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Abstract: As researchers around the globe develop applications for the use of Automatic Speech
Recognition and Understanding (ASRU) in the Air Traffic Management (ATM) domain, Air Traffic
Control (ATC) language ontologies will play a critical role in enabling research collaboration. The
MITRE Corporation (MITRE) and the German Aerospace Center (DLR), having independently
developed ATC language ontologies for specific applications, recently compared these ontologies
to identify opportunities for improvement and harmonization. This paper extends the topic in two
ways. First, this paper describes the specific ways in which ontologies facilitate the sharing of and
collaboration on data, models, algorithms, metrics, and applications in the ATM domain. Second,
this paper provides comparative analysis of word frequencies in ATC speech in the United States and
Europe to illustrate that, whereas methods and tools for evaluating ASRU applications can be shared
across researchers, the specific models would not work well between regions due to differences in the
underlying corpus data.

Keywords: automatic speech recognition; natural language understanding; semantic interpretation;
air traffic control; radio communications; intent representation; semantic ontology; performance metrics

1. Introduction
1.1. Broad Context of the Study

For more than a decade, researchers in the United States and Europe have been
developing and proving the benefit of Automatic Speech Recognition (ASR) applications
in the Air Traffic Management (ATM) domain. In the United States, in support of the
Federal Aviation Administration (FAA), the MITRE Corporation (MITRE) has developed
capabilities to use Air Traffic Controller (ATCo)—pilot voice communication information for
operational purposes, such as notifying ATCos of unsafe situations or analyzing operations
to identify opportunities for safety or efficiency improvements. In Europe, as part of the
Single European Sky ATM Research (SESAR) program, the German Aerospace Center
(DLR) has led the development and testing of prototypic applications to enhance ATCo
automation interactions, reduce ATCo workload, and identify safety issues in real time.
Both MITRE [1] and DLR [2] have investigated the potential for automatic detection of
readback errors, which are pilot errors in reading back ATCo instructions.

Key to most applications of ASR is the semantic meaning of the words spoken and
transcribed, specifically in the context of the application in which the information will be
used. Thus, we use the term Automatic Speech Recognition and Understanding (ASRU)
to describe the speech-to-text and the text-to-meaning processes as one. ASRU for the Air
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Traffic Control (ATC) domain needs to transcribe domain-specific words and phrases and
then interpret their ATC meaning. For example, “lufthansa three twenty one one seventy
knots until four contact tower eighteen four five” needs to be understood to capture the
flight’s callsign (DLH321) and the instructions it received (speed 170 knots until four miles
from the runway; contact the tower on this radio frequency 118.450).

To represent the information contained in the speech—both the words and their se-
mantic meaning in the ATC context—MITRE and European stakeholders, led by DLR,
independently developed ATC language ontologies in support of ATM application devel-
opment. A common ontology, used in both Europe and the US, could enable better sharing
and reuse of data, models, algorithms, and software between the US and Europe.

In a recent paper [3], we described our collaboration to compare ontologies and identify
opportunities for improvement and harmonization. This paper expands on that topic
to discuss the impact of the ontology on future research and development collaboration,
describing several ways that an ATC ontology is critical to facilitating collaboration between
researchers and to appropriately evaluating ASRU applications in the ATM domain. This
paper also examines the word-level differences between United States and European ATC
speech to provide quantitative understanding of the corpus data that feed the ASRU models,
informing their potential cross-use between regions. The analysis shows that whereas the
methods and tools for developing and measuring ASRU performance can be shared across
regions (e.g., between the US and Europe), the specific models built for the different regions
would likely not work well across regions.

1.2. Structure of the Paper

This paper expands on the ontology study described in [3]. The following sections are
organized as follows. Section 1.3 summarizes the uses of ASRU in ATC to date. Section 1.4
lays out the levels of an ontology in the context of the ATC domain. Section 2 presents two
different concrete instantiations of ATC ontology and recalls examples presented in [3] that
illustrate representations of ATC semantics using these ontologies. Section 3 describes the
value of ATC ontology in facilitating collaboration between research groups and presents
specific applications and the semantic representations they rely on. Section 4 presents a
quantitative comparison of ATC speech at the word level between the United States and
Europe. Finally, Section 5 completes the paper with our conclusions and next steps.

1.3. Background

Voice communications are an essential part of ATC because they are the primary means
of communicating intention, situation awareness, and environmental context. Over the
last decade, researchers have invested tremendous effort into advancing the accuracy and
sophistication of in-domain ASR and Natural Language Understanding (NLU) capabilities
to enable human-machine teaming that improves aviation safety and efficiency [4].

Early applications of ASR and NLU focused on simulation pilots for high-fidelity
controller training simulators because these applications were in controlled environments
with well-defined phraseology and a limited set of speakers [5-7]. Other examples for
replacing pseudo-pilots in training environments are from the FAA [8,9], DLR [10], and
DFS [11]. Later applications in lab settings expanded to simulation pilots for human-in-
the-loop simulations in ATM research measuring workload [12]. With the adoption of
electronic flight strips in ATC facilities, Helmke et al. [13] applied ASRU to demonstrate
the effectiveness of speech assistants in reducing controller workload and improving
efficiency. Prototypes demonstrating the use of ASRU to enhance safety in live operations
also emerged. ASRU can support the detection of anomalous trajectories [14]. It can
also support the detection of closed runway operations and wrong surface operations
in the tower domain [15]. The efficacy of using ASRU to automatically detect readback
discrepancies was analyzed in the US [1] and in Europe [2]. A safety monitoring framework
that applied ASR and deep learning to flight conformance monitoring and conflict detection
has been proposed by [16]. The growing prevalence of uncrewed aerial vehicles has also led
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to use cases in autonomous piloting. Text-to-speech and NLP can enable communications
between human controllers and autonomous artificial intelligence pilots as advocated
by [17]. Finally, the accuracy and robustness achieved by mature in-domain ASR has
enabled mining of large-scale ATC communication recordings for post-operational analyses.
Chen et al. [18] measured approach procedure usage across the U.S. National Airspace
System using automatically transcribed radio communications in post analyses. Similarly,
reference [19] assessed the quantity of pilot weather reports delivered over the radio against
the quantity of pilot reports manually filed during the same time frame.

A common theme across all these applications is the use of a language understanding
layer that distills and disambiguates semantic meaning from the text transcripts generated
by ASR. Although there is variability in the semantic structures and concepts relevant to
each use case, almost all extracted semantics relate to the representation of controller and
pilot intent or situation awareness. Currently, research groups in the US and Europe create
and maintain their own semantic taxonomies or ontologies to define the elements and
relationships that represent intentions or situational context relevant to their specific use
cases. These elements usually cover ATC concepts such as aircraft callsigns, command
types, and command values in a structured human-readable and machine-readable formats.

The European ontology was defined by fourteen European partners from the ATM
industry as well as by air navigation service providers (ANSPs) funded by SESAR 2020 [20].
The ontology was refined through use by different projects, such as STARFiSH [21], “HMI
Interaction Modes for Airport Tower” [22,23] in the tower environment, “HMI Interaction
modes for approach control” [24], and HAAWAII [25], which expanded the ontology to
support pilot utterances [2].

The MITRE ontology was developed and matured over several years, with many
contributing projects. Our earliest ontology was created for the simulation pilot component
of an enroute ATCo trainer [5]. It was later expanded to incorporate tower domain phrase-
ology for projects such as the Closed Runway Operations Prevention Device [15]. More
recently, to support the varied use cases required of our large-scale, post-processing capa-
bility [18], the ontology was expanded to cover most of the phraseology for the standard
operations documented in [26]. With each iteration we made it more robust and flexible to
cover regional phraseology variations across the operational domains, i.e., tower, terminal,
and enroute airspace.

1.4. What We Mean by Ontology

An ontology in the context of this paper is a collection of rules, entities, attributes,
and relationships that define how language meaning is represented in a particular domain.
An ontology introduces structure to ASRU by distinguishing between the four levels of
language communication—Ilexical, syntactical, semantic, and conceptual [27]—and defining
meaning representation within these levels.

The lexical level deals with words and distinguishes between synonyms—words with
the same meaning that are spoken differently. For example, the words nine and niner denote
the same numerical value in the ATC domain. Similarly, speed bird and speedbird signify the
same commercial airline. The ontology rules at this level specify the universe of words (i.e.,
the vocabulary) that may appear in ATC radio communications.

The syntactical level deals with grammar and distinguishes between similar meaning
phrases that are worded differently. For example, the phrases runway two seven left cleared to
land, and cleared to land two seven left are syntactically different because they have different
word ordering; however, they have the same meaning, which is to convey clearance to land
on runway two seven left.

The semantic representation level deals with meaning despite differences in vocabu-
lary or grammar that do not affect the meaning of the communication. The ontology rules
at this level may deal with meaning that is explicitly spoken as well as meaning that is
implied. Both phrases from the syntactical level example may be mapped to an agreed form
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such as CTL RWY 27L or RW27L CLEARED_TO_LAND. Later in this paper, we discuss
how these semantics are represented in the European and MITRE ontologies.

The conceptual level deals with a higher level of understanding that goes beyond the
semantic level. It captures the bigger picture, which in the ATC domain can be bigger than
the sum of the individual radio transmissions. An example of an event at the conceptual
level is the concept of an aircraft being in the arrival phase of flight. For some applications,
this is more important than knowing the particular set of altitude and speed reductions an
ATCo issued. Another example is the speech associated with a go-around, which might
involve a back-and-forth discussion between an ATCo and pilot followed by a series of
ATCo instructions.

