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Abstract: In this paper, an incremental nonlinear dynamic inversion (INDI) control scheme is pro-
posed for the attitude tracking of a helicopter with model uncertainties, and actuator delay and
saturation constraints. A finite integral compensation based on model reduction is used to com-
pensate the actuator delay, and the proposed scheme can guarantee the semi-globally uniformly
ultimately bounded tracking. The overall attitude controller is separated into a rate, an attitude, and
a collective pitch controller. The rate and collective pitch controllers combine the proposed method
and INDI to enhance the robustness to actuator delay and model uncertainties. Considering the
dynamic of physical actuators, pseudo-control hedging (PCH) is introduced both in the rate and
attitude controller to improve tracking performance. By using the proposed controller, the helicopter
shows good dynamics under the multiple restrictions of the actuators.

Keywords: incremental nonlinear dynamic inversion (INDI); actuator compensation; model
reduction; pseudo-control hedging (PCH); helicopter attitude control

1. Introduction

The helicopter, aircraft with one or more power-driven horizontal propellers or rotors
that enable it to take off and land vertically, to move in any direction, or to remain stationary
in the air, has become very popular for a wide range of services, including air–sea rescue,
firefighting, traffic control, oil platform resupply, and business transportation [1]. However,
these tasks often bring heavy workloads to pilots, especially in situations of high crosswinds
or low light. Furthermore, subject to a complicated dynamic response, multiple flight
modes, system uncertainties, and rapidly varying flight conditions, the helicopter is a
highly complex system. For the reasons above, a highly reliable and effective flight control
system which allows the helicopter to execute multiple tasks in adverse flying conditions
becomes more in demand [2].

In the past few years, various fight control methodologies are developed for the heli-
copter [3–6]. Feedback linearization, as the most widely used nonlinear control method in
the aircraft control systems, is often combined with adaptive control to deal with the model
uncertainties [7–10]. However, it is hard to guarantee that the control system can recover from
a failure in adaptation [11]. Therefore, whether it can be applied in the systems with high
security requirements is worthy of consideration. In order to overcome the shortcomings
above, the INDI technique is adopted in this paper for helicopter flight control.

By producing the incremental form of the control command by calculating the error
between the virtual control law and the acceleration of the system state, INDI is robust
to model uncertainties [12–19]. In [17], the stability and robustness of the INDI technique
has been proven. The INDI scheme was first used in the design of a six-degree-of-freedom
helicopter controller in [18], and its robustness to model uncertainties was verified by
simulation. Ref. [19] uses the INDI technique to redesign the existing Apache flight control
and improve the handling quality.

However, the weakness of the INDI controller is the accuracy of the onboard mea-
surement and actuator delay. The current measurement technology combined with data
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processing algorithms (such as Kalman filtering) has been able to reduce the uncertainties
brought by these sensors. However, there is no effective solution to the poor performance
caused by the existence of actuator delay. According to [1], the delay time is approximately
100 ms in the helicopter. In a control system operating at 100 Hz, there will be a difference
of about ten samples between the command signal and the actuator, which seriously de-
teriorates the tracking performance of the system and even puts the system stability in
risk. Therefore, various control approaches are proposed for the systems subject to actuator
delay [20–27]. Ref. [25] extends the Artstein model reduction method in [26] to nonlinear
systems, and designs a compensation control law for known and unknown systems, respec-
tively. Then, the Lyapunov–Krasovskii functional is adopted to prove the stability of them.
Ref. [27] designs a feedback robust tracking controller with delay compensation for a class
of systems with actuator delay and external disturbance, and achieved the desired effect.
In [28,29], Rohollah Moghadam proposed an ADP-based solution to the optimal adaptive
adjustment problem of systems with state delay and input delay, which can be applied to
the optimal control problem of a class of nonlinear time-delay systems.

Besides the constraint of time delay, actuator saturation is very common and a more
general problem in the helicopter due to the limitation of actuators in terms of the position
and rate saturation. Therefore, many recent works have been carried out on actuator
saturation nonlinearity as it causes the windup phenomenon [30–35]. Based on nonlinear
partial differential inequalities, an optimal saturation compensator was developed in [32].
In [11], the pseudo-control hedging method is proposed to offset the virtual control input
when the actuators are saturated. Ref. [33] further expanded the PCH theory and [34]
applied the method to the development of the Boeing 747 flight control system.

