
Citation: Lin, R.; Huang, L.; Liu, Z.;

Zhou, X.; Zhou, Z. A Multilayered

and Multifactorial Health

Assessment Method for Launch

Vehicle Engine under Vibration

Conditions. Aerospace 2023, 10, 505.

https://doi.org/10.3390/

aerospace10060505

Academic Editors: Ziquan Yu and

Youmin Zhang

Received: 29 March 2023

Revised: 19 May 2023

Accepted: 22 May 2023

Published: 27 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

A Multilayered and Multifactorial Health Assessment Method
for Launch Vehicle Engine under Vibration Conditions
Ruliang Lin 1,2, Lijing Huang 1, Zhiwen Liu 1, Xuehua Zhou 1 and Zhiguo Zhou 1,*

1 School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China;
3220185057@bit.edu.cn (R.L.); 3220200559@bit.edu.cn (L.H.); zwliu@bit.edu.cn (Z.L.);
xuehuazhou@bit.edu.cn (X.Z.)

2 Beijing Aerospace Wanyuan Science & Technology Co., Ltd., Beijing 100176, China
* Correspondence: zhiguozhou@bit.edu.cn; Tel.: +86-13-683-345-830

Abstract: Sixty percent of the failures of launch vehicles in the ascending phase occur in the propulsion
system. Among them, the vibration generated by the engine is an important factor in the occurrence
of failure. At present, health assessment methods in the aerospace field are mostly for specific
equipment, and scholars mostly assess the real-time health status of launch vehicle engines which
can only reflect the current health status of the launch vehicle. Existing methods cannot be applied
to different equipment, and there is a lack of research on health assessments of fuzzy and complex
mechanical systems. In this article, we propose a multi-layer and multi-factor predictive evaluation
method for a fuzzy and complex system and conduct experiments on real vibration data of rockets.
First, we divide the health assessment level according to the vibration data that affect the normal
operation of the rocket. Secondly, we obtain the future trend of vibration signals based on five data
prediction methods and calculate the health status interval of the rocket engine’s working conditions
based on the boxplot method. At the same time, we calculate the single health evaluation set of every
vibration signal. We obtain the weights of each level and factor for the health value based on an
analytic hierarchy process (AHP). The optimization of this step avoids an over-reliance on expert
experience. Finally, we complete a fuzzy comprehensive evaluation of the engine system from the
bottom up to obtain the final health value. The minimum evaluation error is 0.0193% on the test
data of the Long March series launch vehicle engine, which shows that the proposed method can
successfully predict and evaluate the launch vehicle engine.

Keywords: launch vehicle; vibration signal; sequence prediction; analytic hierarchy process; fuzzy
comprehensive evaluation

1. Introduction

Launch vehicles can cause several types of vibrations due to intense thrust pulses and
aerodynamic mutations during launch and flight. The vibration signal covers low, medium
and high frequencies, which seriously affects the equipment structure and electrical system
of multiple systems in the rocket, while the low-frequency vibration causes astronauts
to have difficulty in physical movement and chaotic decision making, which can easily
lead to the failure of rocket launch missions and casualties [1]. Therefore, suppressing the
occurrence of vibration from the material and structure and reducing the harm caused
by vibration from the perspective of information science have become important research
directions in the field of aerospace engineering.

The launch vehicle engine is a typical fuzzy environment [2], and relying solely on AI
and computational science cannot explore its internal mechanism. For industry and military
equipment, PHM (Prognosis and Health Management) studies for a system are much more
difficult than the fault detection of a single component. Leng et al. [3], GE et al. [4] and
Subramanian et al. [5] proposed self-organizing and self-evolving fuzzy neural networks
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for different fuzzy systems. However, this approach is very susceptible to anomalous
data that can lead to erroneous results. For launch vehicle fuzzy systems, each launch
may be a different rocket model, and the same rocket model may also have different types
of components. It is difficult to obtain practical verification for the results of the above
methods. Rocket engine testing can summarize a large number of failure modes and human
experience, which can fit accurately with the actual situation. It also reduces the impact of
anomalous data on results.

Researchers have developed various methods for rocket engine PHM, and the current
ones can be categorized into three types as follows [6]:

(1) Model-based methods;
(2) Expert-experience-based methods;
(3) Data-driven methods.

Researchers have conducted extensive research on the identification and evaluation of
rocket engine faults. The basic principle of the mathematical model for engine PHM is to
treat the output of the engine mathematical model as a standard state and determine the
deviation degree of the actual working state of the engine from the standard state through
various indicators; if the deviation degree is too large, the engine working conditions
in this state are regarded as abnormal. Model-based methods can be divided into two
main types: analytical models and system identification models. Based on an analytical
model, Davidson et al. [7] designed a linear engine model for the Advanced Health Man-
agement System (AHMS), using the threshold to achieve online engine anomaly detection.
Breedveld [8] compares the effects of a continuous state estimation and discrete state es-
timation for SSME fault diagnoses and shows that the discrete state estimation performs
best when measurement noise is negligible, and the continuous state estimation is used
when measurement noise is present. Based on a system identification model, Srivastava
et al. [9] established the correspondence between the spectral intensity of SSME plume
characteristics and engine performance parameters through neural network training, and
based on this relationship, the condition monitoring of the SSME was carried out. In the
1990s, the United Technologies Research Center (UTRC) used the ARMA algorithm to
monitor the steady-state process of the SSME in real time when designing the SSME’s HMS
(health management system) [10]. Model-based approaches focus on how well they fit
fuzzy systems, and one model cannot be adapted to different engines. So, model-based
approaches lack versatility.

