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Abstract: This study determines the mean and fluctuating pressures for flow through a rectangular
shallow cavity (ratio between the length and the depth = 2.43, 4.43, and 6.14; ratio between the length
and the width = 0.5, 1.0, and 2.0) at a Mach number of 0.64 in a blowdown transonic wind tunnel. A
amplitude modulation analysis is used for the post-processing of the fluctuating pressure signals.
The spectral analysis (wavelet) shows the intermittent behavior of the discrete Rossiter–Heller modes.
A correlation analysis determines that mode switching is more significant between the second and
third modes (organized structures that are associated with shear layer vortices), particularly for
two-dimensional and shallower cavities.
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1. Introduction

A cavity flow is characterized by the distribution of the longitudinal surface pressure
on the cavity floor [1–3]. The type of flowfield (open, transitional, or closed) is primarily
a function of the ratio between the length, l, and the depth, h (l/h). For an open cavity
flow (l/h < 6–8), an unsteady shear layer spans the cavity and impinges near the trailing
edge [4,5]. There is a uniform longitudinal pressure distribution on the cavity floor. Two
distinct separation regions form downstream of the front face and upstream of the rear
face in a closed cavity flow (l/h > 10–15). The ratio between l and the width, w, (l/w) also
characterizes a cavity flowfield [6]. The degree of three-dimensionality is associated with
the value of l/w, which results in a spanwise oscillation for allocation at which there is
shear layer impingement [7].

Landing gear wells or weapon bays are classified as open cavities. The incoming
boundary layer separates at the leading edge, and the shear layer rolls up into vortices.
The flow is subject to global instabilities (Kelvin–Helmholtz instabilities) because there is a
difference in the velocity of the freestream and the velocity of the fluid inside a cavity [8].
Large-scale vortical structures are subject to convection downstream and attach near the
trailing edge. Acoustic waves then propagate upstream toward the cavity’s front face and
disturb the upstream shear layer to create another vortex. This is known as a feedback loop
(downstream convection instabilities and upstream propagating acoustic waves), which
leads to self-sustained oscillations and discrete tones [9]. The pressure fluctuations for
an open cavity flow are considerably greater than those for a closed cavity flow. There is
intrinsic unsteadiness in the recirculation region because of the instabilities in the shear
layer and oscillations that originate in the transverse dimension of the cavity [10].

Rossiter [11] proposed a semi-empirical formula to calculate non-harmonic modal
frequencies. Heller and Bliss [12] determined that the temperature in an open cavity flow
affects the speed of sound. The empirical Rossiter–Heller (R–H) equation (Strouhal number,
Stn) is written as Equation (1).
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Stn =
fnl
U∞

=
n− α

M
(

1 + γ−1
2 M2

)− 1
2
+ 1

kc

(1)

where n is the number of discrete modes. fn and U∞ are the discrete modal frequency and
the freestrem velocity, respectively; the empirical parameters (kc and α) vary with cavity
geometry and freestream Mach number, M [13], kc (=0.50–0.75) is the ratio of the perturbed
convective velocity and U∞. α (=0.25 or 0.062 l/h) is the phase lag (expressed as a fraction
of wavelength), which corresponds to the lag time between the passage of a vortex and the
emission of an acoustic pulse [14].

The spectral characteristics of resonance in an open cavity flow are defined using a
short-time Fourier transform [15–17]. The first R–H mode (R1) corresponds to large-scale
motions in the shear layer and in the vicinity of the recirculation region. The second and
third R–H modes (R2 and R3) feature organized structures that are associated with shear
layer vortices [18]. However, the R–H modes do not necessarily occur simultaneously, and
the dominant energy can vary with time (a process for temporally dominant energy shifts
or mode switching).

Kegerisea et al. (M = 0.04–0.8) [19] used a wavelet transform to determine mode
switching. The R–H modes do not exhibit strong nonlinear coupling, as verified by the
study by Pandian et al. (M = 1.8) [20]. Gloerfelt et al. (M = 0.4–0.8) [21] determined that
there is switching between R1 and R2 for cavity oscillations. Bacci et al. (M = 0.81) [10]
showed that the energy distribution is rearranged between the R–H modes. Observations
of the velocity and pressure fields showed that the ability to detect mode switching is
dependent on the location within the cavity and the R–H mode number [18].

Mode switching is an evolving research field for the dynamics of flow in an open
cavity. However, there is very limited data on this unstable phenomenon. This study
uses time-frequency analysis for the post-processing of fluctuating pressure signals that
are recorded on the floor of rectangular cavities at M = 0.64. The effect of l/h and l/w
(degree of three-dimensionality) on the mode amplitude over time is determined, as is the
intermittent nature of the R–H modes. Mode switching is quantified using an amplitude
demodulation technique and correlation coefficients. Before discussing the results, details
of the experiment setup are outlined next.

