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Abstract: In this study, a dynamic model of a solar array drive system that includes a pair of flexible
solar arrays with a central rigid shaft and a permanent-magnet synchronous motor (PMSM) was
developed, and a disturbance compensation sliding mode control (DCSMC) strategy was proposed
to realize the speed smoothing and vibration suppression control of the system. The continuous
nonlinear dynamic equation of the system was derived from Hamilton’s principle, and its linearized
form was combined with the boundary conditions to obtain its natural frequency and global mode.
The design of the DCSMC strategy was based on the solar array drive assembly (SADA) electrome-
chanical dynamics model of the PMSM direct drive. An extended state observer (ESO) was used to
estimate any system disturbances, and the signal was fed forward to sliding mode control (SMC)
based on the varying gain saturation reaching law (VGSRL). To verify the validity of the model, its
results were compared with those obtained using commercial finite element software. The numeri-
cal results showed that the SADA system with the DCSMC strategy outperformed the traditional
proportional–integral (PI) control and SMC systems.

Keywords: solar array drive assembly; permanent-magnet synchronous motor; sliding mode control;
global mode

1. Introduction

Solar arrays need to be closely oriented toward the Sun to improve the energy-
acquisition efficiency of satellites in orbit. Regarding a body-mounted solar array, regular
attitude maneuvers are required to adjust its direction [1,2] and thereby shorten the effective
working time of onboard devices, such as remote sensing cameras and antennas. Solar
array drive systems (SADSs) have been widely used to meet the increasing energy demand
of power devices on small satellites and thereby meet the requirements for both satellite
energy acquisition and the working time of payload devices. These systems generally
consist of a solar array and solar array drive assembly (SADA). The development of the
high-precision and high-resolution remote sensing satellite industry has resulted in higher
requirements for the pointing accuracy of satellite systems; SADA drive disturbances
prominently affect this accuracy. Therefore, it is essential to establish a SADA dynamic
model, including the sailboard, conduct research on highly smooth controls for drive sys-
tems, and reduce the impact of the system disturbances experienced by satellite platforms.
With the support of SADAs, solar arrays on satellites rotate continuously relative to the
central satellite to ensure that their normal lines are oriented toward the Sun. A SADA
mainly comprises a drive source (motor), drive controller, drive output device, and other
components. Harmonic torque, cogging torque, and friction torque are types of nonlinear
disturbances that affect motor operation and result in the large rotation of the load, which
is the flexible solar array, creating a rigid–flexible coupling effect between the rigid shaft
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and array. These factors lead to complexities in the dynamic characteristics of the driving
process and changes in disturbance.

A rigid shaft and a flexible solar array with flexible hinges (SSH) can generally be
considered a typical rigid–flexible coupling structure or a central rigid-body flexible beam
model with flexible links (RFF). Since it is a flexible structure, a solar array has infinite
degrees of freedom. To analyze the nonlinear dynamic characteristics of a system or
design a controller based on its dynamic model, it is necessary to discretize its continuous
displacement and obtain a dynamic model with limited degrees of freedom.

The finite element method (FEM) can discretize rigid–flexible structures with complex
shapes and achieve high precision when there are sufficient elements. This method has
been used by many researchers to analyze and study dynamic characteristics. Yang et al. [3]
adopted the FEM to obtain a finite-dimensional model of an Euler–Bernoulli beam that can
account for a large range of rotational motion. This model considered the coupling between
the transverse and axial vibrations, the elastic deformation of the beam, and the coupling
of a large range of rotational motion. However, the form of this model was complex, and
further simplification was needed to facilitate control. Gasbarri et al. [4] used the FEM to
establish a detailed structural model of a satellite and obtain its normal mode and natural
frequency. Li et al. [5] proposed a new parallel computing method to solve the differential-
algebraic equations that describe the multibody system of a grid reflector, reduced the
dimension of the linear equations generated by the FEM using the absolute node coordinate
formula, and improved the computational efficiency of the dynamic equations. Generally,
the results obtained by the FEM are not analytical, and it is difficult to directly use them to
analyze the nonlinear dynamic characteristics of a system or design its controller.