The conventional method is based on expert systems for the problem of the vibration
failure of launch vehicle engines, but with the development of technology and artificial
intelligence, big data mining has been proven to be an important and effective method [11].
Engle et al. [12] developed the expert-system-based inference mechanism PLES (Prelaunch
Expert System) for the preparation stage of the SSME during ignition, which facilitated
an analysis of the overall health of the system by ground personnel. Kurien et al. [13]
experimented with health management techniques on the Deep Space One project from
1998 to 2001. Perry et al. [14] developed an expert system for turbopump fault diagnosis.
The system contains both shallow knowledge and deep knowledge, which refers to the
experience and processes summarized by domain experts in analyzing and processing
test data, and deep knowledge refers to any analytical model that can characterize the
operating characteristics of engine turbopumps. However, relying heavily on the expert
system leads to subjective experience domination [15]. At the same time, there are three
main problems with the use of manual analyses:

(1) Personal cognitive limitations, that is, the knowledge that each person has is limited;
(2) Diagnoses are inefficient and require a lot of time and human resources;
(3) The manual system can only be used for offline diagnoses and cannot meet the needs

of online fault diagnoses [6].

Data-driven methods can be further subdivided into two types: statistical analysis and
pattern recognition. Aiswarya et al. [16] manually extracted the time and frequency domain
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features of an LRE (liquid rocket engine)’s running signal, used support-vector machines to
classify these features and achieved 100% classification accuracy. Y. Wu et al. [17] proposed
a fault detection method with particle swarm optimization and a least-squares support-
vector machine to improve the performance of an LRE. B. Wang et al. [18] proposed a deep
separable CNN to predict the remaining useful life of aeroengines with the monitoring data
from different sensors. H. Miao et al. [19] proposed dual-task deep LSTM networks to unify
the task of degradation evaluation and the remaining useful life prediction of aeroengines.
L. Xu et al. [15] used the quantum genetic algorithm (QGA) to optimize the BP neural
network, trained the BP neural network, which generated two outputs, and performed a
fault diagnosis on the liquid rocket engine. A PHM approach based on digital twins is a
deep combination of traditional PHM technology and digital twin technology. Mapping
physical devices and virtual devices leverages the technology of data simulation and model
simulation, which can realize the early prediction and accurate location of faults [20].
Among data-driven approaches, deep learning methods exhibit excellent adaptability and
accuracy. A launch vehicle has a limited number of launches with few failure samples and
a relative lack of historical experience. The limited fault data are not enough to support
the training of a neural network, so an accurate fault model cannot be obtained, and it is
difficult to achieve fault location. Basing a model on real data is susceptible to data scarcity,
and basing it on simulation data is also susceptible to simulation model inaccuracy.

Our paper is based on the real-time data of a launch vehicle and realizes the multi-
layer weight generation of the overall system according to expert scoring. At the same
time, a deep neural network is used to predict the future trend of the vibration signal, and
the deviation between the actual data, the prediction data and the ideal state is calculated
to obtain the actual and predicted health evaluation matrix. The evaluation set and the
weight set are used as inputs, and the health value of the top-level target is obtained
through a comprehensive fuzzy assessment. It has important guiding significance for
the risk prevention of the ascending section of the rocket engine. Introducing expert
experience to data-driven methods can solve the problems of the lack of data and low
model accuracy. Using a modular approach, the health assessment of different objects can
be achieved by replacing the prediction data and weight relationship. While improving the
accuracy of the evaluation, the use of automated artificial intelligence technology reduces
economic expenses.

2. Launch Vehicle Engine Health Evaluation System Architecture
2.1. Abstract the Evaluation Hierarchy from the Data Structure

The vibration data used in this paper are derived from the measured data of the Long
March series of carrier rocket engines, as shown in Figure 1.
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The data include six types of vibration signals, including POGO vibration, low-
frequency vibration, high-frequency vibration, fluctuation, crush and noise. POGO vi-
bration is the pressure generated by multiple engines of the rocket during flight and the
periodic vibration generated by the external structure of the rocket, which can easily lead
to pressure loss of control in the internal pipeline and instrument damage [21]. When
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the rocket is flying at a high Mach speed, due to the strong collision between the rocket
structure boundary and the external gas environment, it will produce a strong pulsating
pressure, which will easily cause further equipment vibrations [22]. In the process of firing
multiple engines of the rocket and the sharp increase in the acceleration of the rocket, there
will be low- and high-frequency signals and shock signals in the thrust system, and there is
a widespread noise when a large number of pieces of mechanical equipment are working.
Each kind of signal is divided into multiple groups of signal sensor batches, the data of
the same batch are collected in the same acquisition sequence and the test conditions are
consistent. The dataset in this paper is sampled from the original data, totaling 525 KB, in
.CSV format.

Most traditional aerospace equipment evaluation systems are layered from the per-
spective of hardware, and the evaluation objects are divided according to the level of
components. However, it is difficult to inspect all parts in fuzzy systems; thus, engineers
often focus on evaluating some parts and completely ignore others. Such evaluation meth-
ods do not provide a comprehensive health assessment of internal systems, and there is a
possibility of missing alarms. The method researched in this paper divides the vibration
signal of the engine system as a whole into three layers from the perspective of data. For
fuzzy systems, the precise location of fault sources is difficult to achieve, so the study of
overall health is very important.