In this paper, the ontology instantiations we describe primarily address the lexical and
semantic level described above. However, we believe ontologies can and should expand to
cover any information that is relevant to the application using language interpretation.

2. A Comparison of Two ATC Ontologies

This section recaps the comparison of US and European ATC ontology instantiations
described in [3].

2.1. Lexical Level

At the lexical level, MITRE’s ontology specifies that both speech and non-speech
sounds during ATC radio communications should be captured in the transcription. Further-
more, the transcription should closely represent the sounds present in the audio without
additional annotation or meaning inference. This means speaker hesitation sounds such as
“um” and “uh”, partially spoken words, foreign words such as “bonjour” or “ciao”, and
initialisms such as “n d b” and “i1s” are transcribed as they sound. These rules were based
on best practices in automatic speech recognition training corpus creation.

The European ontology at the lexical level requires that both speech and non-speech
sounds be annotated in the transcription. Special annotation is associated with non-English
words spoken in a radio transmission to indicate non-English content. Domain-specific
acronyms and initialisms such as “NDB” and ILS” are transcribed as words in the vocab-
ulary. Special handling is associated with domain-specific synonyms such as “nine” and
“niner”, which are transcribed to a single lexical representation, “nine”. Both ontologies
stick to the standard 26 letters in the English alphabet, i.e., “a” to “z” in lower- and upper-
case form. Diacritical marks such as the umlaut “4” in German or the acute accent “é” in
French are not supported.

The differences that we observed at the word level can be summed up as fitting into
the following categories:

Identical words with different spellings (e.g., juliett versus juliet).

How initialisms are handled (e.g., ILS versus i [ s).

Words with similar meaning and different pronunciations and spelling (e.g., nine
versus niner).

e  Words absent from one ontology or the other (e.g., the word altimeter does not occur
in European ATC communications and the corresponding ICAO term QNH is absent
from US ATC communications) [28].

o  Whether speech disfluencies and coarticulation are captured at the word level (e.g.,
cleartalan versus cleared to land).

e  Words not represented in the US English language (e.g., the German word wiederhoeren
for a farewell).

These differences can have an impact on ASR speed and accuracy performance and
on the end user or downstream software application.

2.2. Semantic Level

At the semantic level, MITRE'’s ontology (SLys) specifies a set of entities, attributes, and
relationships that capture meaning at the command or clearance level. Figure 1 illustrates
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the ontology of SLys in graph format. At the highest level, SLyg starts with a concept called
Command Interpretation that represents an instruction, and it has a mandatory attribute
called Command Type. The Command Type attribute declares the type of the instruction, such
as an aircraft maneuver such as “climb” or a clearance to fly a procedure such as “cleared
ILS two one approach”.

Command L has Command
Interpretation one Type
has zero
or more
§
has zero or B . has zero or Legend
more Qualifier ks
—1 e
Concept
has one hnslnne o Tibre once
g relationship
has one
hasone o more

Figure 1. Graphical representation of SLyjs ontology.

Each Command Interpretation can have zero or more child concepts called Qualifiers
and Parameters. Both characterize, modify, and/or add values to the instruction. Qualifiers
disambiguate or characterize Parameters by representing value units that are lexically
present in the transcript, e.g., “flight level”, “heading”, “knots”, etc. Qualifiers can be nested
to represent deeper, hierarchical relationships. For example, to represent the condition
“until the dulles VOR”, the highest-level Qualifier would represent the preposition “until”,
its child Qualifier would represent the waypoint type “VOR”, and its child Parameter would
represent the name of the waypoint “dulles”.

Parameters represent the value payloads for instructions that require a value, such as a
heading (in degree) for a turn instruction or an altitude (in feet or flight level) for a climb
instruction. A Parameter may exist without a Qualifier parent if the format of the Parameter
value or the instruction’s command type makes the Parameter inherently unambiguous. For
example, in the instruction “climb three four zero”, the command type “climb” allows us
to infer that an altitude must be represented in the Parameter and the value format in three
digits allows us to infer that the altitude is in flight level even though a unit is not explicitly
stated. Figure 2 illustrates the SLyg ontology as a block diagram for comparison with the
semantic level of the European ontology in Figure 3.

Command Interpretation

Command Type Qualifier(s)

Qualifier
Parameter

Parameter Type Parameter Value

Figure 2. Block diagram of SLys ontology; optional elements in orange.
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Instruction

] cuaie

Figure 3. Block diagram of SLgy ontology; optional elements in orange.

In comparison, Figure 3 illustrates the semantic level of the European ontology (SLgy).
At its highest level, SLgy starts with a concept called Instruction, i.e., a mandatory Callsign,
a mandatory Command, and optional Conditions. If the Callsign cannot be extracted from
the transmission, the Callsign is “NO_CALLSIGN”. A Command concept always has a Type
attribute that declares the type of instruction represented. When no Command is found in
a transcript, a Command concept with Type “NO_CONCEPT” is created. Depending on
the Type, no Value or one or more Values can follow. If a Value is available, the optional
attributes Unit and Qualifier are possible. The optional Condition concept can be present for
any Type and more than one may be associated with one Command.

Type can consist of a subtype, as illustrated by the command CLEARED ILS. The
Speaker attribute can have the values “ATCO” or “PILOT”. If not specified, it is ATCO or
can be derived from additional available context information. The Reason attribute is only
relevant for pilot transmissions. Then the values “REQ=REQUEST”, “REP=REPORTING”,
or an empty value are possible. The empty value, i.e., the default value, in most cases
contains a pilot’s readback. The Reason attribute is motivated by the examples in Table 1.

Table 1. Examples of ontology representations on ATC communications transcripts.

eurowings 1 3 9 alpha cleared I L S approach oh 8 right auf wiedersehen

eurowings uh one three niner alfa cleared i1 s approach oh eight right

Lexical MITRE Ontology Word-Level .
Representation auf w1e.dersE}11 eI} T - fad JTs R spk] O
euro wings [hes] one three nine alfa cleare approach [s
European Ontology Word-Level eight rig}%t [NE German] auf wiedersehen [/NE] PP P
november three mike victor cleared I L S runway two one approach
Controller SL Callsign: {N, 3MV, GA},
Transmission Us Cleared: {21, ILS}
SLgy N123MV (CLEARED ILS) 21
fedex five eighty two heavy maintain four thousand three hundred
Callsign and Unit SL Callsign: {FDX, 582, H, Commercial},
Inference us Maintain: {Feet, 4300}

SLgy FDX482 (MAINTAIN ALTITUDE) 4300 none

good day american seven twenty six descend three thousand feet turn right heading three four zero

Callsign: {AAL, 726, Commercial},
Courtesy,

Transrmss.lon with SLus Descend: {3000, Feet},
Cl:[rrl:g\lgrlfis TurnRight: {340, Heading}
AAL726 GREETING,
SLgy AAL726 DESCEND 3000 ft,
AAL726 HEADING 340 RIGHT
fly zero four zero cleared I L S approach
Fly: {040, Heading},
SLus Cleared: {ILS}
Transmissions SL NO_CALLSIGN HEADING 040 none,
without Callsign EU NO_CALLSIGN (CLEARED ILS) none

lufthansa one two charlie go ahead

SLys Callsign: {DLH, 12C, Commercial}

SLgu DLH12C NO_CONCEPT
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Table 1. Cont.

lufthansa six alfa charlie descend one eight zero break break speed bird six nine one turn right heading zero
nine five cleared I L S runway three four right

Callsign: {DLH, 6AC, Commercial},
Descend: {180, FL},

SLys Callsign: {BAW, 691, Commercial},
TurnRight: {95, Heading}
Transmissions with Cleared: {34R, ILS}
more than one DLH6AC DESCEND 180 none,
Callsign SLgy BAW691 HEADING 095 RIGHT,
BAW691 (CLEARED ILS) 34R
stand by first speed bird sixty nine thirteen turn right by ten degrees
SL Callsign: {BAW, 6913, Commercial},
Us TurnRight: {10, Degrees}
SLey NO_CALLSIGN CALL_YOU_BACK,
BAW6913 TURN_BY 10 RIGHT
Altitude with maintain four thousand feet until established
Limiting SLys Maintain: {4000, Feet}
Condition SLgy (MAINTAIN ALTITUDE) 4000 ft (UNTIL ESTABLISHED)

Instructions with
Position-Based
Conditions

at dart two you are cleared I L S runway two one left

SLUS

Cleared: {21L, ILS}

SLEU

NO_CALLSIGN (CLEARED ILS) 21L (WHEN PASSING DART2)

leaving baggins descend and maintain one four thousand feet

SLUS

Descend: {14,000, Feet}

SLEU

NO_CALLSIGN DESCEND 14,000 ft ((WHEN PASSING BGGNS)

Instructions with

maintain two fifty knots for traffic

SLUS

Maintain: {250, Knots, for traffic}

SLEU

NO_CALLSIGN (MAINTAIN SPEED) 250 kt,
NO_CALLSIGN (INFORMATION TRAFFIC) none

traffic twelve o’clock two miles same direction and let’s see the helicopter

Advisories SLus Traffic: {Distance: 2, OClock: 12, TrafficType: helicopter}
SLgy NO_CALLSIGN (INFORMATION TRAFFIC)
caution wake turbulence one zero miles in trail of a heavy boeing seven eighty seven we’ll be going into this
[unk]
SLys Wake: ()
SLgy (CAUTION WAKE_TURBULENCE)
Pilot descend flight level one seven zero silver speed
Transmission as SLys Descend: {170, FL}
Readback SLgu NO_CALLSIGN PILOT DESCEND 170 FL
speed bird two one alfa flight level two one two descend flight level one seven zero inbound dexon
. Callsign: {BAW, 21A, Commercial}
a0 SLus Descend: {170, FL
ransmission as
Report BAW21A PILOT REP ALTITUDE 212 FL
SLgy BAW21A PILOT REP DESCEND 170 FL

BAW21A PILOT REP DIRECT_TO DEXON none

Correction of
Instruction

speed bird one one descend level six correction altitude six thousand feet

Callsign: {BAW, 11, Commercial},

SLus Descend: {6000, Feet},
oL BAW11 CORRECTION
EU BAW11 DESCEND 6000 ft

speed bird one one descend level six correction six thousand feet disregard turn left heading three two five

degrees

Callsign: {BAW, 11, Commercial}

SLys Descend: {6000, Feet}
TurnLeft: {325, Heading}
BAW11 DISREGARD
SLgu

BAW11 HEADING 325 LEFT
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The differences that we observed between SLyg and SLgy at the semantic level can be
summed up as fitting into the following categories:

How callsigns are represented.
The extent of and representation of inferred and implied information in the semantic
representations.

e  Thelevel of detail represented for advisory-type transmissions (e.g., traffic advisories,
pilot call-in status information).
Which less-common ATCo instructions have defined representations.
How ambiguous ATCo instructions are represented.