The modal method uses an analytical modal function to discretize the dynamic equa-
tion of a continuous system and obtain a finite-dimensional modal equation through modal
truncation. Compared with the performance of the finite element method, this method
can significantly improve the computational efficiency involved in solving the dynamic
equation of a system and provide the basis for the analysis of the nonlinear dynamic
characteristics of a system and the design of a controller. Gao et al. [6] used the hypo-
thetical mode method to deduce an n-order modal dynamic equation of a flexible beam
disturbed by unknown spatiotemporal changes in a tangent coordinate system based on
the Lagrange equation. However, this model only considered the flexible beam and ignored
the rigid–flexible coupling effect of the system. Celentano et al. [7] used a method based
on the assumed modal method to obtain the analytical dynamic model of an entire robot.
In this method, an appropriate linear combination of the modes of each link was used as
the basis function to evaluate the deflections and reduce the number of items involved in
the design of the model. Then, an iterative interconnection algorithm was employed to
integrate each deflection and obtain the model. When using the assumed modal method to
deal with composite structures, it is difficult to simultaneously satisfy all the geometric and
force boundary conditions because of the interrelation between the various components.
Additionally, the rationality and accuracy of this method are questionable. Thus, while the
modal synthesis method can establish a dynamic model of composite structures, the results
obtained using this method are inaccurate and too complex [8].

To overcome these shortcomings, the global modal method (GMM), which uses only
one group of time coordinates to discretize the dynamic model, was proposed. Compared
with the dynamic model obtained by other methods, that obtained by GMM has low
dimensions and high accuracy [9]. He et al. [10] simplified a large flexible spacecraft as
a central rigid body, hinged it with two groups of multi-panel structures, and obtained
discrete dynamic equations using the GMM. Wu et al. [11] established an analytical dynamic
model of a ring truss antenna structure using the GMM and compared the vibration mode
and frequency obtained by this method with those obtained by commercial finite element
software to verify the reliability of this method. Then, they analyzed the influence of
geometric and physical parameters on the natural frequency of the structure. Wei et al. [12]
obtained a reduced-order analytical dynamic model of a single flexible-link flexible-joint
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(SFF) manipulator using the GMM. Cammarata [13] used the frame provided by the finite
element floating reference frame formula (FEM-FRF) and proposed a reduction method for
planar flexible mechanisms based on the GMM.

In recent years, many studies have focused on methods for controlling the direc-
tion in which solar arrays are oriented toward the Sun. These methods can be divided
into two types based on whether a stepper motor with a reducer drive or a permanent-
magnet synchronous motor (PMSM) with a direct drive is used. A stepper motor with a
reducer is widely used as the driving source for SADA because of its low cost and simple
control [14–17]. Chen et al. [14] modeled a SADA system driven by a two-phase hybrid
stepper motor and verified its accuracy in driving rigid loads through ground experiments.
Cao et al. [15] adopted a strategy combining sliding mode current compensation and output
shaping technology to compensate for the torque during SADA driving and achieved good
simulation results. Sattar et al. [16] analyzed the disturbance characteristics of a stepper
motor driving a SADA and conducted experiments on a piezoelectric testing platform to
verify the applicability of different mathematical methods. Zhang et al. [17] used a magne-
torheological actuator to suppress the vibration of a solar array, significantly reducing the
disturbance torque. The harmonic torque generated by a stepping motor drive is large, and
the structure of the reduction mechanism is relatively bulky, making it easy to introduce
other disturbances during operation. However, there are some shortcomings of using a
stepping motor to drive a flexible solar array.

Recently, researchers have proposed an active control scheme using a PMSM as the
driving source. This scheme directly drives a flexible load using a driving mechanism
without a reducer. Zhou et al. [18] used an adaptive robust controller in the speed loop of a
PMSM to ensure that the system was both uniformly bounded and uniformly ultimately
bounded to offset the uncertainty of the system. The effectiveness of the system was verified
through numerical simulation. Guo et al. [19] adopted a PMSM as the driving unit, applied
a proportional–integral (PI) controller combined with a phase compensation strategy to
realize the active control of a solar array, and conducted ground and in-orbit experiments
to verify the superiority of the PMSM drive. These studies showed the effectiveness of the
PMSM direct-drive scheme in achieving the high-stability driving of solar arrays; therefore,
this scheme was adopted in this study.