The system researched in this paper is divided into three layers: the target layer, the
sub-target layer and the factor layer, which is convenient for the unified quantification
of the health value of multiple influencing factors between the same level, and it is also
easy to import weights. According to historical experience, the impact of the six types of
vibrations is different for the health state of the launch vehicle engine, and the degree of
influence of the data collected by different types of sensors of the same type is also slightly
different. The effect size relationship between the factors can be considered to simulate the
data and obtain the health value of the multi-level and multi-factor system more accurately.

2.2. Evaluate the Process Architecture

In order to cope with the comprehensive evaluation of multi-data categories and
multi-hierarchical systems, this paper proposes a comprehensive evaluation architecture
for the vibration signals of launch vehicle engines as shown in Figure 2.

The main structure of the overall process includes five main modules: spatial division
of health states, data prediction, evaluation set generation, weight analysis and fuzzy
comprehensive evaluation. Modular structure makes sense for the subsequent addition of
evaluation levels and factors. The data preprocessing part completes the outlier cleaning
and data format correction of the original data, which is the pre-step of vibration signal
trend prediction. Based on machine learning methods and deep neural networks, we
extract the continuous local dependencies in the timing signal by virtue of powerful
feature-learning ability and complete the prediction of long sequences. As an evaluation
index for health assessment, the evaluation set is combined with subjective experience
and objective data analysis. The evaluation set of 15 sequences, including six types of
vibration signals, was obtained by threshold statistical methods. Weight analysis was based
on analytic hierarchy process (AHP). The system of analysis and decision making was
decomposed into target layer, sub-layers and evaluation criteria. The weight set generation
is based on the weight analysis module, which generates the weight matrix required
in the fuzzy comprehensive evaluation. Launch vehicle engine systems are typically
fuzzy environments, in which details inside the system are difficult to fit mathematically.
Combining the historical experience of the experts and accurate prediction results makes
the assessment process more comprehensive.
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The health evaluation system for vibration signals of launch vehicle engines con-
structed in this article has the characteristics of objectivity, multi-layer and multiple factors,
and strong technology transfer ability. Based on artificial experience, combined with the
vibration signal depth prediction results, the historical experience of rocket testing is consid-
ered and the mathematical features that are difficult to summarize are excavated through
new technologies. At the same time, the multi-factor and multi-level characteristics also
make the evaluation process more comprehensive.

3. Multi-Layer Weight Generation

For the different types and sources of launch vehicle engine vibration signals, it can be
difficult to find the specific component where the fault occurred, and the impact of different
vibration types on the normal flight of the launch vehicle is different. Data reliability and
effectiveness of different sensors cannot be equal. Converting the degree of impact into
percentage weights under a uniform measure is necessary for assessing the vehicle’s state
of health.

3.1. Analytic Hierarchy Method

For the health value assessment of the launch vehicle engine system, we used a
quantitative analysis of multiple conditions and factors. The electrical environment inside
the launch vehicle engine is a typical giant system and a fuzzy environment. Therefore,
it is impossible to try to grasp the weight of each factor in the system relying on human
experience under the same weight standard. Based on historical data and a summary of
past failure modes, experts can obtain the weight relationship between two factors. The
impact of factor A on the entire system is quantified relative to factor B, but when there are
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many factors involved, experts cannot directly obtain the multi-level and the multi-factor
influence weight relationship.

Considering the hierarchical complexity of system equipment, a multi-layer, multi-
factor weight matrix is generated based on analytic hierarchy (AHP) method. The ana-lytic
hierarchy method was first proposed by American scientist T.L. Saaty in the 1970s [23] and
has been applied to network system theory and multi-objective comprehensive evaluations.
It mainly solves the decision-making problems of interrelated and mutually restricting
complex systems and is widely used in aerospace engineering, electrical engineering,
operations research and other fields.

The process using AHP to construct a rocket engine vibration signal model and obtain
the weights of each type of factor can be roughly divided into the following steps:

(1) Establish a hierarchical model according to the type and batch of launch vehicle engine
vibration signals;

(2) Based on historical statistics and expert experience, construct a judgment matrix
according to the weight relationship between factors in the same level, also known as
reciprocal matrices:

Aij =

a11 . . . a1n
...

. . .
...

an1 · · · ann

, aij > 0, aij × aji = 1 (1)

(3) Calculate the maximum eigen root λmax and eigenvector ω of the reciprocal matrix
according to the criteria: Aijω = λω to facilitate subsequent calculation;

(4) Normalize the feature vectors and calculate the weight values of all elements contained
in each layer separately. The weight calculation formula is as follows:

Wk =
∑n

j=1 akn

∑n
i=1 ∑n

j=1 aij
(2)

(5) Carry out a consistency test on the matrix. The credibility of the manually judged
matrix is tested; if there is a contradiction between the two weights of the elements,
the consistency test is not passed, and the credibility of the result of introducing the
artificially weighted positive and negative matrix is increased, with the consistency
index as follows:

CI =
λmax

n− 1(n > 1)
(3)

The consistency ratio is as follows:

CR =
CI
RI

(4)

When CR < 0.1, it is considered to have passed the test, and n is the established
system-level order;

(6) Generate subjective weight vectors.

3.2. Weight Generation

The corresponding table of consistency indicators is shown in Table 1.

Table 1. Consistency inspection RI indicators.

Number of Levels 1 2 3 4 5 6 7 8 9 10 11 . . .