2. Experimental Setup
2.1. Transonic Wind Tunnel

The experiments were conducted in a blowdown-type wind tunnel at the Aerospace
Science and Technology Research Center, National Cheng Kung University (ASTRC/NCKU).
The facility has two compressors, two air dryers, three storage tanks (volume = 180 m3)
that allow a maximum pressure of 5.15 MPa, a hydraulic system, and a tunnel (a stilling
chamber, a nozzle, and a test section). The test section within a plenum chamber is 600 mm
square and 1500 mm in length. Acoustic waves in the test section are mitigated by using
solid sidewalls, perforated top and bottom walls (inclined holes with 6% porosity). A
rotary perforated sleeve valve controls the stagnation pressure, po, which ranges from 137.8
to 344.5 kPa. The stagnation temperature is room temperature. The operational Mach
number is 0.2–1.4, and the maximum Reynolds number is 3.5× 107 per meter. The test
conditions are monitored and recorded using a National Instruments system (NI PXIe-8840
RT, PXI-7846, PXI-6511, and PXI-6513; Austin, TX, USA).

2.2. Test Model

The test model was a 450-mm-long flat plate with a 4◦ sharp leading edge and a
180-mm instrumentation plate with an open cavity. Pressure taps were machined along the
centerline of the rectangular cavities (upstream/downstream locations and cavity floor), as
shown in Figure 1. The model was supported by a single foot that was fixed to the bottom
wall of the test section. A turbulent boundary layer developed naturally upstream of an
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open cavity. The normalized boundary layer profile using a Pitot probe and a transversing
device was in the 1/7 velocity power law [22].

Six cavity models were fabricated. The geometry for each cavity is shown in Table 1.
For cavities 1–3, the value of h (=7 mm) was fixed and the value of l (=17–43 mm) was
varied, which corresponds to a specific value for l/h of 2.43, 4.43, and 6.14 (open-type
cavities). The value of l/w is an indication of the degree of three-dimensionality of a cavity
flow [6]. The value of w was varied for the same value for l (=43 mm) and h (=9.7 mm) for
cavities 4–6 (l/h = 4.43). The values for l/w were 0.5, 1.0, and 2.0. Side fences on both sides
of the instrumentation plate were used to prevent crossflow.
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Table 1. Cavity dimensions.

Cavity l h w l/h l/w

1 17 7 17 2.43 1
2 31 7 31 4.43 1
3 43 7 43 6.14 1
4 43 9.7 86 4.43 0.5
5 43 9.7 43 4.43 1
6 43 9.7 21.5 4.43 2

2.3. Instrumentation and Data Acquisition System

The value of M was 0.64 ± 0.01. The stagnation pressure, p0, was 172 ± 0.5 kPa, and
the stagnation temperature was room temperature. The boundary layer thickness, δ, at
475 mm from the leading edge was 7.3 ± 0.2 mm [23], and the Reynolds number, Reδ, was
1.63 × 105.

Mean and fluctuating surface pressures were measured using flush-mounted Kulite
pressure transducers (Model XCS-093-25A, B screen; Leonia, NJ, USA), which were powered
by a DC power supply (GW Instek PSS-3203; Taipei, Taiwan) of 10.0 V. The nominal
outer diameter of the Kulite sensors is 2.36 mm, and the sensing element is 0.97 mm in
diameter. Crocos [24] showed that the sensitive area of a pressure transducer limits the
temporal resolution of pressure signals. For a convection velocity of 0.8 U∞, the maximum
measurable frequency for this study is approximately 63 kHz. External amplifiers (Ectron
Model 753A; San Diego, CA, USA) with a gain of 20 were used to increase the signal-to-
noise ratio. A National Instruments device (NI PXI-6123; Austin, TX, USA) triggered all
input channels and recorded data. The sampling rate was 5 µs (200 ksamples/s).

2.4. Mean and Fluctuating Pressure Coefficients

Each measurement consisted of 131,072 data points that were divided into 32 subsets.
The mean and fluctuating pressures are determined using Equations (2) and (3):

−
p, pw =

1
N ∑N

j=1 p
(
tj
)

(2)
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σp =

√
1

N − 1∑N
j=1

[
p
(
tj
)
− −p

]2
(3)

where p
(
tj
)

is the instantaneous pressure signal, and N is the number of data points.
The uncertainty is determined for flow through a flat plate. The respective values for

the mean, Cp (=(pw − p∞)/q), and fluctuating pressure, Cσp (=(σp − σp,∞)/q), coefficients are
0.43% and 0.13% [23], q is the dynamic pressure, and the subscript ∞ denotes the freestream
value.

