time window of 250 s before the RATP, as potential
conflicting states. These points were labeled with the action type of the corresponding
RATP. This is on par with the uncertainty of ATCOs regarding the time to issue a resolution
action. This approach did not result in better results, either for the neural network, or for
the RF classifiers. This suggests that this type of data augmentation is not beneficial. This
could be due either to mislabeled samples inserted into the training set, increasing the label
noise, or because this type of augmentation does not effectively cover the feature space.

Noisy labels, as already discussed in Section 2.2.3, could be introduced by (i) the data
itself, and by (ii) the conflict detection methodology. To these aspects we should add (iii)
the data augmentation process.

As discussed in Section 2.2.3, to address label noise we opted for SEAL. Further-
more, using SEAL on the augmented data improved the accuracy of the predictions.
As shown in Table 6, NN with the attention module, SEAL, and data augmentation
(NN+att+SEAL+augm) achieved an MCC score of 0.46, which is a +0.02 improvement over
NN with the attention module (NN+att). The f1-score for the A1, A2, and A3 resolution ac-
tion types was 0.68, 0.73, and 0.47, respectively. However, this improvement was small and
did not manage to outperform RF nor GTB. An important reason for the results achieved
by the methods robust to label noise in our case is that such methods are usually validated
in noise-free test sets. In our case, the test set contained samples that were as noisy as the
training dataset, and, thus, although the method could be robust to label noise, this effect is
not evident in a noisy test set.

Finally, we also tested NN+att with the active passive loss functions presented in [35],
with data augmentation (NN+att+AP loss+augm). This method did not prove to be
robust in instance-dependent noise and did not achieve better results than NN+att. As
commented above, noisy samples in the test set could “hide” the effectiveness of the AP
loss. As reported in Table 6, the best MCC score achieved was 0.40 and the f1-score for the
A1, A2, and A3 resolution action types was 0.65, 0.71, and 0.35, respectively. These results
were achieved using the normalized cross entropy loss combined with the reverse cross
entropy loss and setting the a and b hyperparameters to a = 10 and b = 0.1.

https://imbalanced-learn.org/stable/references/generated/imblearn.ensemble.BalancedRandomForestClassifier.html
https://imbalanced-learn.org/stable/references/generated/imblearn.ensemble.BalancedRandomForestClassifier.html

Aerospace 2023, 10, 557 21 of 24

Table 6. Experimental results achieved by balanced random forest (balanced RF), neural network with attention SEAL and data augmentation (NN+att+SEAL+augm),
and neural network with attention active passive loss and data augmentation (NN+att+AP loss+augm). Columns report the 95% confidence interval of precision,
recall, f1-score, and MCC with regard to the resolution action types of ATCOs.

Method Dataset Precision Recall f1-Score MCC

A1 A2 A3 A1 A2 A3 A1 A2 A3

Balanced RF train 0.83± 0.01 0.91± 0.02 0.57± 0.02 0.81± 0.02 0.79± 0.02 1.00± 0.00 0.82± 0.02 0.84± 0.02 0.72± 0.02 0.70± 0.03
test 0.68± 0.07 0.75± 0.07 0.34± 0.05 0.63± 0.05 0.70± 0.05 0.56± 0.11 0.65± 0.06 0.72± 0.06 0.42± 0.06 0.44± 0.08

NN+att+AP loss+augm train 0.61± 0.01 0.72± 0.01 0.65± 0.23 0.73± 0.04 0.70± 0.04 0.20± 0.17 0.67± 0.01 0.71± 0.02 0.28± 0.19 0.41± 0.02
test 0.62± 0.03 0.70± 0.01 0.67± 0.26 0.68± 0.04 0.72± 0.05 0.25± 0.06 0.65± 0.03 0.71± 0.02 0.35± 0.03 0.40± 0.02