RI 0 0 0.52 0.89 1.12 1.24 1.36 1.41 1.46 1.49 1.52 . . .
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The system weight allocation architecture in this paper is shown in Figure 3. Overall
system is summarized as follows: E = {E1, E2, E3, E4, E5, E6}, E1, E2, E3, E4, E5, E6 represent
POGO vibration, low-frequency vibration, high-frequency vibration, fluctuation, shock and
noise, respectively. We can see in the figure that the overall system is divided into three
levels, so n is 3. The corresponding immediate mean agreement metric RI = 0.52. The overall
hierarchy of the vibration signal of the ascent launch vehicle engine is divided into three
stages, in which the sub-target layer contains a weight vector: W(E1, E2, E3, E4, E5, E6). The
factor layer consists of the following six weight vectors: W1(E11, E12, E13), W2(E21, E22, E23),
W3(E31, E32), W4(E41, E42, E43), W5(E51, E52) and W6(E61, E62).
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The multi-level reciprocal matrix provided by the China Academy of Launch Vehicle
Technology is shown as Table 2. Due to space limitations, this paper only shows the
reciprocal matrix of the sub-target layer and a set of factor layers.

Table 2. Reciprocal matrix of sub-target layer.

POGO Low-FRE High-FRE Fluctuation Crush Noise

POGO 1 3/2 5 4/3 3 9

Low-FRE 2/3 1 3 3/4 2 6

High-FRE 1/5 1/3 1 1/4 2/3 2

Fluctuation 3/4 3/4 4 1 8/3 8

Crush 1/3 1/2 3/2 3/8 1 3

Noise 1/9 1/6 1/2 1/8 1/3 1

The reciprocal matrix, such as low-frequency vibration, is given in the same way,
as shown in Table 3. According to the AHP method, the sub-target layer weight is
W = (0.33, 0.20, 0.07, 0.27, 0.10, 0.03) and the maximum eigenvalue is 6.003449, so
CR = 0.000507, and the consistency test is passed. The weight vectors of each factor
under the six types of sub-goals are: W1 = (0.14, 0.29, 0.57), W2 = (0.14, 0.29, 0.57),
W3 = (0.33, 0.67), W4 = (0.14, 0.29, 0.57), W5 = (0.33, 0.67) and W6 = (0.33, 0.67).

Table 3. Reciprocal matrix of low-frequency signal.

Sensor Batch 1 2 3

1 1 1/2 1/4

2 2 1 1/2

3 4 2 1

After testing, the results of six groups of consistency tests passed. The weight experi-
ment results show that POGO vibration, fluctuation and low-frequency vibration have the
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greatest influence on the health state of the ascent section of the launch vehicle engine in
the sub-target layer. At the same time, according to the expert experience, the data after the
sensor batch can better reflect the authenticity and real time of the state, so the weight is
also higher, and the results are in line with the experts’ expectations.

4. Vibration Signal Trend Prediction

At present, most of the research on the health state of spacecraft such as launch
vehicles is concentrated on their real-time state. Data pre-processing, data measurement,
anomaly detection and other steps are used to complete real-time status assessments.
Real-time status assessments have a large delay and are of limited reference value to
ground-monitoring personnel. The rapid development of artificial intelligence technology
has greatly improved the efficiency and accuracy of data mining. Compared with the
real-time status assessment as mentioned above, the evaluation of the status of a launch
vehicle engine based on prediction data is of more guiding significance for risk prevention
and early warning.

4.1. Predict Generic Steps

The general forecasting process is divided into the following three steps:

(1) Data preprocessing: complete data cleaning of the original vibration data of the
launch vehicle;

(2) Model training: use algorithm models to train data;
(3) Model prediction and error calculation: predict the data waveform, save the data and

calculate the error value of the prediction, including RMSE, R2, and MAPE.

The RMSE formula is as follows:

RMSE =

√
1
N

n

∑
i=1

(Yi − f (xi))2 (5)

The MAPE formula is as follows:

MAPE =
100%

N

n

∑
i=1

∣∣∣∣ (Yi − f (xi))

Yi

∣∣∣∣ (6)

the R2 formula is as follows:

R2 = 1− ∑i(Yi − f (xi))
2

∑i

(
Yi − f (xi)

)2 (7)

Yi represents each acquisition value in the test data, f (xi) represents each collection
point of the prediction data, N represents the total number of collection points, and Yi
represents the average of real data.

R2 is the degree of model fitting, MAPE is the mean absolute percentage error and
RMSE is the root mean square error, reflecting the prediction accuracy of the algorithm
from multiple angles.

4.2. Predictive Models

We chose five types of algorithms, including LSTM (long short-term memory) [24],
GRU (gated recurrent unit) [25], LightGBM (light gradient-boosting machine) [26], WMA
(weighted moving average method) [27] and ARIMA (autoregressive integrated moving
average) [28] algorithms for experimentation. These five types of algorithms have been
widely used in industrial PHM. Among them, LSTM and GRU algorithms are typical neural
network algorithms, and LightGBM, WMA and ARIMA algorithms are classic machine
learning prediction algorithms. In this paper, a variety of algorithms are used to verify the
accuracy and versatility of the method on the vibration data of the launch vehicle.
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Since the launch vehicle is tested under a variety of vibration conditions, the collected
data are dynamically changing, and the correlation information between sampling points
is the key to data trend prediction. Compared with the RNN method, the LSTM method
improves the prediction ability of long-term data and solves the problem of gradient
explosion and gradient disappearance in the data-training process of RNN method. The
GRU method is a very effective variant of the LSTM network, which is simpler than the
structure of the LSTM network. LightGBM, WMA and ARIMA are typical machine learning
algorithms, which have been widely used in the industry and have been proven to have
good effect.