Regarding a SADA system, the effect of coupling torque on fluctuations in the ro-
tational speed can be regarded as a nonlinear disturbance. Simultaneously, the driving
process of a SADA system is affected by friction torque, motor cogging torque, and other
nonlinear disturbances. Such a system exhibits multivariable, strong coupling and non-
linear characteristics. The accuracy of traditional linear controllers, such as PI controllers,
depends on the system model, which is easily affected by external interference and internal
parameter changes and can only reach a control accuracy within a certain range. This
makes it difficult to meet the control requirements of a SADA system and results in the
control system potentially deviating from the expected goal [20]. Sliding mode control
(SMC) has become the focus of research on PMSM driving complex loads because of its
low model requirements and high robustness to external disturbances [21–23].

In practical applications, SMC may create high-frequency chattering in a system
owing to the time delay in the switching control. Researchers have employed several
methods, such as reaching laws [24], the high-order sliding mode method [25], and the
nonsingular terminal sliding mode [26], to suppress this phenomenon. Among these, the
approach law design method can more directly affect the approach process and is effective
at suppressing chattering.

Another problem with SMC is that it is difficult to simultaneously satisfy require-
ments for the strong robustness and high stability of the system. Specifically, the ro-
bustness of SMC is based on the switch gain set in the controller being sufficiently large
to offset the interference. However, in practice, it is difficult to determine not only the
upper and lower bounds of external interference but also the effect of the switch function
in the controller, which significantly increases the amplitude of chattering and affects
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the stability of the system operation. Adding feedforward compensation based on a
disturbance observer (DOB) to SMC can improve the disturbance rejection capability
without deteriorating the control performance of the system and can effectively resolve
the contradiction between the high stability and strong robustness of the system. Yang
et al. [27] combined a DOB based on iterative learning with a fast-integration termi-
nal SMC law. The experimental results showed that this strategy could ensure a good
speed-tracking performance of the PMSM drive system and effectively suppress periodic
disturbances. Lu et al. [28] designed a second-order nonsingular terminal sliding mode
load observer for a PMSM with a low-speed and high-torque drive load. The simulation
results showed that this method improved the robustness and disturbance resistance
of the system. Xu et al. [29] used an extended state observer (ESO) approach based on
SMC called SMESO to estimate the total disturbance of a system and input the signal
into an FTSMC controller for feedforward compensation to improve the performance of
the system.

In this study, we propose (1) an analytical dynamic model of a rigid shaft and
flexible solar array with a flexible hinge (SSH) that was obtained using the GMM and (2) a
disturbance compensation sliding mode controller (DCSMC), which combines a varying
gain saturation reaching law (VGSRL) and an ESO. Section 2 details the established
dynamic model of the driving shaft and solar arrays with a hinge, and Section 3 explains
the design of the DCSMC based on the mathematical model of the PMSM and rigid–
flexible coupling load and the verification of the stability of the controller. Section 4
describes the verification of the validity of the SSH model through a comparison with
the results of commercial finite element software. Subsequently, control effects under
different conditions are also discussed. Finally, Section 5 summarizes the main points of
the study.

2. Dynamic Model of a Driving Shaft and Solar Arrays with Flexible Hinges
2.1. Descriptions and Assumptions for the Proposed Model

The model of the shaft and solar arrays with a rigid platform and flexible hinges (SSH)
is illustrated in Figure 1. The PMSM model is represented by the motor symbol. The motor
drives the rigid shaft directly without a reduction mechanism. To simplify the results of the
study, the following assumptions have been made:

1. Considering that the mass of the satellite is significantly larger than that of the solar
array when the solar array is driven at a low speed, the central rigid body is regarded
as a fixed reference body.

2. The flexible hinge has been simplified as a hinge with an additional torsion spring,
and the mass, size, damping, and friction of the torsion spring have been ignored.
The solar arrays have been fully extended, and the hinge has been locked.

3. The rotating shaft is regarded as a rigid body, and the ratio of the length to the width of
the solar arrays is sufficiently large to ignore the effect of transverse shear when elastic
displacement occurs. The solar array is applicable to the theoretical Euler–Bernoulli
beam model.

4. The permanent magnet in the motor is ideal and ignores the effects of magnetic
saturation, hysteresis, and eddy currents. The motor’s magnetic circuit is linear,
and the stator’s winding current generates only a sinusoidally distributed magnetic
potential in the air gap, ignoring the high-order harmonic magnetic potential in the
magnetic field.