In this paper, combining with model reduction and the PCH technique, a novel
INDI-based controller is proposed for helicopter attitude control with actuator delay and
saturation. The main contributions of this paper are the following: (1) a novel INDI-
based actuator delay compensation control scheme with guaranteed stability is proposed,
which can be applied to nonlinear systems with actuator delay in a certain range; and
(2) aiming at helicopter characteristics, the proposed method and PCH are adopted to design
the controller for the helicopter which is subjected to model uncertainty, actuator delay,
and saturation.

The overall structure of this paper is as follows: The problem is formulated in Section 2.
Section 3 presents an actuator delay compensation scheme for the INDI controller. The
introducing of the helicopter model and the design of the anti-windup helicopter attitude
controller by the proposed method is given in Section 4. Section 5 focuses on the display of
the simulation results and related explanations. The conclusions are presented in Section 6.

2. Problem Formulation

Consider a class of the nonlinear system with input delay in the following form:{ .
x = f (x) + g(x, uτ)
y = x

(1)

where x is the state vector in Rn. f (·) and g(·) are nonsingular, bounded continuous smooth
nonlinear functions in Rn. The delayed input vector uτ = u(t− τ) and output vector y are
both functions in Rn, where τ ∈ R+ is the time-delay constant. The following assumptions
are used for further development.

Assumption 1. The desired trajectory vector xd(t) is bounded and has bounded time derivatives up
to i-th for i = 1, 2, 3; that is, there exists ηi such that

∥∥∥x(i)d (t)
∥∥∥ ≤ ηi for all t, where ‖·‖ represents

the standard Euclidean norm.

Assumption 2. Both state x and the delayed input uτ are measurable. Furthermore, the first
derivative of x in the last sampling time, denoted by

.
x0, can also be measured by acceleration sensors.
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Assumption 3. If x(t),
.
x(t), and u(t) are bounded, then f (x) and g(x, u) are bounded. Moreover,

the first partial derivatives of f (x) and g(x, u) with respect to their arguments x and u exist and are
bounded. The infinity norm of the partial derivative of g(x, u) to u around (x0, u0) and its inverse
can be upper-bounded as∥∥∥∥∥ ∂g(x, u)

∂u

∣∣∣∣
x0,u0

∥∥∥∥∥
∞

≤ ξ1,

∥∥∥∥∥
(

∂g(x, u)
∂u

)∣∣∣∣
x0,u0

−1
∥∥∥∥∥

∞

≤ ξ2 (2)

where ξ1, ξ2 ∈ R+ are known constants.

3. Control Law Design

Before the development of the control law, we define some variables for subsequent
analysis. We denote the tracking error as

e = xd(t)− x(t) (3)

Then, we give the virtual control from the tracking error, denoted by

ν =
.
xd + kνe (4)

where kν ∈ Rn×n denotes a positive gain matrix.
To facilitate the subsequent analysis, an auxiliary tracking error which is inspired from

the model reduction method is defined as

r =
.
e + kre + g(x, u(t− τ))− g(x, u(t)) (5)

where kr ∈ Rn×n is a known positive gain matrix.
Submitting the expressions in (1) and (3), the transformed open-loop tracking error

system can be represented in an input delay free form as

r =
.
xd + kre− f (x)− g(x, u) (6)

We rewrite (6) as its partial first-order Taylor series expansion around the current
solution of the system, denoted by (x0, u0):

r =
.
xd + kre− f (x0)− g(x0, u0)− ∂

∂x [ f (x) + g(x, u)]
∣∣∣
x0,u0

(x− x0)

− ∂
∂u [ f (x) + g(x, u)]

∣∣∣
x0,u0

(u− u0)
(7)

where x0 and u0 denote the values in the last control step of x and u, respectively. Based
on the assumption on INDI, the variation x − x0 can be neglected for each small time
increment. Then, (7) can be simplified by

r =
.
xd + kre− f (x0)− g(x0, u0)− G(x0, u0)(u− u0) (8)

where G(x0, u0) =
∂g(x,u)