For a detailed comparison of the semantic-level ontology overlap between the MITRE
and European ontology instantiations, refer to Tables A1-A6 in the Appendix A.

2.3. Examples of Ontology Representations from ATC Communications

In reference [3], we presented several examples of word-level and semantic interpreta-
tion representations as defined by the European and MITRE ontology instantiations. We
summarize them again below in Table 1 to illustrate the similarities and differences between
the two ontology instantiations.

2.4. Quantifying the Differences

MITRE and DLR each exchanged 100 transmissions, with transcripts and semantic
annotations, from the terminal area of a major US airport and a European hub airport.
The US transcripts and annotations were manually transformed into the European format
and vice versa. We assessed the word-level differences at the transcript level in terms of
Levenshtein distance [29].

Out of 1554 total words in transmissions, 187 of them required modification to adhere
to the other party’s ontology, i.e., 12.0% of words were modified through substitution (89),
deletion (35), and insertion (63). We omit uppercase to lowercase transformation from this
measure. Figure 4 shows a sample transcript and its transformation.

all right cleared for the ils two five
alright cleared for the i 1l s two five

Figure 4. SLgy structure for ambiguous instructions. Word-level difference between European (first
row) and US (second row) transcripts resulting in a Levenshtein distance of 5.

In the following bullets, we list and explain some of the most often occurring cases
from the 200 transcripts that are represented differently at the word level in the MITRE and
European ontologies as sketched in Section 2.3:

e  Separation and combination of words/letters

O "ILS” vs. “i1s” (23 times)

O “southwest”, etc., vs. “south west”, etc. (19 times)
e Different spellings

@) “nine” vs. “niner” (9 times)

O “juliett” vs. “juliet” (6 times)

@) “OK” vs. “okay” (4 times)
e  Special sounds and their notation

O “[unk]” vs. no transcription (7 times)

O “[hes]” vs. “uh” (7 times)

Table 2, taken from [3], shows the overlap in commands represented by the MITRE
and European ontologies at the semantic level after analyzing 121 ATCo instructions
from Europe and 120 from the US. DESCEND in SLgy corresponds to Descend in SLys.
MAINTAIN ALTITUDE with Value and Unit in SLgy corresponds to Maintain with the
US Qualifier feet or FL. The Cleared ILS Z in SLys now corresponds to CLEARED ILSZ in
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SLgy. GREETING and FAREWELL in SLgy correspond to Courtesy in SLys. SLys’s Radar
Service Terminated is currently not modelled in SLgy. In contrast, SLys does not model
SLgy’s CALL_ YOU_BACK command type.

Table 2. Percentage of overlap based on analysis of 241 ATCo instructions.

Type of Semantic Comparison Overlap of Concepts
Concept present in both ontologies before adaptation 82%
Corresponding concept after small adjustments 95%
Achievable match with existing model structures 100%

3. Impact of Ontology on Collaboration

Up to this point in the paper, we have described and compared two ontology in-
stantiations that define simplifying meaning representations for ATC communications. In
the remainder of this paper, we will describe how these ontologies assist collaboration,
highlighting their benefits and shortfalls. Specifically, we examine the extent to which
data, models, algorithms, and applications can be shared between research groups given
operational and geographic differences and how the differences manifested in ATC com-
munications can be bridged with the help of ontologies.

3.1. Data Sharing
3.1.1. Text Data

In a perfect world, there would exist only one ground truth transcript for a segment of
speech audio. However, as the ontology differences summarized above show, even when
there is agreement on what was spoken, lexical representation of the spoken content can
still differ. Although these differences in representation may seem superficial, they leave
lasting impressions on models created using these lexical representations and can lead to
artificially inflated error metrics if overlooked and in some cases can increase the number
of actual errors.

For example, consider the two nominal examples in Table 3, where the original ground
truth transcripts are transcribed according to the European ontology rules and the auto-
matically transcribed text is generated by a speech recognizer that has modeled language
following the MITRE ontology rules.

Table 3. Nominal examples of transcription error without lexical translation.

Ground Truth Transcript Automatically Transcribed Text
Example 1 good day american seven twenty six good day american seven twenty six
descend three thousand feet turn right ~ descend four thousand feet turn right
heading three four zero heading three zero
Example2  cleared ILS three four cleared il s three five

In Example 1, when the automatically transcribed text is assessed against the ground
truth transcript using word error rate (WER), a common metric for assessing speech
recognition accuracy, the WER evaluates to 12.5% because of one substitution error (three
by four) and one deletion error (four is missing) against a total of 16 words in the ground
truth. This WER is reasonable because in this scenario the ground truth and the speech
recognizer have the same lexical representation for all words in the transcript.

In contrast, in Example 2, the three errors (1 substitution and 2 insertions) resulting
from differences in lexical representation (“i1ls” instead of “ILS”) compound the actual
substitution error (“four” by “five”) and results in a WER of 100%. In this scenario, lexical
differences artificially inflate the true WER from 25% to 100%. Furthermore, if the semantic
parser does use the same lexical representation, the difference can lead to parse errors,
which in turn lead to semantic errors.

Thus, a mechanism for translation between different lexical representations is often
required when sharing raw text data. By explicitly defining the rules for lexical represen-
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tation, ontologies play a critical role in highlighting what is required of the translation
process and facilitate its design without extensive data analysis and exploration. Because
WER is an indicator of lexical representation mismatch, it can be repurposed to measure
the effectiveness of the translation process.

3.1.2. Semantic Annotations

Semantic representation differences are often much more obvious than lexical repre-
sentation differences but they still require the same, if not more, attention to translation.
The complexities of semantic representation make ontologies even more critical to the
translation design process. Though an exhaustive comparison of ontology instantiations
may seem daunting, it is still much easier than an exhaustive search for syntactic and
semantic samples in raw text data!

As in the case with lexical translation, a measure of semantic representation mismatch
is needed to assess effectiveness of the translation process. We outline below our simple
scheme for measuring semantic translation accuracy that is independent of semantic con-
cept type or subcomponents and treats all semantic components with equal importance.
These metrics can be used to compare semantic labels that have been mapped from one
ontology representation to another and then back again to assess semantic content loss
from the conversion. Table 4 lists definitions that are the building blocks for the accuracy
metrics, and Table 5 defines the metrics and their formulas.

Table 4. Definition of basic element for accuracy calculation.

Name Definition
TP is the total number of True Positives: The
concept is present and correctly and fully
(including all subcomponents) detected
FP is the total number of False Positives: The

True
Positive (TP)

False concept is incorrectly detected, i.e., either the
Positive (FP) concept is not present at all or one or more of
its subcomponents are incorrect
True TN is the total number of True Negatives: The
Negative (TN) concept is correctly not detected
False FN is the total number of False Negatives: A

concept is not detected when it should
have been
TA is the total number of annotated transcripts,
i.e., the number of gold transcripts

Negative (FN)

Total (TA)

Table 5. Accuracy metrics for semantic representations.

Name Definition
Recall TPT+PF -
Precision TPTiJfFP
TP+TN
Accuracy TPFTN+FPEFN
F;-Score 2 * RecallxPrecision

Recall+ Precision

F.-Score (1+02)  Recall+Precision
« (a2%Precision)+Recall
e TP+TN
Command Recognition Rate (RcR) e
Command Recognition Error Rate (CRER) %
. . i FN
Command Rejection Rate (RjR) TA

Consider the nominal example of semantic translation for the transcript in Table 6,
“good day american seven twenty six descend three thousand feet turn right heading three four zero”.
We use this example to illustrate the metrics in action.
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Table 6. Nominal example of semantic translation.

Ground Truth Semantics Translated Semantics

AAL726 GREETING, AAL726 GREETING,

AAL726 DESCEND 3000 ft, AAL726 DESCEND,

AAL726 HEADING 340 RIGHT AAL726 HEADING 340 RIGHT

In this example, there are 2 TPs (greeting and heading change) and 1 FP (due to the
missing altitude in the altitude change), 0 FN, 0 TN, and TA = 3. Table 7 summarizes the
accuracy metrics calculated on this nominal example.

Table 7. Accuracy metrics calculated on nominal example of semantic translation.