Based on assumption 3, the central rigid body, together with the internal drive mecha-
nism, is regarded as the reference body without considering the overall attitude motion. As
shown in Figure 2, the reference coordinate system is located at the center of the satellite
platform, the body coordinate system of the solar panel is located on the drive axis, and
the Z0- and Z1-axes are along the rotation axis. The coordinate system O1 − X1Y1Z1 rotates
around the Z1-axis with the rotation of the solar array. Regarding the variables, θs is the
angular displacement; S1,2 is the flexure hinge; θk1,k2 are the flexure-hinge torsion angles;
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and L and b are the length and width of the solar array, respectively. The cross-sectional
geometry of the coordinate system is shown in Figure 2, where point P0 is any point on
the system, P represents the position of P0 after lateral displacement, and τs is the driving
torque acting on the rotating shaft.
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2.2. Dynamic Model of the Load System

The kinetic energy of the system is:

T =
1
2

Js
.
θ

2
s +

1
2

∫ r+L

r
ρ
(

x
( .

θs +
.
θk1

)
+

.
y1

)2
dx +

1
2

∫ −r−L

−r
ρ(x(

.
θs +

.
θk2) +

.
y2)

2dx, (1)

where ρ is the linear density of the solar array, yi is the elastic displacement of a point on
the i-th solar array, and x is the abscissa of the point.
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where E is Young’s modulus; Iz is the cross-sectional moment of inertia of the solar array.
The work of the motor torque acting on the shaft is:

W = τsθs, (3)

The system dynamics equation in continuous form is obtained from the Hamilton
variation principle:

Jt
..
θs + JL

( ..
θk1 +

..
θk2

)
+ ρ

∫ r+L

r
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..
y1dx + ρ

∫ −r
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..
y2dx = τs, (4)
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..
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)
= 0, (5)

EIzy
′′′ ′
2 + ρ

(
x
( ..

θs +
..
θk2

)
+ y2

)
= 0, (6)

where Jt = Js + 2JL, JL = 2ρ
∫ r+L

r x2dx.
The corresponding boundary conditions are:{

y1(r, t) = 0
y′′1 (r + L, t) = 0 , y′′′1 (r + L, t) = 0

, (7)

{
y2(−r, t) = 0

y′′2 (−r− L, t) = 0 , y′′′2 (−r− L, t) = 0
, (8)

According to the assumption, the connection between rigid and flexible bodies is
regarded as a torsion spring, and the nonlinear expression of the transmitted torque is:

MT
i = c

.
θki + kLθki + kNθ3

ki + µSign
.
θki, k = 1, 2, (9)

To simplify the analysis, its approximate linear form is usually adopted:

MT
i = kLθki (k = 1, 2), (10)
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According to the matching conditions of displacement and the rotation angle, force,
and moment between rigid and flexible bodies, the matching conditions of the hinge can
be obtained as follows: {

y′1(r, t) = θk1
EIzy′′1 (r, t) = kLθk1

, (11)

{
y′1(−r, t) = θk2

EIzy′′2 (−r, t) = kLθk2
, (12)

In order to obtain the analytical mode of the system, τs in Equation (4) is set to zero.
The elastic displacement is expressed as:

yi(x, t) = ϕi(x)sinωt, i = 1, 2, (13)

where ϕi(x) is the modal function of the i-th solar array, and ω is the circular frequency of
the system.

The literature [30] points out that when the external force drives the rigid–flexible
coupling structure, the motion generated by the rigid body can be divided into two parts:
the first is the large-scale motion generated by the overall system under the external force.
The second is the vibration between the rigid body and the flexible body, which involves
coupling and synchronization. The angular displacement of the system can be expressed as:

θs = θsr + θsv, (14)

where θsr and θsv represent rigid-body motion and vibration, respectively. In the modal
analysis, the external force is set to zero, so the large-scale rigid-body motion θsr is zero.
The vibration of the rigid body and flexible solar array are coupled and synchronized, so
θsv is expressed in the same form as elastic displacement. Therefore, Equation (14) can be
expressed as:

θs = θsv = θs0sinωt, (15)

Substituting Equation (15) into (4) and combining (13) results in the following expres-
sion of θs0:

θs0 = −Γ0/Jt, (16)

where Γ0 is a notation for simplifying the expression and expressed as:

Γ0 = JL(θk1 + θk2) + ρ
∫ r+L

r
xϕ1dx + ρ

∫ −r

−r−L
xϕ2dx, (17)

Substituting Equations (14) and (15) into (5) and (6) and combining (13) and (16), the
ordinary differential equation of ϕi(x) is obtained as follows:

ϕ
(4)
i (x)− λ4 ϕi(x) = −λ4Γ0x/Jt, i = 1, 2, (18)

where

λ4 =
ω2ρ

EIz
, (19)

The solution of the ordinary differential equation can be expressed as:

ϕi(x) = ϕig(x) + ϕip(x), (20)

where ϕig(x) and ϕip(x) are the general and particular solutions of the differential equation,
which can be, respectively, written as:

ϕig(x) = Ci1coshλx + Ci2sinhλx + Ci3cosλx + Ci4sinλx, (21)
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ϕip(x) = Ci5x + Ci6, (22)

where Cij(λ) ( i = 1, 2, j = 1 ∼ 6) are the unknown coefficients.
Substituting Equation (21) into (18), the coefficients Ci5 and Ci6 are obtained:

Ci5 = Γ0g/Jt, Ci6 = 0, (23)

where Γ0g is a notation for simplifying expression and expressed as:

Γ0g = JL(θk1 + θk2) + ρ
∫ r+L

r
xϕ1gdx + ρ

∫ −r

−r−L
xϕ2gdx, (24)

where θki (i = 1, 2) are the unknown coefficients.
Substituting Equation (21) into (24), Γ0g is written as follows:

Γ0g = C11ξ11(λ) +C12ξ12(λ) + C13ξ13(λ) + C14ξ14(λ) + C15ξ15(λ)
+C16ξ16(λ) + C17ξ17(λ) + C18ξ18(λ) + JLθk1 + JLθk2,

(25)

where the terms ξij(λ) ( i = 1, 2, j = 1 ∼ 4) are listed in Appendix ??.
The solution of Equation (17) is obtained as:

ϕi(x) = Ci1Bi1(x) + Ci1Bi1(x) + Ci1Bi1(x) + Ci1Bi1(x) + bi(x), (26)

where the terms Bij(λ) ( i = 1, 2, j = 1 ∼ 4) and bi(x) (i = 1, 2) are listed in Appendix ??.
In order to obtain the values of constants Cij(λ) and θki, it is necessary to combine

Equation (26) with boundary condition Equations (7) and (8) and hinge matching condition
Equations (11) and (12). The characteristic equation of the system is obtained as follows:

H(ω)Ψ = 0, (27)

where the detailed expression of H(ω) is given in Appendix ??. ψ is the undetermined
coefficient vector, which is expressed as:

ψ = [C11 C12 C13 C14 C21 C22 C23 C24 θk1 θk2], (28)

In order to ensure that the homogeneous Equation (26) has a non-zero solution, the
determinant of the characteristic matrix H(ω) must satisfy:

|H(ω)| = 0, (29)

The positive roots obtained by solving Equation (29) are arranged in ascending
order, which is the natural frequency of the undamped free vibration of the system:
ω1, ω2, ω3, . . . ωn (r = 1, 2, . . . , n). By substituting ωr into Equation (26), the corresponding
r-order coefficients Cij and θki can be solved, and the obtained coefficients can be substituted
into Equation (26) to obtain the r-order modal shape function of the system.

2.3. Discrete Dynamic Model of the System Based on Global Mode Method

According to [31], the core of the global modal method is to use only one time coor-
dinate to describe global motion. Specifically, both Equations (13) and (15) contain sinωt
terms, which means that the motion of rigid bodies and the vibration of flexible bodies are
coupled and synchronized.