∂u

∣∣∣
x0,u0

. Based on (8) and the INDI control law, the control law u(t)

can be given by

u = u0 + G(x0, u0)
−1[(ν− .

x0) + ku

∫ t

t0

[ .
e + kre + g(x, u(θ − τ))− g(x, u(θ))

]
dθ

]
(9)

where ku ∈ Rn×n is a positive control gain matrix. The control law in (9) can be thought
of as a combination of an INDI-based term through an online state measurement and
a predictor term which can stabilize the system and compensate the input delay. Note
that the control law in (9) does not directly depend on f (x) anymore, which means the
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controller is robust to the uncertainty of the model that only depends on the states of
the system. However, the uncertainty in the control effectiveness matrix ∆G should meet
‖∆G‖ ≤ 0.5‖G‖ [17]. Compared with the model-based feedforward control method in [27],
the proposed controller achieves a good control effect even when the model is uncertain.
After applying the Expression (4) and (9), (8) can be expressed as

r = (kr − kν)e + g(x0, uτ0)− g(x0, u0)− ku

∫ t

t0

[ .
e + kre + g(x, u(θ − τ))− g(x, u(θ))

]
dθ (10)

where g(x0, uτ0) is the control effectiveness function under the last state vector x0 and the
last delayed input vector uτ0 . Then, the time derivative of (10) can be obtained by

.
r = (kr − kν)

.
e− kur (11)

In addition, we can also get the time derivative of (9) by using (8):

.
u = G(x0, u0)

−1(
.
ν + kur) (12)

Recall the Assumption 3: one thing that can be determined is that the discrepancy
between the g(x, u) and g(x, uτ) upper bound is

g(x, u)− g(x, uτ) ≤ ρ(‖eu‖)‖eu‖ (13)

where eu ∈ Rn is defined as

eu = u− uτ =
∫ t

t−τ

.
u(θ)dθ (14)

In addition, the bounding function ρ(eu) ∈ R is a known positive globally invertible
nondecreasing function.

Theorem 1. The control law given in (9) can ensure the semi-globally uniformly ultimately bounded
(SUUB) tracking in the case that

0 ≤ τ ≤ χ

2ξ22 (15)

where χ is subsequently defined control gains, provided the control gains kν, kr, ku, ω are selected
with the following sufficient conditions:

kr >
χ2+2

4
kν = kr

1−δ
2ωτξ2

2 <ku < 1+δ
2ωτξ2

2

τ ≤ ω ≤ χ2

4τξ2
2

(16)

where δ =
√

1− 4
χ2 ωτξ22 and ω are subsequently defined constants.

Proof. Define ya ∈ R2n+1 as
ya =

[
eT rT √

Q
]T (17)

where the positive definite LK functional Q is defined by

Q = ω
∫ t

t−τ

(∫ t

s

∥∥ .
u(γ)

∥∥2dγ

)
ds (18)

where ω ∈ R is a positive constant. Then, the positive definite Lyapunov functional V is
defined as

V(ya) =
1
2

eTe +
1
2

rTr + Q (19)
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satisfying the following inequalities

c1‖ya‖2 ≤ V ≤ c2‖ya‖2 (20)

where c1, c2 ∈ R+ are known constants.
After submitting the Equations (5) and (11), we have the time derivative of (19) as

.
V = eTr− kreTe + eT(g(x, u)− g(x, uτ))
+
(
krkν − kr

2)rTe + (kr − kν)rT(g(x, u)− g(x, uτ))

−(kv − kr)rTr− kurTr + ωτ
∥∥ .

u
∥∥2 −ω

∫ t
t−τ

∥∥ .
u(γ)

∥∥dγ

(21)

Combining (13) and canceling common terms, we can upper-bound (21) in the case of
kr = kv as

.
V ≤ ‖e‖‖r‖ − kr‖e‖2 − ku‖r‖2 + ωτ

∥∥ .
u
∥∥2

+ ρ(‖eu‖)‖e‖‖eu‖ −ω
∫ t

t−τ

∥∥ .
u(γ)

∥∥2dγ (22)