The prediction algorithm relies on TensorFlow and Keras frameworks, as well as basic
machine learning libraries to be completed. We used a Intel Core I7-11700k CPU and
NVIDIA GeForce Rtx3070 GPU. The software platform was Visual Studio Code 1.77.3. The
version of the algorithm dependency library is shown in Table 4.

Table 4. Library version for five algorithms.

LSTM, GRU Version ARIMA, WMA, LightGBM Version

TensorFlow2 2.4.0 Base -
Python 3.7.11 Python 3.6.5
Keras 2.8.0 statsmodels 0.12.2

NumPy 1.19.2 NumPy 1.19.5
Matplotlib 3.2.1 Matplotlib 3.3.4

Pandas 0.25.3 Pandas 1.1.5
- - Lightgbm 3.3.2

Table 5 shows the network structure and parameter settings of LSTM algorithm and
GRU algorithm.

Table 5. Model parameters of LSTM and GRU algorithms.

LSTM Layer Shape GRU Layer Shape

InputLayer (None, 5, 1) InputLayer (None, 5, 1)
Keras.LSTM (None, 20) Keras.GRU (None, 20)

Dense_1 (None, 40) Dense_1 (None, 40)
Dense_2 (None, 1) Dense_2 (None, 1)

batch_size 8 batch_size 8
epochs 20 epochs 20

Table 6 shows the network parameters of WMA and ARIMA algorithms.

Table 6. Model parameters of WMA and ARIMA algorithms.

WMA Index Shape ARIMA Index Value

Window_Size (int (Data_length/5), 5) Order (p, d, q) (2, 1, 2)

Table 7 shows the algorithm parameter settings for the LightGBM algorithm.

Table 7. Model parameters of LightGBM algorithms.

LightGBM Index Value

n_splits 10
learning_rate 0.1
max_depth 15
num_leaves 20

num_boost_round 300
early_stopping_rounds 30
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4.3. Predictive Results

Six types of signals are predicted based on five methods, and the error of the prediction
results is shown in Table 8. The prediction effect is shown in Figure 4.
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Table 8. Prediction results using RMSE, MAPE and R2 as error indicators.

Method LSTM ARIMA GRU LightGBM WMA

Index RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2

POGO
0.002 0.623 0.535 0.005 0.002 −0.975 0.002 0.001 0.477 0.003 0.001 0.366 0.002 0.0016 0.436
0.003 0.794 0.425 0.205 0.003 −0.830 0.002 0.740 0.645 0.003 0.001 0.427 0.002 0.001 0.460
12.061 351.247 0.522 58.204 4.385 10.146 11.034 0.668 0.600 13.422 0.668 0.408 11.444 0.617 0.570

Low-FRE
0.005 19.168 0.992 0.632 0.404 −111.457 0.010 0.006 0.969 0.008 0.006 0.980 0.030 0.009 0.985
0.0827 14.453 0.199 0.098 0.0433 −0.151 0.056 0.020 0.632 0.082 0.020 0.208 0.070 0.026 0.384
0.007 3.366 0.397 0.025 0.016 −6.086 0.007 0.005 0.378 0.007 0.005 0.458 0.008 0.006 0.235

High-FRE 0.125 38.464 0.633 0.349 0.168 −1.882 0.125 0.049 0.634 0.120 0.049 0.665 0.142 0.053 0.527
0.593 131.832 0.564 1.160 0.386 −0.680 0.586 0.168 0.575 0.641 0.168 0.492 0.590 0.167 0.569

Fluctuation
3.362 214.379 0.431 5.337 0.472 −0.129 3.327 0.293 0.567 3.717 0.293 0.459 4.425 0.331 0.230
2.669 179.791 0.506 4.020 0.714 −0.138 2.464 0.199 0.579 2.924 0.199 0.407 3.024 0.177 0.362
1.722 324.107 0.709 14.1562 2.800 −18.932 1.671 0.280 0.726 1.824 0.280 0.674 1.865 0.245 0.657

Shock
514.729 28.136 0.847 5942.834 0.883 −18.372 779.443 0.078 0.649 536.688 0.078 0.834 146.726 0.017 0.988
5.730 119.204 0.644 13.460 0.643 −0.688 5.672 0.397 0.65 5.137 0.397 0.714 5.138 0.410 0.732

Noise
18.948 8.218 −16.553 14.555 0.107 −9.414 3.529 0.007 0.391 1.197 0.007 0.9305 1.923 0.011 0.820
6.347 2.733 −0.008 10.866 0.075 −0.803 10.047 0.026 −1.526 5.131 0.026 0.341 5.317 0.031 0.463

According to Table 8 and Figure 4, the GRU algorithm has the best prediction effect
for longer sequences among the five types of algorithms experimented in this paper. The
LightGBM algorithm has the most balanced prediction effect for long and short sequences.
The prediction effects of weighted moving average algorithm and LSTM on long and short
series are also relatively balanced. Due to the short sequence length, the ARIMA algorithm
has the worst fit and the lowest prediction accuracy in this experiment.

5. Calculate Health State Space Based on Boxplot Method

The evaluation set generation is mainly based on the predicted data waveform, not
the prediction error. The common method is based on the root mean square error (RMSE)
of the prediction result, combined with the membership function to the final result of the
prediction RMSE fuzzing and defusing. As shown in Figure 5, it is the commonly used
trapezoidal membership degree function.
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Figure 5. Schematic diagram of the traditional membership function method.