NN+att+SEAL+augm train 0.99± 0.01 0.99± 0.00 0.99± 0.01 0.99± 0.00 0.99± 0.00 0.99± 0.01 0.99± 0.00 0.99± 0.00 0.99± 0.01 0.99± 0.01
test 0.66± 0.03 0.72± 0.04 0.71± 0.24 0.71± 0.07 0.74± 0.02 0.36± 0.04 0.68± 0.04 0.73± 0.03 0.47± 0.06 0.46± 0.06

Aerospace 2023, 10, 557 22 of 24

Experiments were ran on an AMD Ryzen 9 3900X 12-Core Processor and NN-based
models also utilized a GeForce RTX 2080 Ti Graphics Processing Unit (GPU). Regarding
the computational efficiency of the methods, predictions of samples were instant (provided
in milliseconds) for all methods. Considering the training time, methods based on RF and
GTB completed training in less than one minute. NN-based methods needed more training
time, but were still time-efficient, as one experiment completed training in less than an
hour. In the case of SEAL, this must be multiplied by the number of SEAL iterations. When
comparing NN+att to NN, NN+att is more computationally expensive than NN, as it has
more learnable parameters than NN.

5. Conclusions

This work continues our work towards imitating ATCOs, as has been described in [7].
While the aim there was to model ATCOs’ timely reactions in the presence of conflicts
between flights, predicting when the ATCOs will react, here, our aim is to predict how the
ATCOs will react, if they do decide to react.

Therefore, this article addresses challenges that result from the inherent imperfections
of historical datasets recording trajectories and associated ATCO events, and makes the
following contributions regarding the modeling of ATCO policy:

1. It specifies a formulation of learning the ATCO policy problem as a classification task;
2. It studies enhanced AI/ML methods to learn models of ATCO policy from real-world

historical datasets;
3. It evaluates the proposed AI/ML methods using real-world data.

The methodology followed in terms of addressing data limitations, and the training of
AI/ML models, entails exploiting ATCOs’ expert knowledge regarding (a) the assessment
of traffic and potential conflicts the ATCOs might observe, and associating these conflicts
with the recorded resolution actions; and (b) how conflicts are resolved by ATCOs, as this
is revealed by ATCO events.

The results show that classification methods, such as RF, GTB, and NNs, achieve good
accuracy in predicting ATCOs’ actions given specific conflicts, but they have limitations,
which are mostly due to the imperfections of the historical datasets exploited.

Indeed, resolution actions predicted by models learned using a data-driven approach,
as in this study, will be in the best case as good as the actions included in the historical
datasets. If the dataset includes ATCO actions that perform poorly by not effectively
solving the detected conflicts, the models will repeat such actions under nearly the same
circumstances. Thus, it is important to have datasets containing effective ATCO resolution
actions, according to specific objectives. Furthermore, as discussed, knowing the ATCOs’
observations that triggered their resolution actions is essential for the learning process.
Historical datasets used in this study do not include these ATCOs’ observations. To address
this issue, we projected the aircraft’s position into the future in order to reveal the potential
conflicts and the corresponding ATCO’s observations that triggered their resolution action.
This was challenging, and introduced noise in the learning process. Deviating from the
actual ATCO observations can have a negative effect on the models’ performance.

Other methods such as reinforcement learning algorithms have the ability to explore
the state space in a trial-and-error fashion and apply optimization in terms of specific factors,
such as conflicts resolved, nautical miles added to the trajectory due to resolution actions,
fuel consumption, etc. Such techniques in many cases provide more effective and efficient
actions with regard to the optimization objective when compared to human decisions.
However, to increase the effectiveness and trustworthiness of automated decision-making
agents [6], especially in safety-critical domains such as the ATC, the actions proposed
should be similar to the actions taken by human experts.

Future research should involve investigating the combination of supervised learning
methods with reinforcement learning techniques, in order to provide resolution actions
considering the ATCOs’ preferences, while also optimizing specific objectives with respect
to the efficiency of the resolution actions.