According to Young’s inequality, the following relation can be obtained

‖e‖‖r‖ ≤ χ2

4
‖e‖2 +

1
χ2 ‖r‖

2 (23)

ρ(‖eu‖)‖e‖‖eu‖ ≤
1
2
‖e‖2 +

ρ2(‖eu‖)
2

‖eu‖2 (24)

where χ ∈ R+ is a known constant. Moreover, using the Cauchy–Schwarz inequality, the
terms in (24) can be further upper-bounded as

‖eu‖ ≤ τ
∫ t

t−τ

∥∥ .
u(γ)

∥∥2dγ (25)

By adding and subtracting τ
∫ t

t−τ

∥∥ .
u(γ)

∥∥2dγ , inequality (22) can be upper-bounded as

.
V ≤ −(kr − χ2

4 −
1
2 )‖e‖

2 + ωτ
∥∥ .

u
∥∥2 −

(
ku − 1

χ2

)
‖r‖2

−τ
∫ t

t−τ

∥∥ .
u(γ)

∥∥2dγ−
(

ω
τ −

1
2 ρ2(‖eu‖)− 1

)
‖eu‖2 (26)

Recall the Equation (12) and Assumption 3: there exists a positive constant λ ∈ R
such that ∥∥ .

u
∥∥2 ≤ λ + ξ2

2ku
2‖r‖2 (27)

Then, Equation (26) can be rewritten as

.
V ≤ −κ‖ya‖2 − (

ω

τ
− 1

2
ρ2(‖eu‖)− 1)‖eu‖2 + ωτλ (28)

where the function κ ∈ R+ in (28) is defined as

κ = min
[
(kr −

χ2

4
− 1

2
) , (ku −

1
χ2 −ωτξ2

2ku
2), (

1
ω
)

]
(29)

where the inequation
Q ≤ ωτ sup

s∈[t,t−τ]

[∫ t
s

∥∥ .
u(γ)

∥∥2dγ
]

= ωτ
∫ t

t−τ

∥∥ .
u(γ)

∥∥2dγ

(30)

is used. Substituting the bound given in (20), the inequality in (28) can be further upper-
bounded as .

V ≤ − κ

c2
V + ωτλ (31)
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in the set S defined by

S =

{
eu(t)|‖eu‖ < ρ−1

(√
2ω

τ
− 2

)}
(32)

Hence, Expression (31) can lead to the solution as

V ≤ V(0)e−
κ
c2

t
+ ωτλ

c2

ϕ
(1− e−

κ
c2

t
) (33)

In the case of eu(0)= 0 ∈ S and according to the definition of V in (19) and the solution
in (19), it can be concluded that e, r are bounded. From Assumption 1 and the bounded r,
we can infer that the variable eu =

∫ t
t−τ

.
u(θ)dθ = G(x0, u0)

−1∫ t
t−τ (

.
xd + kνe− ..

x0 + kur)dθ
is bounded. Then, using the definition of r in (5) and combining the bounded tracking error e
and Assumption 1, we can infer that both x(t) and

.
x(t) are also bounded. Finally, we can

obtain from Equation (9) that u is bounded with the initial condition u(0) = 0 . Therefore, all
of variables in the closed loop is guaranteed to be bounded by the proposed control law. �

4. Attitude Controller Design for Helicopter
4.1. Helicopter Model

The attitude control of the Messerschmitt–Bölkow–Blohm (MBB) Bö-105 helicopter is
considered in this paper. Here, we give the attitude model in the equations of motion from

.
ωh =

 .
p
.
q
.
r

 = J−1(m−ωh × Jωh) (34)

.
θ =


.
f
.
θ
.
ψ

 = Ωωh =

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

ωh (35)

where m = m f us(x)+mht(x)+mvt(x)+mmr(x, u)+mtr(x, u) represents the total moments
with respect to the gravity center of the helicopter. It consists of the moments produced by
the fuselage, horizontal tail, vertical tail, main rotor, and tail rotor, which are represented
by the subscript f us, ht, vt, mr, and tr, respectively. ωh =

[
p q r

]T and θ =
[
φ θ ψ

]T

indicate the roll, pitch and yaw angular rate and attitude angle of helicopter, respectively. J
is the inertia matrix of the helicopter which is given by

J =

 1433 0 −660
0 4973 0
−660 0 4099

 (36)

The controller proposed in this paper is based on the principle of time-scale separation,
which assumes that the state variables in the inner loop are preforming fast while the
related parameters in the outer loop change more slowly under the same actuator inputs.
Table 1 can verify that this hypothesis is reasonable.