We define the abscissa threshold corresponding to multiple types of evaluation indica-
tors according to expert experience: a1, a2, a3, a4, b2, b3, b4, b5. However, this conventional
approach is suitable for situations in which the output is difficult to analyze and the eval-
uation value is difficult to determine. It is a method of approaching the final evaluation
indicator as closely as possible when dealing with ambiguity. The actual data used in this
article is no longer ideal. The data structure that should be used as a criterion for evaluating
the membership function is still vague. At the same time, the threshold of the membership
function is more difficult to grasp, and there is no unified evaluation benchmark with the
prediction data.

5.1. Boxplot Principle and Design Steps

The boxplot method was invented by the famous American statistician John Tukey
and describes the distribution standard of data through five numbers: upper whisker, first
quantile (Q1), median (Median), third quantile (Q3) and lower whisker. This method can
clearly show the overall distribution of data and outlier information. The interquartile
range (IQR: Q3-Q1) is the key computational datum, defined as the difference between the
third quartile and the first quartile, and the overall data can be divided autonomously by
setting the quarterback spacing and IQR coefficient. Through the boxplot method, we can
easily analyze the distribution of vibration signal data. The upper and lower limits of data
under normal working conditions are obtained and used as the basis for the division of
engine state space.

The healthy state space calculation process is as follows:

(1) Read data;
(2) Perform data sorting, calculating the first quantile (Q1), median (Median) and third

quantile (Q3);
(3) Calculate the IQR of the quartile difference;
(4) Calculate the upper whisker: (Q3 + 1.5 × IQR) and lower whisker: (Q1 − 1.5 × IQR);
(5) Set the coefficient and divide the healthy state interval.

The normal working condition data without setting vibration conditions were experi-
mented according to the boxplot calculation steps, and the quartiles of multiple batches
of six types of vibration signals were measured. As the same time, we calculate the upper
and lower limit values to obtain the preliminary health range of the evaluation, using this
range as a reference limit.

The boxplot analysis of six types of vibration signals under normal working conditions
is carried out as shown in Figure 6:
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Figure 6. Boxplot analysis of six types of vibration signals under normal working conditions.

The upper and lower limits of the data obtained by the analysis are shown in Table 9.

Table 9. Boxplot analysis results.

Evaluation Index Q1 Q3 IQR Upper Whisker Lower Whisker

POGO
0.00033 0.00192 0.00159 0.004311 −0.002059
0.00043 0.00197 0.00155 0.004293 −0.001894
7.23250 20.64000 13.40750 40.75125 −12.878750

Low-FRE
0.34259 0.51403 0.24975 0.888657 −0.032034
0.03875 0.08733 0.04858 0.160188 −0.034113
0.01493 0.03593 0.02100 0.06743 −0.016573

High-FRE 0.19508 1.46291 1.26783 3.364663 −1.706674
0.41815 1.09954 0.68138 2.121609 −0.603918

fluctuation
0.89775 3.10775 2.21000 6.42275 −2.417250
0.32800 0.83250 0.50450 1.58925 −0.428750
1.65750 5.71250 4.05500 11.795 −4.425000

Shock
1458.52925 2113.22075 654.69150 3095.258 476.492000

2.08061 12.68086 10.60025 28.58124 −13.819764

Noise
103.58910 119.63305 16.04395 143.699 79.523175
120.62943 126.47000 5.84058 135.2309 111.868563
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5.2. State Space Division Based on Boxplots

According to the expert experience, the set of healthy comments is {Excellent, Good,
Normal, Bad, Deterioration}, corresponding to each color block, as shown in Figure 7. The
green line represents the predicted data of the vibration signal, and the black line represents
the actual vibration data.

Aerospace 2023, 10, x FOR PEER REVIEW 15 of 19 
 

 

0.01493  0.03593  0.02100  0.06743 −0.016573  

High-FRE 
0.19508  1.46291  1.26783  3.364663 −1.706674  
0.41815  1.09954  0.68138  2.121609 −0.603918  

fluctuation 
0.89775  3.10775  2.21000  6.42275 −2.417250  
0.32800  0.83250  0.50450  1.58925 −0.428750  
1.65750  5.71250  4.05500  11.795 −4.425000  

Shock 
1458.52925 2113.22075 654.69150 3095.258 476.492000  

2.08061  12.68086  10.60025 28.58124 −13.819764  

Noise 
103.58910  119.63305  16.04395 143.699 79.523175  
120.62943  126.47000  5.84058  135.2309 111.868563  

5.2. State Space Division Based on Boxplots 
According to the expert experience, the set of healthy comments is {Excellent, Good, 

Normal, Bad, Deterioration}, corresponding to each color block, as shown in Figure 7. The 
green line represents the predicted data of the vibration signal, and the black line repre-
sents the actual vibration data. 

The boundary waveform amplitudes of the signal before the vibration condition oc-
curs are the upper whisker and lower whisker, the total number of sampling points of the 
test data is 𝑁, the upper and lower thresholds of the reference waveform are set to 𝑈 , 𝐷 (0 < 𝑖 <= 4), respectively, and the number of points in each threshold interval is 𝑛 . 

Time

Amptitude

U4

U3

U2
U1

D2

D3
D4

D1

 
Figure 7. Evaluation set generation method, dividing threshold schematic diagram. 