2.5. Spectral Analysis

For a set of pressure signals, pn
(
tj
)
, that are sampled using a time step of ∆t, the

discrete Fourier transform is defined as:

pn( fk) = ∑N
j=1 pn

(
tj
)
·e−

2πkji
N (4)

where n = 1, 2, 3, . . . , 32, j = 1, 2, 3, . . . , 4096 (N)
The one-side power spectral density (PSD) is:

PSDn( fk) =
2

fs·N
·pn( fk)·pn

∗( fk), k = 1, 2 . . . ,
N
2
+ 1 (5)

where fk =
〈

0, 1, 2, . . . N
2

〉
· fs

2N
The PSD analysis uses 31 subsets with a 50% overlap, and a Hanning window is

used to reduce leakage effects. The frequency resolution is 48.8 Hz. The ensemble PSD is
determined by averaging the values for all subsets.

Wavelet analysis is a generalization of the time-frequency transform and is used
to identify dynamic structures in both time and space (intermittent and non-stationary
signals) [25]. It projects a signal into a set of base functions, which are wavelets. A
continuous wavelet transform is defined as:

W(τ, a) =
∫ ∞

−∞
p(t)·Ψ∗a,τ(t)dt (6)

where Ψ∗a,τ(t) is the wavelet function and the asterisk represents the complex conjugate. A
Morlet mother wavelet is used:

Ψ∗a,τ(t) = a−1/2e
jωψ(

t−τ
a )·e−(

t−τ
a )

2/2 (7)

where a > 0 is the scale, and τ is the time delay. The mother wavelet is normalized by
a−1/2 to ensure that all sets of the mother wavelet with different scales have the same
energy. Torrence and Compo [26] showed that a wavelet transform can be represented by
an inverse Fourier transform, as shown in Equation (8):

W(t, a) =
∫ ∞

−∞
p(τ)·a−

1
2 e
− ( τ−t

a )
2

2 ·e−jωψ(
τ−t

a ) (8)

The term a−1/2e
−( τ−t

a )
2/2

is similar to a moving Gaussian window function. The local
scale, a, determines the peak amplitude and the decay rate, which are correlated with
frequencies. Equation (9) shows that small scales have a higher resolution in terms of time
but a lower resolution in terms of because −∆ f / f is a constant (a constant percentage
bandpass filter):

1
f
=

4π

ω +
√

2 + ω2

1
a

(9)
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2.6. Amplitude Demodulation Technique

The joint time-frequency analysis shows that interactions can occur between the R–H
modes in an open cavity flow [10,18,21], but it is difficult to quantify mode switching.
However, if there is energy transfer between the R–H modes, mode switching can be
quantified using amplitude demodulations. These modulations result in a transfer of energy
to the sidebands of spectral peaks and contribute to a broadening of the spectrum [27].

According to Equation (1), the surface pressure fluctuating signal p′(t) is a combination
of the amplitude of the R–H modes and the broadband noise, z(t), as follows:

p′(t) = ∑m
1 Am·cos (2π fmt + ρm) + z(t), m = 1, 2, . . . (10)

where Am and ρm are the respective amplitude and the phase as a function of time. Multi-
plication by a complex exponential at the modal frequency of interest, fk,

p′(t)·e−i(2πt fk) = ∑
Am

2

[
ei(2πt( fm− fk)+ρm) − e−i(2πt( fm+ fk)+ρm)

]
+ z(t)·e−i(2πt fk) (11)

Each component at a given value for fk is shifted down to frequency (fm − fk). A
low-pass filter (LPF) is then used to separate the frequencies.

Equation (12) defines the relationship between the first three R–H modes [11], which
is

f2 ≈ 2.33 f1, f3 ≈ 3.66 f1(M = 1.5 ∼ 0.3) (12)

The cut-off frequency for a LPF is used to isolate the energy that is near the frequency
of interest. An example of the amplitude demodulation for l/h = 6.14 is shown in Figure 2.
The red lines represent fluctuations for the first three R–H modes, and the blue lines
correspond to the variation in amplitude with time. There is an increase in the modal
frequency for a higher mode. For upstream propagating acoustic waves, the wave length,
λi, is determined as a/fi, where a is the speed of sound. The value of l is approximately
2λ1, 4λ2, or 6.7λ3. The coupling between R–H modes and acoustic waves would result
in greater amplitude for the first and second modes. The standard deviation of the R–H
modes, CA,Rossiter, is determined using the amplitude, Aj, for the first three R–H modes
(blue lines), as shown in Equation (13).