Table 1. Time-scale separation between attitude angles and rates.

Different Control Channel Maximum Rates of
Attitude Angles

Maximum Rates of
Attitude Rates

Lateral cyclic pitch dφ
dt = 5.7 deg/s dp

dt = 145.8 deg/s2

Longitudinal cyclic pitch dθ
dt = −2.5 deg/s dq

dt = −60.1 deg/s2

Collective of the tail rotor dψ
dt = −0.7 deg/s dr

dt = −16.5 deg/s2
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From Table 1 we can see that there exists a time-scale separation between the time
derivative of attitude angles and rates. Therefore, we divide these six state variables into
two loops for the controller design, namely, the rate loop and the attitude loop. This type of
assumption is often carried out for flight dynamics and control applications. Between two
loops, the parameters associated with the slow dynamics are treated as constants by the
fast dynamics and its dynamic inversion is performed assuming that the states controlled
in the inner loop achieve their commanded values instantaneously. The fast variables are
thus used as control inputs to the slow dynamics.

However, what needs to be considered is the dynamic of the actuators. In fact, there
exists a time delay between the controller delivering the signal to the actuators. Moreover,
actuators are often limited by their moving rate, which is shown in Table 2. If these
issues are not considered, the tracking performance of the control system will be severely
degraded and even face stability problems. To overcome these problems, the proposed
method and PCH are adopted in the next sections.

Table 2. Actuators’ rate limits of Bö-105.

Actuator Name Variable Name Maximum Rate Limit

Main rotor θ0 16.0 deg/s
Longitudinal cyclic θ1s 28.8 deg/s
Lateral cyclic θ1c 16.0 deg/s
Tail rotor θ0tr 32.0 deg/s

4.2. Anti-Windup Design

To overcome the effect caused by the actuator saturation, the pseudo-control hedging
(PCH) scheme is adopted. The PCH solves the effect of actuator saturation by modifying
the virtual control input instead of directly influencing the actuator input. When the input
error signal of the control system is too radical for actuators, it allows the production of a
signal νs which is opposite to the virtual control law to the first-order reference model, so
that it can prevent the system from still trying to track the commanded references when
actuator saturation occurs.

In order to achieve the control hedging, a first-order reference model is introduced
as Figure 1. Icom represents the command signal and Isat is the filtered signal to ensure
the input is within the acceptable range of the system. νs is defined, corresponding to the
input under the actuator dynamics. The maximum rate change allowed for this helicopter
follows the ADS-33E-PRF standard, that is, the limits of 40 degrees per second on the roll
and pitch rates and 80 degrees per second on the yaw rates. By using the reference model,
we can obtain the time derivative of Icom such that the virtual control ν in (4) can be made
easily when no saturation occurs.
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The PCH signal νs in the affine nonlinear systems can be calculated by

νs =
[ .
x0 + G(x0, u0)(udes − u0)

]
−
[ .
x0 + G(x0, u0)(u− u0)

]
= G(x0, u0)(udes − u)

(37)

where udes represents the desired actuator input, which can be produced by the rate controller.
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4.3. Rate Loop

For the rate loop, it is expected that the helicopter can track the input angular rate
signal in real time, which requires an error erat to be defined between the reference signal
and the system output, yielding

erat = ωdes − yrat (38)

where ωdes is the reference command which can be produced by the attitude controller. The
rate of angular change between the body frame to the North–East–Down (NED) co-ordinate
system yrat = x = ωh =

[
p q r

]T represents the angular rate output of helicopter.
Parallel to the INDI design procedure, we differentiate the output expression to obtain

its explicit dependence on the actuator inputs u. This yields

.
yrat =

.
ωh = J−1(m−ωh × Jωh) (39)