Name Definition Example
Recall 2/(2+0) 100%
Precision 2/(2+1) 66%
Accuracy 2+0)/2+0+1+0) 66%
F1-Score F = %ﬁ‘ﬁ’ 50%
Command Recognition Rate (RcR) (2+0)/3 66%
Command Recognition Error Rate (CRER) 1/3 33%
Command Rejection Rate (RjR) 0/3 0%

The range for all metrics, with the exception of the Command Recognition Error Rate
(CRER), is between 0 and 1. The CRER could go above 1 if (many) concepts not present in
the ground truth are generated.

These metrics provide a general measure of the semantic coverage overlap between
ontologies, i.e., when there is significant overlap, the CRER is low and when there is little
overlap, the CRER is high. These same metrics can measure the extraction accuracy of a
rules-based or deep neural network semantic parser in a general sense, but they should be
modified and supplemented before use as a measure of application accuracy performance.
We detail the rationale for and examples of application-specific metrics later in this section.

3.2. Reusing Models and Algorithms
3.2.1. Automatic Speech Recognition Models

In today’s world of large pre-trained models, automatic speech recognition models
are usually robust enough to transplant into new geographic regions, environments, and
domains with minimal finetuning. Some models can even adapt to language changes with
little to no finetuning! However, there are idiosyncrasies in the ATC language that can
reduce a speech recognition model’s performance if they are not addressed during trans-
plantation between geographic regions or simply throughout prolonged use. Specifically,
the quantity of airspace and region-specific, i.e., site-specific, proper nouns used during
ATC radio communications requires special handling and maintenance when operating a
speech recognition model in the ATC domain.

A lot of the vocabulary that appears in ATCo—pilot communications includes gen-
eral purpose words such as climb, descend, cleared, to, for, and, until, one, two, three,
alfa, bravo, and charlie. These are simple to document in the word level of an ontology.
However, depending on the quantity of airspace that the ASRU is intended to cover, a
significant percentage (90% or more) of the vocabulary could be made up of names, such
as those for airline callsigns, facility identifiers, location identifiers, navigational aids, and
procedure identifiers.

The site-independent, general-purpose vocabulary is relatively static and short—just a
few hundred words covers most ATCo—pilot voice communications. Section 4 will show
that 551 words cover 95% of the spoken words in the US data. The vocabulary of names
that are used in ATCo—pilot voice communications is much larger (tens of thousands if
covering the entire United States airspace) and subject to change to accommodate airspace
and procedure revisions and airline and pilot callsigh name additions. This name list is
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disproportionately large compared with the general-purpose word list but not excessively
large by ASR standards. More importantly, the list of names is much more dynamic,
which creates a challenge. Just as software can deteriorate over time (i.e., software rot),
ASRU ontologies (and their associated models) can degrade over time if they are not
maintained. For ASRU applications, an outdated word-level ontology is likely to result in
out-of-vocabulary errors, which can negatively affect ASR accuracy and the accuracy of
all downstream capabilities. The same applies for the sequence of words, i.e., the ICAO-
phraseology and the deviation from ICAO phraseology [28]. This is a serious lifecycle
maintenance issue. It is a particularly large challenge for applications that need to be scaled-
up to cover multiple ATC sectors and facilities. Newer ASR models, which transcribe
at the letter level, and language model tokenizers, which tokenize at the subword level,
may eliminate the problem of “out-of-vocabulary” words but not the challenge of correctly
recognizing and interpreting these words given their low occurrence in the training data.
Furthermore, the unconstrained vocabulary in these models presents its own problems
to interpretation.

Changes on the ATC operations side are made on the 28-day AIRAC (Aeronautical
Information Regulation And Control) cycle. The number of changes during any one
AIRAC cycle is usually small and the changes are known well in advance. Changes on the
commercial airline side do not follow an official cycle but tend to be relatively uncommon.
There are two subcategories of names that can present unique problems for ASRU: Military
callsigns and five-letter waypoint names.

Military callsigns are a challenge because they can be introduced ad hoc and are not
always known in advance of a flight’s departure. The FAA ATC handbook [26] states that:
U.S. Air Force, Air National Guard, Military District of Washington priority aircraft, and USAF
civil disturbance aircraft. Pronounceable words of 3 to 6 letters followed by a 1- to 5-digit number.
These pronounceable words may be pilots’ names or nicknames and these words might
not otherwise appear in an ATC ontology and associated ASR model. For example, “honda
five” and “maverick zero zero seven” are examples of accepted military callsigns.

Five-letter waypoint names present a different challenge for ASRU. They are part
of the AIRAC update cycle and are published in advance, but only the five-letter codes
are published, not their pronunciations. In many cases, the waypoint codes correspond
to obvious words or can be sounded out using a simple algorithm—but not always! For
example: GNDLF, YEBUY, and ISACE. Whereas pronunciation can be handled manually
on a small scale by talking to the ATC personnel for a facility for some applications, it
does not easily scale to applications involving multiple ATC facilities or large amounts
of airspace.

In ASRU, there is a fundamental tradeoff between a vocabulary that is too small, result-
ing in out-of-vocabulary errors, and a vocabulary that is too large, resulting in confusion
between similar sounding words. An ASR built using a larger word-level ontology is not
always better. Furthermore, it may not be possible to know and include the region-specific
names in the vocabulary until you know the region where the model will be used. Thus,
a word-level ontology may only specify the general-purpose vocabulary explicitly and
define rules for how this vocabulary should be augmented with site-specific names before
use. This issue contributes to the challenge of sharing ASR models trained and/or used
between different ATC facilities or regions. Well-designed ASRU tools can simplify the
adding of this site-specific information to the ontology and corresponding software.

3.2.2. Semantic Parsing Algorithms

Semantic parse algorithms translate lexical representations into semantic represen-
tations by capturing and translating the syntactical relationships between words. The
mechanism for semantic parsing could be a rules-based algorithm or a machine-learning-
based neural network model. Both are sensitive to lexical representation changes because
they operate so closely on lexical and syntactic relationships.
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Rules-based semantic parse algorithms could be considered a part of the ontology
at the syntactical level because they contain rules about which relationships between
lexical representations are meaningful and how they can be interpreted to construe higher-
level semantic concepts. As every acceptable permutation of words must be explicitly or
implicitly specified for interpretation, rules-based parse algorithms inherently document
the syntactic level of the ontology; however, they can be incredibly labor intensive to
create and maintain. Transplanting a rules-based semantic parse algorithm into a new
region requires adapting the parse algorithm to regional lexicons, site-specific operational
communications, and jargon. This inherently updates the syntactic level of the ontology as
part of the model transition process.

Machine-learning-based models for semantic parsing learn the syntactic relationships
from the hierarchies present in the semantic labels. In one sense, this eases the burden of
rule creation, but it shifts it instead to data labeling, because the data labels must reflect the
relationships between lexical entities in order for the model to learn them. Furthermore,
as the syntactic rules are no longer explicitly stated as rules but hidden within the model
weights, exact syntactic relationships can be difficult to discover and adjust for new model
users, hampering reuse and even certification. In the absence of explicit syntactic rules, the
semantic definitions of the ATC ontology become even more important as they capture and
relay semantic hierarchies that might otherwise be overlooked without exhaustive data
search and analysis.

3.3. Sharing and Reusing Applications

In ATC, there are common areas for improvement that come up again and again as
possible avenues for ASRU application. As a result, the potential for application transition
and reuse is high when an application is successful, even across geographic boundaries. In
this section, we describe how ontologies facilitate application transition. We also discuss the
importance of application-specific metrics and why they should be added to the ontology
on an as-needed basis.

3.3.1. Examples of Application Specific Ontologies

Most applications incorporating ASRU are unlikely to use all the semantic concepts
defined in an ATC ontology. Indeed, some of the applications prototyped between MITRE
and DLR have only used a handful each. However, some semantic concepts appear across
multiple applications, marking them as particularly important and worthy of focused
research to improve extraction accuracy. Callsign is a recurring semantic concept that is
relevant to multiple applications. Thus, both MITRE and DLR have special handling, such
as context-based inference, to improve the detection accuracy of this concept.

Table 8 summarizes different applications of ASRU prototyped by DLR and MITRE.
The table elucidates by an “X”, which command semantics are used in each application.
The applications are described in greater detail below the table and references of published
reports are provided where available.

3.3.2. Closed Runway Operation Detection (CROD)

MITRE prototyped and field tested a closed runway operation clearance detection
system that uses ASRU to detect landing or takeoff clearances to runways that are desig-
nated as closed. The system relies purely on manual entry of runway closures and passive
listening on the local controller radio channel to detect a clearance to a closed runway and
issue an alert. For more information on this application, please see [15].

3.3.3. Wrong Surface Operations Detection (WSOD)

An expansion on the closed runway operation clearance detection system, this more
advanced prototype combines ASRU on radio communications with radar data in real time
to detect discrepancies between the landing clearance runway issued over the radio and the
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projected landing runway inferred from radar track data. When a discrepancy is detected,
the system generates an alert to the tower ATCo.

Table 8. Semantic representations relevant to specific applications.
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Acknowledgement X X
Airspace Usage Clearance X X
Altimeter/QNH Advisory X X X X
Altitude Change X X X X X X
Vertical Speed Instruction X X X X
Attention All Aircraft X
Callsign X X X X X X X X X X X X X
Cancel Clearance X
Correction/Disregard X X X X X X X
Courtesy X
Future Clearance Advisory X X
Heading X X X X X
Holding X X X X X X
Information (Wind, Traffic) X X X
Maintain Visual Separation X
Pilot Report X X
Procedure Clearance X X X X X
Radar Advisory X X
Radio Transfer X X X X X X X X
Reporting Instruction X X X X X X X
Routing Clearance X X X X X
Runway Use Clearance X X X X X X X
Speed Clearance X X X X
Squawk X X X
Taxi/Ground Clearance X X X
Traffic Advisory X X X
Verify /Confirm X X X X

! The gray shaded applications are MITRE applications, and the others are from DLR. An “X” indicates, which
command semantics is used in which application.