Aerospace 2023, 10, 557 23 of 24

Finally, we aim to address the ATCO policy learning problem as a multi-stage imitation
learning task, considering the evolution of conflicts. This is rather challenging, and datasets
with conflicting situations associated with ATCO events are necessary.

Author Contributions: Conceptualization, G.A.V.; methodology, G.A.V. and A.B.; software, A.B.;
validation, A.B.; investigation, G.A.V. and A.B.; data curation, A.B.; writing—original draft prepa-
ration, A.B.; writing—review and editing, G.A.V. and A.B.; visualization, A.B.; supervision, G.A.V.;
project administration, G.A.V.; funding acquisition, G.A.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This research has received funding from the SESAR Joint Undertaking under the European
Union’s Horizon 2020 Research and Innovation Programme, grant agreement no. 783287. The
opinions expressed herein reflect the authors’ views only. Under no circumstances shall the SESAR
Joint Undertaking be responsible for any use that may be made of the information contained herein.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data were provided confidentially by CRIDA (Centro de Referencia de
Investigación, Desarrollo e Innovación ATM A.I.E.).

Acknowledgments: The authors express their gratitude to CRIDA (Centro de Referencia de Investi-
gación, Desarrollo e Innovación ATM A.I.E.) for providing the datasets exploited in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. NextGen. Available online: https://www.faa.gov/nextgen (accessed on 2 June 2023).
2. SESAR Joint Undertaking. Available online: https://www.sesarju.eu/ (accessed on 2 June 2023).
3. International Civil Aviation Organization. Annex 11—Air Traffic Services; International Civil Aviation Organization: Montreal, QC,

Canada, 2001.
4. International Civil Aviation Organization. Air Traffic Management-Procedures for Air Navigation Services (Doc 4444); International

Civil Aviation Organization: Montreal, QC, Canada, 2007.
5. Rodríguez, R.; Olbés, A. D2.1 TAPAS Use Cases Description, TAPAS SESAR-ER4-01-2019 Project, Edition 00.01.01. 2020. Available

online: https://tapas-atm.eu/wp-content/uploads/2021/06/D2.1_TAPAS-Use-Cases-Description_Ed_00.01.01.pdf (accessed
on 2 June 2023).

6. Westin, C.; Borst, C.; Kampen, E.J.; Nunes, T.M.M.; Boonsong, S.; Hilburn, B.; Cocchioni, M.; Bonelli, S. Personalized and
Transparent AI Support for ATC Conflict Detection and Resolution: An Empirical Study. In Proceedings of the 12th SESAR
Innovation Days, Budapest, Hungary, 5–8 December 2022.

7. Bastas, A.; Vouros, G. Data-driven prediction of Air Traffic Controllers reactions to resolving conflicts. Inf. Sci. 2022, 613, 763–785.
[CrossRef]

8. Ribeiro, M.; Ellerbroek, J.; Hoekstra, J. Review of conflict resolution methods for manned and unmanned aviation. Aerospace
2020, 7, 79. [CrossRef]

9. Islami, A.; Chaimatanan, S.; Delahaye, D. Large-Scale 4D Trajectory Planning. In Air Traffic Management and Systems II: Selected
Papers of the 4th ENRI International Workshop, 2015; Institute, Electronic Navigation Research, Ed.; Springer: Tokyo, Japan, 2017;
pp. 27–47. [CrossRef]

10. Dougui, N.; Delahaye, D.; Puechmorel, S.; Mongeau, M. A light-propagation model for aircraft trajectory planning. J. Glob. Optim.
2013, 56, 873–895. [CrossRef]

11. Durand, N.; Gotteland, J.B. Genetic Algorithms Applied to Air Traffic Management. In Metaheuristics for Hard Optimization:
Simulated Annealing, Tabu Search, Evolutionary and Genetic Algorithms, Ant Colonies, . . . Methods and Case Studies; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 277–306. [CrossRef]

12. Srivatsa, M.; Ganti, R.; Chu, L.; Christiansson, M.; Nilsson, J.; Rydell, S.; Josefsson, B. Towards AI-based Air Traffic Control. In
Proceedings of the ATM Seminar 2021, Virtual Event, 20–23 September 2021.