(39) can be rewritten as

.
yrat =

.
ωh = frat(x) + grat(x, u) (40)

where
frat(x) = J−1[m f us(x) + mht(x) + mvt(x)−ω× Jω] (41)

grat(x, u) = J−1[mmr(x, u) + mtr(x, u)] (42)

Note that the number of actuators of the helicopter is four, which is not equal to the
output state number in the rate loop. This means a control allocation scheme must be used
to deal with this overdetermined system. However, because the change of the collective
pitch of the main rotor, denoted by θ0, is always accompanied by the alteration of total lift,
the value of θ0 can be determined by the velocity on the z-axis under the NED reference
frame. Therefore, we separately give the control law of the main rotor in the subsequent
design. Now, we define the other three actuators as u′ =

[
θ1s θ1c θ0tr

]T .
Combining the analysis of the helicopter model before, we can obtain the rotational

dynamics under actuator delay:

.
yrat =

.
ωh = frat(x) + grat(x, uτ) (43)

Choosing the virtual control νrat =
.

ωdes + kνreret with the control gain matrix kνr ∈
R3×3, the controller u′ can be given by

u′ = u′0 + ∆u′n + ∆u′c (44)

∆u′n = Grat(x0, u0)
−1(ν− .

ωh0) (45)

∆u′c = kurGrat(x0, u0)
−1
∫ t

t0

[ .
erat + krrerat +grat(x, uτ)− grat(x, u)]dθ (46)

where Grat(x0, u0) = J−1 ∂
∂u′ [mmr(x, u) + mtr(x, u)]

∣∣∣
x0,u0

and kur, krr ∈ R3×3 are also diago-

nal matrices. Note that there is a very complicated relationship between control input u and
the moment generated by the main rotor and tail rotor because of the aerodynamics of the
rotors. Hence, we adopt the central finite differences to calculate the control effectiveness
matrix denoted by D, yielding
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D =
∂

∂u′
[mmr(x, u) + mtr(x, u)]

∣∣∣∣
x0,u0

=



mT
mr

(
x0,u′0+

[
δθ1s 0 0

]T
)
−mT

mr

(
x0,u′0−

[
δθ1s 0 0

]T
)

2δθ1s

mT
mr

(
x0,u′0+

[
0 δθ1c 0

]T
)
−mT

mr

(
x0,u′0−

[
0 δθ1c 0

]T
)

2δθ1c

mT
tr

(
x0,u′0+

[
0 0 δθ0tr

]T
)
−mT

tr

(
x0,u′0−

[
0 0 δθ0tr

]T
)

2δθ0tr


(47)

where δθ1s , δθ1c , and δθ1c are a small percent of each actuator input value.
For actuator dynamics, a pseudo-control hedge command is generated to provide the

control system from trying to track the reference command when saturation occurs. According
to (37), the pseudo-control hedge command νr for the rate loop can be obtained by

νr = (
.
x0 + J−1D(u′des − u′0))− (

.
x0 + J−1D(u′ − u′0))

= J−1D(u′des − u′)
(48)

where u′des represents the desired input vector produced by the rate controller.
After completing this, the whole rate-loop control system is accomplished. However,

the helicopter still faces stability issues, for the reason that the Euler angle in the attitude
loop is not closed-loop stable.

4.4. Attitude Loop

Then, for the attitude loop, we can use the NDI control on account of no model
uncertainty existing here. In this loop, the system can be given by

.
θ =

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

ωh (49)

yatt = x = θ =
[
φ θ ψ

]T (50)

where yatt represents the attitude angle output of the helicopter.
Unlike the rate loop, there is no model uncertainty or time delay in the attitude loop.

Therefore, the attitude controller only needs to convert the attitude angle tracking error
into the desired angular rate command as the inner loop input signal through the NDI
method. Considering the state Equation (49), the reference input signal of rate loop ωre f
can be obtained by

ωre f =

1 0 − sin θ
0 cos φ sin φ cos θ
0 − sin φ cos φ cos θ

νatt (51)

where νatt is the virtual control for the attitude loop and it can be given by the attitude
tracking error eatt as

νatt =
.
θ

des
+ kνaeatt (52)

in which kνa ∈ R3×3 is the control gain matrix and θ
des

is the attitude reference command

for the helicopter. Note that the inverse of the transformation matrix always exists for
detΩ = 1/ cos θ 6= 0.