3.3.4. Approach Clearance Usage Analysis (ACUA)

MITRE’s voice data analytics capability was used to mine radio communications
for approach clearances to inform a post-operational approach procedure utilization and
conformance study [18]. The study used spoken approach clearances and radar tracks to
detect trends in when and where flights received their approach clearances, correlation
between aircraft equipage and approach clearance, and the effect of weather conditions
on procedure utilization. The study was also able to use detected approach clearances
to differentiate aircraft flying visual approaches from aircraft flying Required Navigation
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Performance (RNP) procedures and then analyze RNP procedure conformance. For more
information on this application, please see [18] for details.

3.3.5. Prefilling Radar Labels for Vienna Approach (PRLA)

DLR and Austro Control performed a validation exercise with 12 ATCos in DLR’s
ATMOS (Air Traffic Management Operations Simulator) from September 2022 to November
2022. The validations compared ATCos’ workloads and safety effects with and without
ASRU support. The evaluated application was inputting spoken commands into the aircraft
radar labels on the radar screen. Therefore, the number of missing and wrong radar label
inputs with and without ASRU support was determined. The details can be found in
“Automatic Speech Recognition and Understanding for Radar Label Maintenance Support
Increases Safety and Reduces Air Traffic Controllers” Workload” of Helmke et al. presented
at the 15th USA/Europe Air Traffic Management Research and Development Seminar
(ATM2023) in, Savannah, GA, USA, 5-9 June 2023.

3.3.6. Electronic Flight Strip in Multiple Remote Tower Environment (MRT)

In multiple remote tower operations, controllers need to maintain electronic flight
strips for a number of airports. The manual controller inputs can be replaced by automatic
inputs when using ASRU support. In the HMI interaction modes for the Airport Tower
project, the tower/ground controller had to simultaneously take care of three remote
airports. Their responsibilities included entering flight status changes triggered by issued
clearances, such as pushback from gate, taxi with taxiways, line-up, runway clearances,
etc., with an electronic pen into the flight strip system. When ASRU support was active, the
flight status changes were automatically recognized from the controller utterances, entered
into the flight strip system, and highlighted for their review. If an automatically detected
flight status change was not manually corrected by the controller within ten seconds of
entry, the values were accepted by the system. The prototypic system was validated with
ten controllers from Lithuania and Austria in 2022. More details can be found in the
presentation “Understanding Tower Controller Communication for Support in Air Traffic Control
Displays” given at the SESAR Innovation Days in Budapest in 2022 by Ohneiser et al.

3.3.7. Integration of ASRU with A-SMGCS for Apron Control at Frankfurt and Simulation
Pilots in Lab Environment (SMGCS and SPA)

In June 2022, Frankfurt Airport (Fraport), together with DLR, ATRiCS Advanced
Traffic Solutions GmbH, and Idiap performed validation trials with 15 apron controllers
in Fraport’s tower training environment under the STARFiSH project. An A-SMGCS
(Advanced Surface Movement Guidance and Control System) was supplemented with
ASRU to enable integration of recognized controller commands into the A-SMGCS planning
process and simultaneously improve ASRU performance with the addition of context from
A-SMGCS. Together with manual input from the ATCo, the A-SMGCS is able to detect
potentially hazardous situations and alert the ATCo. The addition of ASRU reduces the
burden on the ATCo to manually input issued clearances over the radio into A-SMGCS.
Research results showed that up to one third of the working time of controllers is spent
on these manual inputs, which is detrimental to overall efficiency because ATCos spend
less time on the optimization of traffic flow. More details can be found in the presentation
“Apron Controller Support by Integration of Automatic Speech Recognition with an Advanced
Surface Movement Guidance and Control System” given at the SESAR Innovation Days in
Budapest in 2022 by Kleinert et al. Table 8 contains two columns for this application. The
column “SMGCS” corresponds to the support of the ATCo in this application, whereas the
column “SPA” corresponds to the support of the simulation pilots by ASRU.

3.3.8. Workload Prediction for London Terminal Area (WLP)

Under the Highly Automatic Air Traffic Controller Working Position with Artificial
Intelligence Integration (HAAWAII) project, DLR, together with NATS (the Air Navigation
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Service Provider of the United Kingdom), University of Brno, and Idiap developed a tool
that determines an ATCo’s workload in real-time, based on input from ASRU. The radio
communications between ATCos and pilots at London TMA, for Heathrow Approach, was
analyzed. Length of utterances, frequency usage rate, number of greetings, and number
of miscommunications (say again, etc.) were evaluated for this purpose [30]. Callsign
information is of minor importance here.

3.3.9. Integration of ASRU and CPDLC (CPDLC)

Under the HAAWAII project, DLR, together with NATS and Isavia ANS evaluated the
performance of ASRU and CPDLC integration. More details can be found in the deliverable
D5.3 of the HAAWAII project “Real Time Capability and Pre-Filling Evaluation Report”. In
the future, ATCos and pilots will communicate their intentions via both data link, e.g.,
CPDLC (Controller Pilot Data Link Communication), and radio communications. In this
envisioned state, ASRU and CPDLC are not competitors but complementary tools. Current
CPDLC applications are expected to advance with the advent of data link with lower
latency (LDACS). ASRU can reduce the number and complexity of mouse clicks required
to create a CPDLC message.

3.3.10. Pilot Weather Reports (PWR)

MITRE performed a post-operational analysis on the quantity of weather-related pilot
reports (PIREPs) that could be automatically detected and submitted as “synthetic PIREPs”
by an ASRU-enabled capability [19]. One of the goals of this analysis was to see if synthetic
PIREPs could supplement the manually submitted PIREPs present in the system today and
better inform strategic and tactical planning of ATC operations throughout the US National
Airspace System (NAS) while also easing the ATCo workload. This use case relied on the
Callsign and Pilot Report semantic representations to generate a formatted synthetic PIREP.
More details about the motivation, outcomes, and conclusions of this analysis can be found
in [19].

3.3.11. Use of Visual Separation (VFR)

Pilot-to-pilot visual separation is an important component of NAS safety and efficiency
because it allows aircraft to fly closer together with the pilot assuming responsibility for
separation. However, determining whether pilots were maintaining visual separation can
only be determined from the voice communications between ATCo and pilot. ASRU can
be used to detect traffic advisories (when an ATCo points out traffic to a pilot), the pilot
reporting the traffic in sight, and the instruction for pilots to “maintain visual separation”
in post-operations analysis. This information is critical to understanding the safety of a
given encounter between aircraft. The information can therefore be used to better prioritize
operations for safety assurance review. Visual separation information can also be used
to inform efficiency-perspective analysis of operations (e.g., what percentage of flights
are visual separated), because it informs the spacing between aircraft, which informs
throughput/capacity.

3.3.12. Simulation Pilots in Enroute Domain Controller Training (SPET)

MITRE designed and prototyped high-fidelity simulation training consoles to support
controller training in the enroute domain [5]. To reduce training and simulation costs,
these consoles included a real-time simulation pilot system that uses automatic flight
management, ASRU, and text-to-speech technology to interact with controllers during
training simulations. Automated simulation pilots can handle more aircraft workload,
provide consistent performance and response times to controller instructions, and require
less training than human simulation pilots. The success of this prototype led to other
follow-up projects, such as terminal training applications, Human-In-The-Loop (HITL)
simulations to support new technology prototyping, procedure and airspace design, and
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research studies in MITRE's Integration Demonstration and Experimentation (IDEA) Lab,
and bilingual training consoles for international use.

3.3.13. Readback Error Detection for Enroute Controllers (RB-E)

Under the HAAWAII project, DLR, together with the Icelandic Air Navigation Service
Provider Isavia ANS, University of Brno, and Idiap developed a readback error detection
assistant and tested it on pilot and ATCo voice utterances directly recorded in the ops room
environment of Isavia ANS [2].

3.3.14. Readback Error Detection for Tower Controllers (RB-T)

In 2016, MITRE conducted a feasibility study into the automatic detection of readback
errors at the tower/local controller ATCo position using recorded live-operations audio [1].
The study focused on runway and taxiway use clearances and assessed the readiness
of ASRU performance to support this type of application. Whereas automatic speech
recognition performance was promising, the study found that more complex understanding
logic was needed to differentiate acceptable readback discrepancies from alert-worthy
readback errors. The study also identified the importance of detecting the nuances of
dialogue between the ATCo and pilot during which the ATCo might have already taken
corrective action and nullified the need for an alert.

3.4. Application-Specific Metrics

We previously described general semantic accuracy metrics for evaluating how well
labeled concepts are extracted in general, irrespective of a downstream application. In an
ideal world, we could have a single set of objective ASRU metrics that could be used to
communicate accuracy and be meaningful across all applications. However, we cautioned
that these general semantic metrics should be supplemented before use with a downstream
application. In this section, we describe why metrics must be tailored to the application in
order for it to be useful.

The first set of metrics to consider is the set that describes the accuracy performance
of the application, i.e., the performance that is relevant to the end user (who could be an
ATCo, pilot, data analyst, policy maker, etc.). The application accuracy is the ultimate
measure of performance because the application’s benefit is the ultimate measure of the
utility of the capability.