σRossiter =

√
1

N − 1∑N
j=1

[
LPF

{
p′(t j

)}
]
2
=

√
1

N − 1∑N
j=1

[
Aj
]2

CA,Rossiter =
(
∑3

i=1 σRossiter,i)/q (13)

Spearman’s correlation coefficient , γij, (Equation(14)) [28] is used to quantify mode
switching between the R–H modes (blue lines in Figure 2). If the correlation coefficient is
negative, there is a decreased monotonic trend between the R–H modes.

γij =
cov
(

R(Ai), R(A j

))
σR(Ai)

σR(Aj)
i, j = 1, 2, . . . ; i 6= j (14)

where cov
(

R(Ai), R
(

Aj
))

is the covariance of rank variables and σR(Ai)
and σR(Aj)

are the
standard deviation for rank variables.
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Figure 2. Amplitude demodulation for the R–H modes for l/h = 6.14.

3. Results and Discussion
3.1. Mean and Fluctuating Pressure

The distribution of Cp along the centerline for cavities 1–3 (l/w = 1.0) is shown in
Figure 3a. The horizontal axis is the normalized streamwise location, x* (=x/l), and the ori-
gin is at the front face on the cavity floor. There is a decrease in the value of Cp downstream
of the front face, particularly for l/h = 2.43, followed by an increase further downstream
because the shear layer diffuses (expansion) and is deflected (compression) [29]. The value
of Cp decreases near the rear face, and there is a recovery process downstream. The effect
of l/w on the Cp distribution is shown in Figure 3b. For l/h = 4.43 (cavities 4–6), there is
a similar effect on the distribution of Cp as l/w varies. For l/w = 2.0, an increase in the
degree of three-dimensionality affects the Cp distribution. There is an increase in the value
of Cp upstream of the front face and a decrease on the cavity floor. The pressure gradient is
reduced near the rear face because the spanwise velocity is greater [30].
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Figure 4a shows the distribution of Cσp for l/w = 1.0 (cavities 1–3, h = 7 mm). There
is a flatter distribution of Cσp for l/h = 2.43. For l/h = 4.43 and 6.14, expansion over the
leading edge causes damping downstream of the front face (a lower value in Cσp ). Self-
sustained oscillations (downstream convection instabilities and upstream propagating
acoustic waves) result in a peak value of Cσp , Cσp ,max, near the rear face, which corresponds
to the shear layer impingement and the process for mass addition/removal. It is also noted
that there is a decrease in the value of Cσp for l/h = 4.43 downstream of the rear face.

The effect of l/w (cavities 4–6, l/h = 4.43, h = 9.7 mm) is shown in Figure 4b. The
distribution of Cσp is approximately the same as that for l/w = 0.5 and 2.0. The value of Cσp

is less on the cavity floor for l/w = 1.0. An increase in the three-dimensionality (l/w = 0.5)
results in a greater value in Cσp . For cavities 2 and 5 (l/h = 4.43; l/w = 1.0), an increase in
the value of h results in greater Cσp downstream of the rear face. This implies the effect of
h/δ on the shear layer impingement and the process for mass addition/removal.

The effect of l/h on Cσp ,max for l/w = 1.0 (cavities 1–3, h = 7 mm) is shown in Figure 5a.
An increase in the value of l/h induces stronger self-sustained oscillation, so the value of
CA,Rossiter increases. This shows that the first three R–H modes dominate self-sustained
oscillations for an open cavity flow. For l/h = 4.43, variation in the value of l/w (cavities
4–6, h = 9.7 mm) has a minor effect on the amplitude of Cσp ,max, as shown in Figure 5b.
There is a decrease in the value of CA,Rossiter as l/w increases. This indicates that variation
in Cσp ,max depends on the value of l/h and the first three R–H modes are more dominant as
the value of l/w decreases.
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3.2. Spectral Analysis

The frequency of the R–H modes, which is calculated using Equation (1), is shown in
Table 2a. There is a decrease in the value of the first three R–H modes (f 1, f 2, and f 3) as l
increases. The modal frequencies are also determined using fluctuating pressure signals,
and the results are shown in Table 2b. This experimental data is in reasonable agreement
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with the R–H modes for cavities 1–3 (l/w = 1.0, h = 7 mm), and the discrepancy is less than
10%, as are f2 and f3 for cavity 5 (l/w = 1.0, h = 9.7 mm). For l/h = 4.43 (cavities 4–6), the
value of f 1–f 3 is approximately the same for all three test cases. The discrepancy between
the experimental data and R–H modes is significant (up to 30%), particularly for l/w = 0.5,
which corresponds to the effect of the degree of three-dimensionality.