The state space threshold set by expert experience is as follows: 𝐷1 = 𝐿𝑜𝑤𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟 𝐷2 = 𝐿𝑜𝑤𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟 − 0.2 × 𝑎𝑏𝑠(𝐿𝑜𝑤𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟) 𝐷3 = 𝐿𝑜𝑤𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟 − 0.5 × 𝑎𝑏𝑠(𝐿𝑜𝑤𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟) 𝐷4 = 𝐿𝑜𝑤𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟 − 1 × 𝑎𝑏𝑠(𝐿𝑜𝑤𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟) 𝑈1 = 𝑈𝑝𝑝𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟 𝑈2 = 𝑈𝑝𝑝𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟 + 0.2 × (𝑈𝑝𝑝𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟) 𝑈3 = 𝑈𝑝𝑝𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟 + 0.5 × (𝑈𝑝𝑝𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟) 𝑈4 = 𝑈𝑝𝑝𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟 + 1 × (𝑈𝑝𝑝𝑒𝑟 𝑤ℎ𝑖𝑠𝑘𝑒𝑟) 
The status range is set to: 𝜑 (0 < 𝑗 <= 5), where 𝜑  stands for excellent status, 𝜑  

stands for good condition, and so on. Each health state space corresponds to a score. 

⎩⎪⎨
⎪⎧𝜑 , 𝐷 < 𝜑 <= 𝑈𝜑 , 𝑈 < 𝜑 ≤ 𝑈 ||𝐷 < 𝜑 ≤ 𝐷𝜑 , 𝑈 < 𝜑 ≤ 𝑈 ||𝐷 < 𝜑 ≤ 𝐷𝜑 , 𝑈 < 𝜑 ≤ 𝑈 ||𝐷 < 𝜑 ≤ 𝐷𝜑 , 𝜑 < 𝐷 ||𝑈 < 𝜑  (8)

Figure 7. Evaluation set generation method, dividing threshold schematic diagram.

The boundary waveform amplitudes of the signal before the vibration condition
occurs are the upper whisker and lower whisker, the total number of sampling points of
the test data is N, the upper and lower thresholds of the reference waveform are set to Ui,
Di(0 < i <= 4), respectively, and the number of points in each threshold interval is ni.

The state space threshold set by expert experience is as follows:

D1 = Lower whisker
D2 = Lower whisker− 0.2× abs(Lower whisker)
D3 = Lower whisker− 0.5× abs(Lower whisker)
D4 = Lower whisker− 1× abs(Lower whisker)
U1 = Upper whisker
U2 = Upper whisker + 0.2× (Upper whisker)
U3 = Upper whisker + 0.5× (Upper whisker)
U4 = Upper whisker + 1× (Upper whisker)

The status range is set to: ϕj(0 < j <= 5), where ϕ1 stands for excellent status,
ϕ2 stands for good condition, and so on. Each health state space corresponds to a score.

ϕ1, D1 < ϕ <= U1
ϕ2, U1 < ϕ ≤ U2||D1 < ϕ ≤ D2
ϕ3, U2 < ϕ ≤ U3||D2 < ϕ ≤ D3
ϕ4, U3 < ϕ ≤ U4||D3 < ϕ ≤ D4
ϕ5, ϕ < D4||U4 < ϕ

(8)

Each individual evaluation P in the evaluation set matrix is counted by the state inter-
val of each sampling point of the prediction data, and the percentage is scored according to
the interval probability:

Pi =
ni
N

(9)

We followed the steps above to complete the evaluation set generation experiment.
Due to space limitations, only the evaluation set of LSTM and GRU algorithms is displayed.
Table 10 is the evaluation set of LSTM, and Table 11 is the evaluation set of GRU. Table 12
is the evaluation set of real test data.
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Table 10. The valuation probability of waveform predicted by LSTM method.

Evaluation Index Batch Excellent Good Normal Bad Deterioration

POGO
1 0.937 0.012 0.003 0.013 0.035
2 0.849 0.05 0.038 0.028 0.035
3 0.972 0.013 0.015 0 0

Low-FRE
1 1 0 0 0 0
2 0.975 0.003 0.003 0.006 0.013
3 1 0 0 0 0

High-FRE 1 1 0 0 0 0
2 0.936 0.028 0.019 0.013 0.004

fluctuation
1 0.965 0.003 0.013 0.013 0.006
2 0.934 0.009 0.009 0.006 0.042
3 0.991 0.003 0.006 0 0

Shock
1 0 0 0 0.464 0.536
2 0.95 0.05 0 0 0

Noise
1 1 0 0 0 0
2 0.982 0.018 0 0 0

Table 11. The valuation probability of waveform predicted by GRU method.

Evaluation Index Batch Excellent Good Normal Bad Deterioration

POGO
1 0.937 0.009 0.013 0.025 0.016
2 0.896 0.006 0.019 0.01 0.069
3 0.965 0.01 0.016 0.009 0

Low-FRE
1 1 0 0 0 0
2 0.978 0.009 0.003 0.003 0.007
3 1 0 0 0 0

High-FRE 1 1 0 0 0 0
2 0.943 0.025 0.013 0.016 0.003

fluctuation
1 0.968 0 0.013 0.006 0.013
2 0.921 0.013 0.013 0.009 0.044
3 0.991 0.003 0.006 0 0

Shock
1 0 0 0 0.568 0.432
2 0.942 0.041 0.017 0 0

Noise
1 1 0 0 0 0
2 0.582 0.418 0 0 0

Table 12. The evaluation probability of the test data waveform.