However, there are situations where the application accuracy can diverge from the
accuracy of the underlying ASRU. One case is when the application logic is such that an
incorrect ASRU result can still produce the correct application output. Another case is
when there is non-speech information used after ASRU processing that can improve wrong
or missing ASRU output.

For example, consider the application described in Section 3.3.3, in which ASRU is
used to detect the ATCo landing clearance and then surveillance track information is used
to determine if the arrival is lined up for the correct runway. If the arrival is lined up for
the wrong runway, the application issues an alert to the ATCo; if no landing clearance is
detected for an arrival, the application does nothing.

Incorrect ASRU detection of the callsign will likely result in no alert because the system
will not be able to compare the flight’s track with a clearance. No alert will likely be the
correct application response because most arrivals line up for the correct runway. Similarly,
missing the landing clearance would also result in no alert. In other words, we are getting
the right results but for the wrong reason.

In contrast, incorrect ASRU detection of the callsign could be corrected through use of
other information, e.g., using the arrival’s position in the landing sequence to fill in the gap
in knowledge, resulting in correct application performance.

It is clear from these examples that although application performance is the ultimate
measure of success, it obscures some detail of the ARSU accuracy. Detail of the ASRU
accuracy can be critical for two reasons. One, it provides understanding of what kinds of
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application errors will result from ASRU errors. Two, it provides understanding of where
ASRU accuracy can and should be improved.

Continuing the example of using ASRU to detect landing clearances that can be
compared with arrival alignment to identify wrong surface alignment, ASRU errors in
callsign recognition will result in ASRU failing to associate the landing clearance with the
correct aircraft. Given that most aircraft line up correctly, this missed recognition will likely
still result in a correct “no alert” response at the application level. On the other hand, ASRU
errors in runway recognition could result in ASRU producing an incorrect assigned runway
for the flight, which could then result in a false alert to the ATCo.

Thus, for an application that aims to detect and alert on runway misalignment, the
ASRU accuracy measures should be defined corresponding to the ontology concepts that
need to be detected for the application: callsign, landing clearance, and runway. For each
concept, detection accuracy can be evaluated using the metrics defined in Table 5.

These metrics should then be produced for each concept separately, such that callsign,
landing clearance, and runway would each have several associated accuracy measures:
recall, precision, etc. These metrics can then be used to identify and measure performance
improvements in the ASRU. For example, they differentiate between missed landing clear-
ances due to missed callsign detection and those due to missed landing clearance detection.

Note that the concept detection accuracy can be rolled up into a single metric, pro-
ducing an overall concept recognition error rate by combining the TP, FP, TN, and FN
for all concepts. This overall concept recognition error rate provides a general measure
of the ASRU accuracy, and improvement in this measure generally means better ASRU
accuracy for the application, which in turn means better overall efficacy for the application.
However, as the previous examples illustrate, rolling the detection of these concepts up into
a single measure will obscure understanding about the effects of the errors on application
performance or where ASRU improvements should be targeted. Using Figure 5, consider
the following example.

[ Concept 1 ]

«___J

'llllllll ASRU [ Concept 2 ]App.logic
[ Concept 3 ]

[ Correct
[ Incorrect

«___J

Figure 5. Example use of ASRU semantic concepts for a specific application.

Consider evaluation of ASRU performance on a set of 10 transmissions for this hypo-
thetical application where all three basic concepts are needed to generate correct application
output. A concept can be the callsign, the command type, the command value, etc. The
Concept Error Rate (CER) measures the accuracy of the ASRU in detecting each concept,
and a CER should be measured for each concept, not combined into a single metric covering
the accuracy of detecting all semantic concepts. In contrast, the Command Recognition
Error Rate (CRER), as defined in Table 5, measures the accuracy of the ASRU in detecting
complete commands, which requires both the callsign and the instructions, which can be
composed of different concepts, again.

In Case A, ASRU produces fully correct concepts for nine of the ten transmissions
but zero correct concepts for one transmission. A “combined” concept error rate (CER,
3/30 = 10%) and the application error rate (1/10 = 10%) are the same. In Case B, ASRU
produces fully correct output for seven of the ten transmissions but two out of three correct
concepts for the remaining three transmissions. The combined CER is still 3/30 = 10% but
the application error rate is now 3/10 = 30%. The CRER for Case A is 10% whereas the
CRER for Case B is 30%.

The application performance for Case A is clearly better than for Case B. It is clear
from this example that combined CER is obscuring important information. First, Case A
will result in better application performance than Case B, despite the two having the same
combined CER. Second, neither the combined CER nor the CRER tells us which concepts
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have room for improvement. For the example in Case A, the issue may be a systematic
problem with a transmission that affects the recognition of all three concepts, such as bad
audio or incorrect segmentation. For the example in Case B, did the system miss the callsign
each time or one of the other concepts? Individual measures of precision and recall for each
ontology concept (callsign, landing clearance, and runway in the example used above) are
needed to fully assess the ASRU accuracy.

As another example, if the application only requires one concept to be detected (e.g.,
the closed runway operation clearance detection application described in Section 3.3.2)
and does not require a callsign, then a metric such as CRER is not appropriate because it
incorporates unnecessary concepts into the metric.

In summary, there is not a single metric nor type of metric that is appropriate for all
applications. Practitioners should develop metrics specific to the application, covering both
the application level (i.e., the performance of the application from the user’s perspective)
and the ASRU level (i.e., the performance of the ASRU on individual concepts needed for
the application). These application-specific metrics may expand beyond accuracy mea-
sures and incorporate requirements on computing and speed performance as applications
come closer to being fielded in operational settings with specific resource constraints and
demands on response time.

4. Quantitative Analyses with Applied Ontologies

Thus, application-specific metrics assess overall application readiness for an opera-
tional setting and acceptability to the end-user. In this capacity, they are as important, if not
more so, than the lexical and semantic level ontology when applications are transplanted
into new operational environments. The general semantic accuracy metrics we described
previously help researchers evaluate data, algorithms, and models; however, application-
specific metrics describe the end-user experience and how he or she will be impacted by the
addition of the application to the operational environment. For this reason, we recommend
application-specific metrics be added to the conceptual-level definitions and rules of the
ontology when an application is transitioned. These application-specific metrics can go
beyond TN /TP/FN/FP and include metrics even more relevant to operations, such as false
alerts per hour.

The following two subsections describe example applications and the types of ontology-
related metrics needed to assess their accuracy performance.

4.1. Application-Specific Metrics for a Workload Assessment in the Lab Environment

This application is briefly described in Section 3.3.5. Table 9 summarizes the applicable
semantic concepts relevant to this application. The impact on workload and safety was
measured in terms of the number of missing and incorrect radar label inputs when ASRU
support was present and when it was not.

Table 9. Semantic accuracy metrics for workload assessment.

WER Total TP FP EN TN RcR RER RjR Prc Rec Acc F-1 F-2 F-0.5
0.0% 17,096 16,933 71 94 11 99.1% 0.4% 0.5% 99.6% 99.4% 99.0% 99.5% 99.5% 99.6%
3.1% 17,096 15,869 368 920 10 92.9% 2.2% 5.4% 97.7% 94.5% 92.5% 96.1% 95.1% 97 1%

Table 9 summarizes the command detection accuracy when ASRU support was present
during operations. Row “0.0%” shows the command detection performance with a perfect
speech-to-text conversion, i.e., all incorrect detections come from errors in semantic extrac-
tion. Row “3.1%” shows the actual command detection performance during the validation
trials with a speech-to-text engine that had an average WER of 3.1%.

For this use case, the application-specific metrics closely aligned with the semantic
accuracy metrics described in Section 3.1.2 because the command detection accuracy trans-
lated directly into radar label entry accuracy. The number of correctly detected commands,
or the command recognition rate (RcR), translated into how many entries the ATCo did not
have to manually enter into the automation system. The number of incorrectly detected
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commands, or the command recognition error rate (CRER), translated into the number of
safety risks introduced due to incorrect radar label inputs. The metric recall corresponded
approximately to the command detection accuracy. They would be equal if TP+FP+FN+TN
was equal to the total number of command samples (Total). The metric RER approxi-
mated 1—Prc. This correlation between RcR and Acc and the inverse correlation between
RER and Prc was not present in our nominal example in Section 3.1.2 but was present in
this experiment.

4.2. Application-Specific Metrics for a Post-Operations Pilot Report Analysis

The application itself is briefly described in Section 3.3.10. For the context of this paper,
we discuss here the value of the application-level metrics used to measure the validity of
this prototyped application’s overall performance.

From the analyst perspective, the relevant metrics for this application were:

1.  The number of correctly detected and accurately formatted pilot reports (PIREPs), i.e.,
correct PIREPs.

2. The number of correctly detected but incorrectly formatted PIREPs (incorrect PIREPs
because they are incomplete, misleading, or both).

3. The number of PIREPs not detected or not mapped to a formatted PIREP (missed PIREPs).

The first quantity informs how much reliable supplemental information could be
introduced into the US National Airspace System (NAS) by this capability. The second
quantity informs how much supplemental information introduced might be misleading
and potentially detrimental to planning. The final quantity informs how much potential
supplemental information is being missed but would not negatively affect planning except
by omission.

However, there is not a direct one-to-one correspondence between the semantic ac-
curacy of the individual Callsign and Pilot Report concepts and the application metrics.
Figure 6 illustrates the effect of different errors during the automatic PIREP detection logic
within the application and their effect on the overall application performance. As the
diagram shows, an error in Callsign extraction could lead to either an incorrect PIREP or
a missed PIREP; an error in Pilot Report extraction could also independently lead to an
incorrect PIREP or a missed PIREP, and only the combined accurate extraction of both the
Callsign and Pilot Report semantics could lead to a correct PIREP.