13. Ayhan, S.; Costas, P.; Samet, H. Prescriptive analytics system for long-range aircraft conflict detection and resolution. In
Proceedings of the 26th ACM SIGSPATIAL, Seattle, WA, USA, 6–9 November 2018; pp. 239–248. [CrossRef]

14. Pham, D.T.; Tran, N.P.; Goh, S.K.; Alam, S.; Duong, V. Reinforcement learning for two-aircraft conflict resolution in the presence
of uncertainty. In Proceedings of the 2019 IEEE-RIVF, Danang, Vietnam, 20–22 March 2019; pp. 1–6. [CrossRef]

15. Pham, D.T.; Tran, N.P.; Alam, S.; Duong, V.; Delahaye, D. A machine learning approach for conflict resolution in dense traffic
scenarios with uncertainties. In Proceedings of the ATM Seminar 2019, Vienna, Austria, 17–21 June 2019.

16. Dalmau, R.; Allard, E. Air Traffic Control using message passing neural networks and multi-agent reinforcement learning. In
Proceedings of the 10th SESAR Innovation Days, Virtual Event, 7–10 December 2020; pp. 7–10.

https://www.faa.gov/nextgen
https://www.sesarju.eu/
https://tapas-atm.eu/wp-content/uploads/2021/06/D2.1_TAPAS-Use-Cases-Description_Ed_00.01.01.pdf
http://doi.org/10.1016/j.ins.2022.09.015
http://dx.doi.org/10.3390/aerospace7060079
http://dx.doi.org/10.1007/978-4-431-56423-2_2
http://dx.doi.org/10.1007/s10898-012-9896-1
http://dx.doi.org/10.1007/3-540-30966-7_10
http://dx.doi.org/10.1145/3274895.3274947
http://dx.doi.org/10.1109/RIVF.2019.8713624

Aerospace 2023, 10, 557 24 of 24

17. Ghosh, S.; Laguna, S.; Lim, S.H.; Wynter, L.; Poonawala, H. A deep ensemble multi-agent reinforcement learning approach for air
traffic control. arXiv 2020, arXiv:2004.01387. [CrossRef]

18. Isufaj, R.; Sebastia, D.A.; Piera, M.A. Towards Conflict Resolution with Deep Multi-Agent Reinforcement Learning. In Proceedings
of the ATM Seminar 2021, Virtual Event, 20–23 September 2021.

19. Calvo-Fernández, E.; Perez-Sanz, L.; Cordero-García, J.M.; Arnaldo-Valdés, R.M. Conflict-free trajectory planning based on a
data-driven conflict-resolution model. J. Guid. Control. Dyn. 2017, 40, 615–627. [CrossRef]

20. Tran, N.P.; Pham, D.T.; Goh, S.K.; Alam, S.; Duong, V. An Intelligent Interactive Conflict Solver Incorporating Air Traffic
Controllers’ Preferences Using Reinforcement Learning. In Proceedings of the IEEE Integrated Communications, Navigation and
Surveillance Conference, Herndon, VA, USA, 9–11 April 2019; pp. 1–8. [CrossRef]

21. van Rooijen, S.J.; Ellerbroek, J.; Borst, C.; van Kampen, E. Toward Individual-Sensitive Automation for Air Traffic Control Using
Convolutional Neural Networks. J. Air Transp. 2020, 28, 105–113. [CrossRef]

22. Erzberger, H. Automated conflict resolution for air traffic control. In Proceedings of the 25th International Congress of the
Aeronautical Sciences, Hamburg, Germany, 3–8 September 2006; National Aeronautics and Space Administration, Ames Research
Center: Mountain View, CA, USA, 2006.