In the attitude loop, the pseudo-control hedge command νa is

νa = Ω(ωre f −ωh) (53)
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4.5. Control Law for Collective Pitch of Main Rotor

As mentioned in the rate loop, the operation of the collective pitch of the main rotor θ0
will change the lift of the helicopter directly. Hence, the actuator θ0 should be related to the
vertical velocity of the helicopter. In the z-axis direction, the following equation is made

.
Vz − g =

[
− sin θ cos θ sin φ cos θ cos φ

] F
m

(54)

where g is the gravitational acceleration and F =
[
Fx Fy Fz

]T represents the total force in
the three axes. It contains the contributions of all the main parts of the helicopter, yielding

F = Ff us + Fht + Fvt + Fmr + Ftr (55)

Once again, F consists of the force produced by the fuselage, horizontal tail, vertical
tail, main rotor, and tail rotor, respectively.

Note that, although the total force F contains many parts, the main part is the force
generated by the main rotor since it resists gravity while allowing the helicopter to move
flexibly. Based on the assumption above, we can obtain the direct dependence about

.
Vz to

the delayed input θ0τ as

.
Vz = g +

1
m

 − sin θ
cos θ sin φ
cos θ cos φ

T

Fmr(x, uτ) (56)

Choosing the virtual control νvz =
.

Vzdes + kνzevz with the control gain constant
kνz ∈ R+, the controller for θ0 can be given by

θ0 = θ0,0 + ∆θ0,n + ∆θ0,c (57)

∆θ0,n = m


 − sin θ

cos θ sin φ
cos θ cos φ

T

H


−1

(νz −
.

Vz0) (58)

∆θ0,c = kuzm


 − sin θ

cos θ sin φ
cos θ cos φ

T

H


−1∫ t

t0

[ .
ez + krzez + Fmr(x, uτ)− Fmr(x, u)

]
dθ (59)

where θ0,0 also represents the previous sampling value of θ0; kuz, krz ∈ R are positive control
gains; and H is the control effectiveness matrix, which can be expressed as

H =
∂Fmr(x, u)

∂θ0

∣∣∣∣
x0,u0

(60)

It can also be calculated by using the central finite difference as

H =

[
Fmr

T(x0, θ0,0 + δθ0)− Fmr
T(x0, θ0,0 − δθ0)

2δθ0

]T

(61)

where δθ0 is a small percent of θ0.
Now, the helicopter attitude control system under the multiple constraints of the

actuators has been designed, which is shown in Figure 2.
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Figure 2. Schematic of the attitude control system based on the proposed method. 

5. Simulation Results 
In this section, several simulations will be given to verify the advantages of the pro-

posed control law. We will simulate the attitude control of the helicopter in a hovering 
state. The model uncertainties are given as 

, ,
0.1 ,  0.1 ,  

tr trL L L LC C C C
α α α α

Δ = − Δ = −

, ,
0.5 ,  

ht htL LC C
α α

Δ =  and 
, ,

0.5
vt vtL LC C

α α
Δ = , where LC α

, 
,trLC α

, 
,htLC α

, and 
,vtLC α

 are the lift 
curve slope of the blade of the main rotor, the blade of the tail rotor, the horizontal tail, 
and the vertical tail, respectively. The delay time is 100msτ =  , initial input 

[ ]0 0.2484 0.0275 0.0135 0.1289 Tu = −  , diagonal element of control gain matrix urk   is 

[ ]1 1 1.5 T , and rrk  is [ ]2 2 3 T . 
The delay of the actuators will degrade the tracking performance and increase the 

control effort provided by the actuators, which always leads to state overshoot and actu-
ator saturation, and even causes the system to become unstable when the delay time grad-
ually increases. This phenomenon can be observed in Figure 3. 