Table 10 recaps the concept metrics of the application originally published in [19]. The
final output quantities show that even when a PIREP concept is correctly detected, it may
not be fully and correctly encoded (i.e., the application-level success).

Using the sample results from Table 10, we define application-specific metrics for precision
and recall. We define true positive PIREPs as those that are encoded with complete information
and PIREPs that are encoded with correct but incomplete information, on the reasoning that
some information is better than none; this is an application-specific consideration. Using that
definition, we calculate precision as 88% = (79 + 26)/(79 + 26 + 14). Recall is then calculated as
63% = (79 + 26)/168.

The complexity of the final application metrics is compounded by additional upstream
probabilistic processes such as speech diarization, speech recognition, and text classification
that could all introduce errors affecting the final result of the application. The interwoven
effects of the different internal model and algorithm errors mean that no one model or
algorithm is the most important and no individual model or algorithm accuracy metric
could estimate overall application accuracy. Thus, the application-specific metrics are
necessities invaluable for assessing the overall value of the prototype and its readiness for
use in an operational setting.
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Figure 6. Effect of different ASRU errors on final PIREP application performance.
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Table 10. Summary of PIREP application accuracy metrics.
Ground Truth Detection Encoding
168 PIREP 161 Correct 79 Correct final PIREP
detection 34 Incorrect discard—callsign not spoken
8 Incorrect discard—callsign not detected
26 Incorrect final PIREP—missed details
14 Incorrect final PIREP—incorrect flight
7 Missed
detection
96 Not PIREP 79 Correct
rejection
17 False
detection

4.3. European Word-Level Challenges and Statistics

As already described in Section 3.2.1, a lot of the vocabulary that appears in ATCo—pilot
communications are general-purpose words such as climb, descend, cleared, etc. A large
and significant percentage of the vocabulary is made up of names, e.g., airline designators,
facility identifiers, location identifiers, navigational aids, and procedure identifiers. They,
however, seldom occur, i.e., training data might not be available as needed.

The following Table 11 shows the results of the top 10 words in the two applications
from the laboratory environment, described in Sections 3.3.5 and 3.3.7. “# Spoken” shows
how often the word was really said. “Freq” shows how often this word was recognized
relative to the number of all words spoken.

Table 11. Top 10 words of Vienna Approach and Frankfurt Apron Control.

Vienna Approach Frankfurt Apron Control
Word # Spoken Freq Word # Spoken Freq
two 8841 7.4% one 11,724 9.3%
one 8128 6.8% november 7713 6.1%
Zero 7576 6.4% five 7100 5.6%
four 5805 4.9% two 5520 4.4%
three 5624 4.7% lufthansa 4994 4.0%
eight 5422 4.6% eight 4939 3.9%
austrian 4979 4.2% lima 4002 3.2%
six 4295 3.6% seven 3882 3.1%
seven 4028 3.4% four 3769 3.0%
descend 3909 3.3% hold 3513 2.8%

Words shaded by “light blue” were not present both top 10 lists.

The Vienna data is based on 118,800 spoken words, whereas the Apron application
is based on 125,800 spoken words. In “light blue”, we marked the words that were only
present in one or the other top 10 list but not in both. In Frankfurt, most of the taxi way
names start with the letter “N”, e.g., N1, N6, etc. Most of the flights to and from Vienna are
from “Austrian Airlines”, whereas it is “Lufthansa” for Frankfurt.

Table 12 shows the top 10 word for London TMA (Section 3.3.8) and for the enroute
traffic managed by Isavia ANS (Section 3.3.9). The fact that “Reykjavik” is within the Top
10 of Icelandic traffic control is quite clear. Reykjavik is the capital of Iceland and the station
name ATCos and pilots are using. “speed” being the sixth most frequent used word in
London traffic might be surprising; however, knowing that “speed” is used both in speed
commands and also in the callsign “speed bird” (for British Airways) explains the high
occurrence. The London data is based on 102,952 spoken words, whereas the enroute
application is based on 73,980 spoken words.
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Table 12. Top 10 words of London TMA and Isavia Enroute Traffic.

London TMA Isavia ANS Enroute Traffic

Word # Spoken Freq Word # Spoken Freq
one 7599 7.4% one 4371 5.9%
Zero 6284 6.1% Zero 3849 5.2%
five 5191 5.0% three 3255 4.4%
two 5019 4.9% five 3230 4.4%
seven 3702 3.6% seven 3064 4.1%
speed 3677 3.6% two 2830 3.8%
three 3536 3.4% six 2436 3.3%
six 3198 3.1% reykjavik 2202 3.0%
four 3113 3.0% nine 2057 2.8%
eight 2965 2.9% four 1962 2.7%

Words shaded by “light blue” were not present both top 10 lists.

Investigating the statistics for all four ASRU applications, we get the values shown in
Table 13. The ten digits make the top 10. The digit “four” has the highest word error rate. It
is often mixed with “for”, a problem which can be solved afterwards at the semantic level.

Table 13. Top 10 words of four DLR applications from Tables 11 and 12.

Word # Spoken Freq
one 31,822 7.6%
two 22,210 5.3%
Zero 19,378 4.6%
five 19,266 4.6%

three 15,346 3.7%

eight 15,085 3.6%

seven 14,676 3.5%
four 14,649 3.5%

six 13,313 3.2%
nine 9998 2.4%

Table 14 shows the “Number of Words” evaluated for each of the four applications.
For Vienna, 179 words were observed more than four times, i.e., at least five times. The
first 62 most occurring words for Vienna already sum up to 95% of all the spoken words.
For 99% of all spoken words, we need 112 words. All in all, we have 347 different words
observed for the Vienna ASRU applications (row “words for 100%”).

Table 14. Statistics on word level for different ASRU applications.

Vienna Frankfurt NATS Isavia All

Number of Words 118,794 125,810 102,952 73,980 421,536
Spoken >4 times 179 291 497 583 931
Words for 95% 62 110 205 322 256
Words for 99% 112 203 432 754 619
Words for 100% 347 520 899 1375 1972

The word statistics in Table 14 also show the difference between lab experiments
and real-life data from the ops room. The number of used words is much bigger in the
ops room environment than in the lab environment. This is supported by the number of
words occurring more than four times and also by the 95%, 99%, and 100% thresholds. In
the Icelandic enroute airspace English, Icelandic and Norwegian words are used, which
explains the high number of different words.

4.4. US Word-Level Statistics

A similar analysis has been performed by MITRE. It is based on 70 ATC facilities
all over the US with a corpus of 1,248,436 words. Table 15 is similar to Table 14 for the
European word-level statistics.
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Table 15. Statistics on word level for different MITRE data sets.

From Corpus Partition of 99,513 Transmissions/1,248,436 Words

Unique Words Cumulative Word Count Percentage
Spoken >1 time 4471 1st 50 words 60%
Spoken >4 times 2640 1st 100 words 74%
Words for 95% 542 1st 150 words 81%
Words for 99% 1884 1st 500 words 94%
Words for 100% 7236 1st 1000 words 98%

Table 16 shows the top 10 word occurrences from the MITRE analysis. The 10 digits
are also the most frequently used words in the US.

Table 16. Occurrence of digits in MITRE data set.

Word # Spoken Freq Additional Information
one 56,298 4.5%
two 54,376 4.4%
three, tree 45,112 3.6% tree: 167
zero, oh 43,584 3.5% oh: 3168
five, fife 32,038 2.6% fife: 1
four 31,035 2.5%
seven 27,466 2.2%
six 26,410 2.1%
eight 22,324 1.8%
nine, niner 21,901 1.8% niner: 7193
All 360,544 29.0%

Looking into the details we observe some other interesting differences such as “one”
and “two” also being the top words in US. The word “nine” would be rank only sixteen by
occurrence; however, when combined with “niner”, the composite moves into the top 10
in terms of occurrence frequency. One surprising observation is that “nine” is used more
often than “niner”, although niner is the recommended spoken form for the digit by the
ICAO [28]. The European transcription ontology does not even distinguish between “nine”
and “niner”. Both words are mapped to “nine”. Europe also does not distinguish between
“five” and “fife” or “three” and “tree”. Manual transcribers may not have even been able to
distinguish between them.

The digit “oh” for “zero”, transcribed in Europe as a capital “O”, is observed in the
European data only 59 times and only in the operational environment data sets from
NATS and Isavia. This is a negligible percentage. However, in the US data, the more than
7000 occurrences constitute a significant percentage.

The 10 digits from “zero” to “nine” cover 42% of all words observed in the European
DLR data set. In the MITRE data set, the same digits comprise 29% of all spoken words,
when “niner”, etc., are also considered. Our hypothesis for this is that ATCos and pilots are
not limited to the ten digits, as recommended by ICAO [28]. They also use the other group-
form digit words such as “ten”, “twenty”, “thirteen”, “fourteen”, “hundred”, “thousand”,
etc. When these additional numbers are summed up together with “zero” through “nine”,
then numerical words comprise 40% of all words spoken, which is shown in Table 17.
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Table 17. Frequency of values between 10 and 1000 in MITRE and DLR data sets.