23. Bishop, C.M. Neural networks and their applications. Rev. Sci. Instrum. 1994, 65, 1803–1832. [CrossRef]
24. Codevilla, F.; Santana, E.; López, A.M.; Gaidon, A. Exploring the limitations of behavior cloning for autonomous driving.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 9329–9338.

25. Pomerleau, D.A. Alvinn: An autonomous land vehicle in a neural network. Adv. Neural Inf. Process. Syst. 1988, 1, 305–313.
26. Amari, S.i. Backpropagation and stochastic gradient descent method. Neurocomputing 1993, 5, 185–196. [CrossRef]
27. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
28. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany,

2006; Volume 4. [CrossRef]
29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008 .
30. Bishop, C.M. Regularization and Complexity Control in Feed-Forward Networks; Aston University (General): Birmingham, UK, 1995.
31. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:

//www.deeplearningbook.org (accessed on 12 June 2023).
32. Song, H.; Kim, M.; Park, D.; Shin, Y.; Lee, J.G. Learning from noisy labels with deep neural networks: A survey. IEEE Trans.

Neural Netw. Learn. Syst. 2022, 1–19. [CrossRef] [PubMed]
33. Han, B.; Yao, J.; Niu, G.; Zhou, M.; Tsang, I.; Zhang, Y.; Sugiyama, M. Masking: A new perspective of noisy supervision. Adv.

Neural Inf. Process. Syst. 2018, 31, 5836–5846.
34. Xia, X.; Liu, T.; Han, B.; Gong, C.; Wang, N.; Ge, Z.; Chang, Y. Robust early learning: Hindering the memorization of noisy labels.

In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 3–7 May 2021.
35. Ma, X.; Huang, H.; Wang, Y.; Romano, S.; Erfani, S.; Bailey, J. Normalized loss functions for deep learning with noisy labels.

In Proceedings of the International Conference on Machine Learning, PMLR, Virtual Event, 12–18 July 2020; pp. 6543–6553.
36. Chen, P.; Ye, J.; Chen, G.; Zhao, J.; Heng, P.A. Beyond class-conditional assumption: A primary attempt to combat instance-

dependent label noise. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021;
Volume 35, pp. 11442–11450.

37. Nguyen, D.T.; Mummadi, C.K.; Ngo, T.P.N.; Nguyen, T.H.P.; Beggel, L.; Brox, T. Self: Learning to filter noisy labels with
self-ensembling. arXiv 2019, arXiv:1910.01842.

38. Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [CrossRef]
39. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
40. Chen, C.; Liaw, A.; Breiman, L. Using Random Forest to Learn Imbalanced Data; University of California: Berkeley, CA, USA, 2004;

Volume 110, p. 24.
41. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.48550/arXiv.2004.01387
http://dx.doi.org/10.2514/1.G000691
http://dx.doi.org/10.1109/ICNSURV.2019.8735168
http://dx.doi.org/10.2514/1.D0180
http://dx.doi.org/10.1063/1.1144830
http://dx.doi.org/10.1016/0925-2312(93)90006-O
http://dx.doi.org/10.1117/1.2819119
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/TNNLS.2022.3152527
http://www.ncbi.nlm.nih.gov/pubmed/35254993
http://dx.doi.org/10.1007/s10462-011-9272-4
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/S0167-9473(01)00065-2

	Introduction
	Related Work
	Contributions

	Materials and Methods
	Problem Specification
	Definitions
	Modeling the ATCOs Policy

	Learning the ATCOs Policy
	Data Sources
	Detection of Conflicts, States, and ATCOs' Resolution Actions
	Learning the ATCO Policy

	Results
	Experimental Setting
	Datasets and Pre-Processing
	Experimental Results

	Discussion
	Conclusions
	References