Figure 6 shows a plot of the PSD near the rear face for l/h = 6.14 and l/w = 1.0. The
frequency resolution for the PSD is 48.8 Hz. There are multiple peaks at f 1 = 1495 Hz, f 2 =
3326 Hz, and f 3 = 5310 Hz, which correspond to the first three R–H modes. The second
mode is more dominant. Kegerise et al. [19] showed that nonlinear quadratic interaction
can occur between the R–H modes, and other peaks (the sums and differences of f 1, f 2, and
f 3) are detected. However, this study does not demonstrate this phenomenon.

The PSD does not show that modes coexist or that mode switching occurs. The
spectrum for l/h = 6.14 that is calculated using a wavelet analysis is shown in Figure 7.
The time range in the plot is from 0 to 0.25 s, and the frequency range is chosen in order to
cover the first three R–H modes. The amplitude varies over time, and there is intermittent
behavior, which is not shown in Fourier spectra. The figure also shows that there is no
evidence of a monotonic relationship between modes.

Table 2. Frequency of Rossiter–Heller modes: (a) prediction; (b) experiment.

(a)

Cavity f 1, Hz f 2, Hz f 3, Hz

1 3864 8983 14,116

2, 4–6 2119 4926 7741

3 1528 3551 5580

(b)

Cavity f 1, Hz f 2, Hz f 3, Hz

1 4339 8679 12,902

2 2319 4639 7446

3 1495 3326 5310

4 1635 3540 5480

5 1513 3446 5419

6 1757 3564 5297
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Previous studies [19,20] showed that the R–H modes do not exhibit strong nonlinear
coupling. This study uses the correlation between the R–H modes, which refers to the
variation of amplitude over time that is shown in Figure 2, to determine the degree of mode
switching. For l/w = 1.0 (cavities 1–3), as shown in Figure 8a, the value of γ (= −0.15 to
0.09) is approximately the same for l/h = 4.43 and 6.14. Since R2 and R3 feature organized
structures that are associated with shear layer vortices [18], a negative value for R2R3
denotes a decreased monotonic trend or competition for available energy for these two
modes. For l/h = 2.43 (γ = −0.12 to 0.02), mode switching is less significant than that for
shallower cavities (l/h = 4.43 and 6.14).
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For l/h = 4.43 (cavities 4–6), the effect of l/w is shown in Figure 8b. The value of γ for
R1R2 and R1R3 is −0.06–0.05, which shows that there is less mode switching. There is a
slight increase in the value of γ as l/w increases, possibly because of spanwise oscillation
at the location where shear layer impingement occurs for a three-dimensional rectangular
cavity flow [7]. The value of l/w has an opposite effect on R1R2 and R1R3.

4. Conclusions

Self-sustained oscillations in a flow through an open cavity are associated with multi-
ple acoustic tones with discrete frequencies (Rossiter–Heller modes), which depend on the
geometry of the cavity. A wavelet analysis is used to analyze fluctuating pressure signals
with discrete tones (of an intermittent nature). This study determines the effect of l/h and
l/w on the strength of variations as a function of both frequency and time for six cavity
models (cavities 1–3: l/w = 1.0, l/h = 2.43, 4.43, and 6.14; cavities 4–6: l/h = 4.43, l/w = 0.5,
1.0, and 2.0) at M = 0.64. Amplitude demodulation is used to trace the resonance and better
describe the self-sustained oscillations. The correlation between the Rossiter–Heller modes
shows that mode switching is more significant for two-dimensional and shallower cavities,
particularly between the second and third modes. This implies that the energy distribution
is rearranged for feature-organized structures that are associated with shear layer vortices.
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Nomenclature

Cp mean surface pressure coefficient
Cσp fluctuating pressure coefficient
Cσp ,max peak fluctuating pressure coefficient
fi, f2, f3 frequency of Rossiter–Heller (R–H) modes
h cavity depth
l cavity length
M freestream Mach number
−
p, pw mean surface pressure
po stagnation pressure
p∞ freestream static pressure

p
(

tj

)
pressure signal

q dynamic pressure
R1, R2, R3 Rossiter–Heller modes
St Strouhal number
U∞ freestream velocity
w cavity width
x coordinate along the centerline of model surface
x* normalized streamwise distance, x/δ
δ incoming boundary-layer thickness
γ, γij Spearman’s correlation coefficient
σp fluctuating (rms) pressure
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