In this simulation, the operating frequency of the control system is set at 100 Hz. 
When the actuator delay is 50 ms, the INDI-based control system can barely maintain its 
tracking performance. A small range of oscillation appears in response when the delay 
time is 100 ms. However, actuators need to change frequency to maintain this steady state 
in the INDI scheme, which is shown in Figure 4. This can be understood as, when time 
delay exists, the control input does not correspond to the current input error, and it needs 
to be adjusted constantly within the whole time delay. In the case of the delay of 150 ms, 
the system response has already experienced a relatively large oscillation, and its dynamic 
characteristics are seriously degraded. 

Figure 2. Schematic of the attitude control system based on the proposed method.

5. Simulation Results

In this section, several simulations will be given to verify the advantages of the proposed
control law. We will simulate the attitude control of the helicopter in a hovering state. The
model uncertainties are given as ∆CLα = −0.1CLα , ∆CLα,tr = −0.1CLα,tr , ∆CLα,ht = 0.5CLα,ht ,
and ∆CLα,vt = 0.5CLα,vt , where CLα , CLα,tr , CLα,ht , and CLα,vt are the lift curve slope of the blade
of the main rotor, the blade of the tail rotor, the horizontal tail, and the vertical tail, respec-
tively. The delay time is τ = 100ms, initial input u0 =

[
0.2484 0.0275 −0.0135 0.1289

]T,

diagonal element of control gain matrix kur is
[
1 1 1.5

]T, and krr is
[
2 2 3

]T.
The delay of the actuators will degrade the tracking performance and increase the

control effort provided by the actuators, which always leads to state overshoot and actuator
saturation, and even causes the system to become unstable when the delay time gradually
increases. This phenomenon can be observed in Figure 3.
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Figure 3. The response of the INDI-based control system under different actuators delay.

In this simulation, the operating frequency of the control system is set at 100 Hz. When
the actuator delay is 50 ms, the INDI-based control system can barely maintain its tracking
performance. A small range of oscillation appears in response when the delay time is
100 ms. However, actuators need to change frequency to maintain this steady state in the
INDI scheme, which is shown in Figure 4. This can be understood as, when time delay
exists, the control input does not correspond to the current input error, and it needs to be
adjusted constantly within the whole time delay. In the case of the delay of 150 ms, the
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system response has already experienced a relatively large oscillation, and its dynamic
characteristics are seriously degraded.
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Figure 4. Actuator input of helicopter.

In the next simulation, the delay time between the controller and actuators is set at
100 ms. In Figure 5, it can be seen that, when the delay compensation is applied, the state
overshoot is significantly reduced and the system’s rapidity is also improved compared to
the original response. Figure 6 shows that, in addition to the need for a larger control effect,
the original phenomenon of rapid changes has disappeared.
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Figure 5. The response after delay compensation.

On the basis of delay compensation, we carry out the PCH design for the system. The
advantages of PCH can be seen in Figure 7, which not only eliminates the overshoot, but
also reduces the 0.7 s settling time of the system. Figure 8 is also given here to compare the
changes of the actuators between the three cases.
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Finally, the response of the three channels of the attitude angle under the proposed
control scheme is given in Figure 9. It can be seen that the three Euler angles can be decou-
pled and show good dynamic characteristics. In the Figure 10, the angular rates also change
regularly corresponding to the tracking of the three Euler angular rates. Furthermore, the
system can also track the command signal well when the actuator input is saturated and
delayed, which can be observed in Figure 10.
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6. Conclusions

In this paper, an INDI-based actuator compensation attitude controller is developed
for the helicopter subject to the time delay, position, and rate saturations in actuators.
The controller is composed of a rate controller which ensures the rate performance of the
helicopter, an attitude controller which guarantees the attitude tracking performance, and
a collective pitch controller which meets the needs of the vertical changes in the z-axis
direction. The model reduction method is used to design an INDI-based controller for
the rate loop and collective pitch of the main rotor, which improves the robustness to the
time-varying actuator delay. Meanwhile, the PCH technique is introduced for both the
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rate loop and attitude loop to provide a filter such that the following commands hold
within the capability of the controllers. Finally, simulations demonstrate the effectiveness
and robustness of the proposed controller. In the future, the outer loop controller for
the helicopter will be designed and a maneuver flight simulation analysis that meets the
requirements of ADS-33E-PRF will be performed.
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