Evaluation Index Batch Excellent Good Normal Bad Deterioration

POGO
1 0.916 0.022 0.009 0.013 0.04
2 0.866 0.031 0.025 0.031 0.047
3 0.919 0.034 0.016 0.025 0.006

Low-FRE
1 1 0 0 0 0
2 0.972 0.003 0 0.009 0.016
3 1 0 0 0 0

High-FRE 1 1 0 0 0 0
2 0.944 0.009 0.025 0.018 0.004
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Table 12. Cont.

Evaluation Index Batch Excellent Good Normal Bad Deterioration

fluctuation
1 0.972 0 0.016 0.003 0.009
2 0.937 0.003 0.012 0.009 0.039
3 0.982 0.006 0.006 0.006 0

Shock
1 0 0 0.454 0.315 0.231
2 0.896 0.056 0.048 0 0

Noise
1 0.967 0.033 0 0 0
2 1 0 0 0 0

6. Fuzzy Comprehensive Assessment
6.1. Principles and Steps of Fuzzy Comprehensive Assessment

The fuzzy comprehensive evaluation method has the advantages of clear results
and strong systematization, which is suitable for a more comprehensive and in-depth
evaluation of multi-level and multi-factor objects in a fuzzy environment. A large number
of expert systems used in spacecraft health management use historical experience to build
a knowledge base and make system evaluations more intelligent through extrapolation,
mapping and other methods. However, in fact, the unstable working conditions of the
launch vehicle engine have a strong relationship with the launch environment and flight
trajectory. At the same time, the frequent iteration of launch vehicle engine technology and
technology has not led to the rapid replenishment of the expert system knowledge base, so
the evaluation method based on expert systems is not universal, accurate or comprehensive.

The weight set and evaluation set calculated from the above chapters are two parallel
inputs for the fuzzy comprehensive evaluation method. The evaluation steps of the fuzzy
integrated assessment method are as follows:

(1) Establish the overall structure of the research objectives and create a multi-level
structure to facilitate subsequent bottom-up evaluation;

(2) Create a set of healthy comments: M = m1, m2 · · ·mn based on the actual object. In
Section 5.2, we have set M = {Excellent, Good, Normal, Bad, Deterioration};

(3) Obtain the weight matrix W for the factors in each level and the evaluation matrix V
of the underlying signal;

(4) Perform fuzzy evaluation operations to obtain the fuzzy evaluation vector of the
target layer as follows:

B = V·W (10)

(5) According to the needs of the project, assign the scores that can be obtained for each
type of evaluation and generate a score vector F;

(6) Calculate statistical health score, which is the health of the system.

6.2. Scoring Rocket Engine Health Based on Fuzzy Comprehensive Assessment

From above experiment, we can obtain the evaluation matrix: V = v1, v2 · · · v15 and
the weight matrix: W = w, w1, w2, · · ·w6. vi represents the single evaluation vector of the
underlying factor layer, w represents the sub-target layer weight vector and wi represents
the weight vector for each type of vibration signal.

The score set is set to F = (1.0, 0.8, 0.6, 0.4, 0.1). Therefore, the health evaluation vector
of the target layer launch vehicle engine system under the multi-accumulation vibration
signal is shown below:

B1 = V1·W = (0.9147527, 0.0162116, 0.0276562, 0.0217725, 0.019607),
B2 = V2·W = (0.9283326, 0.0142635, 0.0097813, 0.0205111, 0.0271115),
B3 = V3·W = (0.9225356, 0.0171939, 0.0097839, 0.0244048, 0.0260818),
B4 = V4·W = (0.9046016, 0.0218023, 0.0159968, 0.0279747, 0.0296246),
B5 = V5·W = (0.907329, 0.0259781, 0.0239845, 0.0145357, 0.0281727),
B6 = V6·W = (0.9059601, 0.0243209, 0.0146304, 0.028609, 0.0264796).
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The health score calculation formula is: B·F, the real data health score is 95.6946, the
prediction evaluation result is shown in Table 13 and the minimum error is 0.0193%. The
status is in line with expert experience.

Table 13. Health evaluation value and evaluation error of five kinds of algorithms.

LSTM ARIMA GRU LightGBM WMA TRUE

Evaluation Value 95.9239 95.3951 95.7139 94.8756 95.0935 95.6946

Percentage of error (%) 0.2243 0.2995 0.0193 0.8190 0.0611 0

7. Conclusions

This paper proposes a predictive evaluation method for a launch vehicle engine. This
method has the advantages of being objective as well as having a high amount of precision
and strong versatility. Compared with the membership function method commonly used
in the traditional method, the method based on the boxplot principle is adopted to obtain a
higher evaluation accuracy. Combined with the AHP method, the weight factors of various
vibration signals are obtained, and the evaluation process is not overly dependent on expert
experience. Finally, the fuzzy comprehensive evaluation method is used to obtain the
health value of the launch vehicle engine from the bottom up, which is suitable for complex
fuzzy systems. The experiment with actual data verified that the method has a high level
of accuracy.

The method proposed in the paper has important guiding significance for the healthy
evaluation and management of launch vehicles and can effectively reduce the state moni-
toring pressure of ground survey personnel. At the same time, the preprocessing method
of data sampling makes the algorithm lightweight, and, combined with a high-precision
data prediction effect, it is suitable for synchronous operations during the launch period.
We obtained a health score through the five steps of the spatial division of health states,
data prediction, evaluation set generation, a weight analysis and fuzzy comprehensive
evaluation, which is a convenient method for ground-monitoring personnel to accurately
grasp the flight status of a rocket after launch and can be used in the formulation of
flight strategies.
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