MITRE DLR
Word Numerical Value # Spoken Freq # Spoken Freq
ten 10 4033 0.3% 270 0.1%
eleven 11 2788 0.2% 8 0.0%
twelve 12 3185 0.3% 5 0.0%
thirteen 13 1810 0.1% 2 0.0%
fourteen 14 2274 0.2% 4 0.0%
fifteen 15 2671 0.2% 13 0.0%
sixteen 16 2224 0.2% 5 0.0%
seventeen 17 2085 0.2% 3 0.0%
eighteen 18 2251 0.2% 62 0.0%
nineteen 19 2404 0.2% 327 0.1%
twenty 20 17,323 1.4% 972 0.2%
thirty 30 14,773 1.2% 101 0.0%
forty 40 11,961 1.0% 45 0.0%
fifty 50 11,327 0.9% 201 0.0%
sixty 60 7907 0.6% 286 0.1%
seventy 70 6882 0.6% 14 0.0%
eighty 80 7339 0.6% 317 0.1%
ninety 90 6401 0.5% 21 0.0%
hundred 100 4726 0.4% 1329 0.3%
thousand 1000 13,732 1.1% 5019 1.2%
All 128,096 10.3% 9004 2.1%

The words “hundred” and “thousand” have nearly the same frequency in the MITRE
and DLR data sets. These words are recommended by ICAO. The combined occurrences
of words for 11 through 90 are negligible in DLR’s data set. They sum up to only 0.6%
of the words spoken, whereas in the MITRE data sets they sum up to over 10%, which is
significantly more. Furthermore, analysis of the US data set by speaker showed that ATCos
and pilots used group-form numbers about equally, so the difference in group-form word
occurrence between the US and European data sets can be attributed to differences in word
usage by region, i.e., between the US and Europe, not speaker.

Moreover, very interesting is how small a percentage of the most frequently occurring
words in the data set comprise in the overall data set vocabulary. Table 18 summarizes
the top occurring words that comprise 95% of words in the data set and the percentage
of the vocabulary they represent. This top 95% of words present in the corpus is made
of 551 distinct words and includes all the numbers and letters but not most of the airline,
ATC facility, and waypoint names. This 551-word set is about 7.61% of the data set’s
7236 distinct word vocabulary, which means the remaining 92.39% of the distinct words in
the vocabulary comprise only 5% of the data corpus in terms of occurrence.

This last statistic illustrates one of the biggest challenges for ASRU in the ATC domain.
The large variety of distinct waypoint, airline, and airport names relevant to understanding
is hard to recognize correctly because they have low occurrence in the data set. The reason
for their low occurrence is because a training corpus for ASR or semantic parse is often
deliberately varied to improve robustness and reduce overfitting, which means they are
collected from many facilities and regions. However, the geographical spread of the audio
data sources, while improving general robustness, dilutes the observation frequency of
regional waypoint, airline, and facility names. This scarcity of a large percentage of the
vocabulary in the training data subsequently leads to misrecognition of these words and
misinterpretation unless deliberate action is taken to correct or improve their detection.

The findings of this analysis lead to our conclusion that although the methods and
tools for developing and measuring ASRU performance can be shared across regions (e.g.,
between the US and Europe), the specific models built for specific regions would likely not
work well across regions.
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Table 18. Word classification of MITRE words.

Meaning N o Percentage of Percentage of
Category Definition Examples #Spoken Corpus Words Vocabulary
Other climb, fly, contact, 527,579 42.3% 4.78%
thanks, until
Numeric Digits, other numbers, - zero, ten, hundred, 498,066 39.9% 0.51%
number modifiers triple, point
Callsign Words Airline names, aircraft United, Cessna, 56,265 45% 0.90%
types, air service types Medevac
Phonetic . Bravo, Charlie, o o
Alphabet Phonetic alphabet words Zulu 48,077 3.9% 0.39%
Place Names AT.C facilities and Atlanta, Reno 21,958 1.8% 0.50%
airport names
Initials . I;t,t,frls;,, V,O,R J,EK,D,F 16,543 1.3% 0.35%
Words that fill up space
Filler Words but do not add uh, um 10,356 0.8% 0.03%
substance
Words that can be all or
Mu1t1.ple par.t of airline names, ‘Skyf M1dm./ay, 7084 0.6% 0.12%
Meanings airport names, or Wisconsin
general-purpose words
. Named fixes and SAILZ, KEEEL, o o
Waypoint Names waypoints HUNTR, KARLA 706 0.1% 0.04%
Total 1,186,634 95.0% 7.61%

5. Conclusions

This paper built off our comparative analysis of the two ontologies in [3] in two ways.
First, this paper describes the impact of ontologies on collaboration on data, models, and
applications. We described several ways that an ATC ontology is critical to facilitating
collaboration between researchers and to appropriate evaluating ASRU applications in the
ATM domain, using examples of specific applications to illustrate how ontology facilitates
development of the metrics targeted for the application.

Second, this paper presents a word-level comparison of US and European ATC speech,
specifically focusing on similarities and differences in the types of words. Although there
are significant similarities (e.g., in both regions, digits make up the top 10 most spoken
words), there are also significant differences (e.g., the frequency of group-form numbers).
This analysis leads to our conclusion that whereas the methods and tools for developing
and measuring ASRU performance can be shared across regions (e.g., between US and
Europe), the specific models built for the different regions would likely not work well
across regions.

Future work is needed to develop capabilities to make methods and tools more
shareable between ontologies. This effort could involve modifying one or both ontologies
and/or creating translation mechanisms to automatically convert data from one ontology
to the other. Ultimately, research funding is critical to informing the effective and available
paths forward.
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Appendix A. Command Types in European and MITRE Ontology

Table Al. Altitude clearances in MITRE and European ontology.

MITRE European Example/Explanation
Climb CLIMB climb to flight level three two zero
Descend DESCEND descend to flight level one four zero
Tries always to derive, whether CLIMB or ALTITUDE if no descend or climb keyword is
DESCEND provided /recognized in transmission

STOP_ALTITUDE/ STOP_CLIMB/

StopAltitude STOP_DESCEND stop descent at flight level one zero zero
Maintain MAINTAIN ALTITUDE/ maintain flight level one eight zero;
PRESENT_ALTITUDE maintain present level
Cancel NO_ALTI_RESTRICTIONS No altitude constraints at all.
Table A2. Speed clearances in MITRE and European ontology.
MITRE European Example/Explanation
IncreaseSpeed INCREASE/INCREASE_BY increase to zero point eight four mach
ReduceSpeed REDUCE/REDUCE_BY reduce speed to two two zero knots
Tries always to derive, whether REDUCE or SPEED if no reduce or increase keyword is
INCREASE. provided/recognized in transmission

Still the published speed constraints

RESUME_NORMAL_SPEED
are relevant.

Cancel SpeedRestriction NO_SPEED_RESTRICTIONS The speed restriction is removed
DoNotExceed OR_LESS used as qualifier Speed limit
Maintain MAINTAIN SPEED/PRESENT_SPEED maintain present speed
SpeedChange SPEED, INCREASE, REDUCE used in Europe
REDUCE_FINAL_APPROACH_SPEED reduce final approach speed
REDUCE_MIN_APPROACH_SPEED reduce minimum approach speed
REDUCE_MIN_CLEAN_SPEED reduce minimum clean speed
HIGH_SPEED_APPROVED speed is yours

Table A3. Altitude change rate clearances in MITRE and European ontology.

MITRE European Example/Explanation

. climb with two thousand feet per minute (or greater)/
Climb (At RATE_OF_CLIMB climb at three thousand feet per minute

Descend (At) RATE_OF_DESCENT descend with two thousand five hundred feet per minute

maintain three thousand in the climb/

aintain maintain three thousand five feet per minute in the climb

VERTICAL_RATE if no climb or descer}t keywor.d is provided/recognized
in transmission

EXPEDITE_PASSING expedite passing flight level three four zero
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Table A4. Heading clearances in MITRE and European ontology.

MITRE European Example/Explanation
TurnLeft, TurnRight HEADING/TURN/TURN_BY (Qualifier LEFT/RIGHT) turn left heading two seven zero;
turn right by one zero degrees
Turn TURN/TURN_BY (Qualifier LEFT/RIGHT) turn right by one zero degrees
TURN (without a value) Qualifier LEFT /RIGHT) turn right
. fly heading three six zero
Fly HEADING (Qualifier none) (no keyword left/right recognized)
Maintain CONTINUE_PRESENT_HEADING/MAINTAIN HEADING continue present heading
MAGNETIC_TRACK magnetic track one one five

Table A5. Routing clearances in MITRE and European ontology.

MITRE European Example/Explanation
DIRECT_TO/DIRECT direct to delta lima four five five/

Direct direct final runway three four
Approach_Leg/LatLong direct six zero north zero one five west
Resume NAVIGATION_OWN own navigation
Cleared CLEARED TO cleared to london heathrow
Circle ORBIT (Qualifier LEFT/RIGHT) make orbits to the left
Table A6. Procedure clearances in MITRE and European ontology.
MITRE European Example/Explanation
Cleared CLEARED/CLEARED cleared via sorok one november
(STAR/SID/Approach) VIA /MISS_APP_PROC
Intercept . .
(Approach/ ApproachType) INTERCEPT_LOCALIZER intercept localizer for runway
INTERCEPT_GLIDEPATH intercept glidepath
JOIN_TRAFFIC_CIRCUIT right traffic circuit for runway three four
Join TRANSITION join nerdu four november transition
Resume NAVIGATION_OWN resume navigation
Continue CONTINUE_APPROACH continue approach runway zero one
Cleared CLEARED Approach_Type cleared Rnav approacch zero nine center
Cancel (Approach/ SpeedRestriction/ .
AltitudeRestriction) CANCEL Approach_Type cancel approach for runway zero five
Climb (Via) climb via the capital one departure
Descend (Via) descend via the cavalier four arrival
GO_AROUND go around
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