Therefore, combined with Equations (13) and (15), the displacement of the system is
further expressed as:

[θs, w1, w2, θk1, θk1]
T = [θsr, 0, 0, 0, 0]T + Φη(t), (30)
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Among them, Φ is the modal matrix, and η(t) is the modal coordinate vector. If the
first n-order rigid–flexible coupling modes of the system are considered for research, their
expressions are as follows:

Φ =


Θs0
ϕ1

ϕ2
Θk1
Θk2

 =


θs01,θs02, . . . , θs0n
ϕ11, ϕ12, . . . , ϕ1n
ϕ21, ϕ22, . . . , ϕ2n

θk11, θk12,, . . . , θk1n
θk11, θk22,, . . . , θk2n

 , (31)

η = [sin(ω1t), sin(ω2t), . . . , sin(ωnt)]T , (32)

Substituting Equation (30) into Equation (4) and combining boundary conditions
Equations (7) and (8) and hinge matching conditions Equations (11) and (12), the discrete
dynamic equation of the system is obtained as follows:[

Jt F
FT Mη

][ ..
θsr..
η

]
+

[
0 01×N

01×N Cη

][ .
θsr.
η

]
+

[
0 01×N

01×N Kη

][
θsr
η

]
=

[
τs

τsΘs0

]
, (33)

where the items of these matrices are expressed as:

F = JtΘs0 + ρ

(∫ r+L

r
xϕ1dx +

∫ −r

−r−L
xϕ2dx

)
+ JL(Θk1 + Θk2), (34)

Mη = JrΘ
T
s0Θs0 + ρ

(∫ r+L
r ϕT

1ϕ1dx +
∫ −r
−r−L ϕT

2ϕ2dx
)

+ρ
[∫ r+L

r x
((

ΘT
s0 + ΘT

k1
)
ϕ1 +ϕT

1 (Θs0 + Θk1)
)
dx

+
∫ −r
−r−L x

((
ΘT

s0 + ΘT
k2
)
ϕ2 +ϕT

2 (Θs0 + Θk2)
)
dx
]
,

(35)

Kη = EIz
∫ r+L

r
[
ϕ
′′
1(x)

]T
ϕ
′′
1(x)dx + EIz

∫ −r
−r−L

[
ϕ
′′
2(x)

]T
ϕ
′′
2(x)dx

+kLΘT
k1Θk1 + kLΘT

k2Θk2,
(36)

where Cη = αMη + βKη is structural damping, and α and β are proportional damping coefficients.

3. Model and Control Scheme of the Solar Array Drive Assembly
3.1. PMSM Model

As mentioned in the introduction, a PMSM direct-drive scheme with a simpler struc-
ture and better performance was adopted to provide torque for solar arrays. Assuming
that the permanent magnetic flux linkage ψr of the rotor in the PMSM is constant, its stator
winding voltage can be expressed as [32]: ud =

(
Rs + L′d

)
id − PnωsLqiq

uq =
(

Rs + L′q
)

iq + PnωsLdid + Pnωsψr
, (37)

where ud and uq represent the d- and q-axis voltages at the stator side, respectively; id and
iq represent the d- and q-axis currents at the stator side, respectively; Rs represents the
armature resistance at the stator side; ωs indicates the mechanical angular frequency of
the rotor; Ld and Lq represent the d- and q-axis inductances at the stator side, respectively;
L′d and L′d are the first-order time derivatives of Ld and Lq, respectively; ψr refers to the
magnetic linkage generated by the rotor permanent magnet in the stator winding, that is,
the rotor permanent-magnet magnetic linkage; and pn is the number of rotor poles.
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The electromagnetic torque expression of the PMSM is [33]:

Te =
3
2

Pn
[
ψriq +

(
Ld − Lq

)
idiq
]
, (38)

where Te represents the electromagnetic torque.
In this study, a surface-mounted permanent-magnet synchronous motor (SPMSM)

with the same inductance along the d- and q-axes was selected. To ensure the smooth and
stable operation of the motor, a field-oriented control (FOC) scheme in which id = 0 was
adopted. In this scheme, the electromagnetic torque formula can be simplified as:

Te =
3
2

Pnψriq. (39)

3.2. Electromechanical Model of SADA

Figure 3 illustrates the working of the SADA system, which comprises a drive con-
troller, servomotor, and load. The system converts the commands of the central machine
into torque and transmits them directly to the solar arrays through the rotary shaft. The
acceleration expression of the transmission shaft output is:

..
θm =

1
Jw

(
Te − TL − Tf

)
, (40)

where Tf and TL denote the friction and inertial moments of the load, respectively; Jm is the
moment of inertia of the motor; Jw = Jm + Jt represents the moment of inertia of the motor
rotor and load without considering flexible vibrations; and

..
θm is the angular acceleration

of rotor rotation. Noteworthily, because the motor was directly connected to the rigid shaft
without the reducer, the mechanical angle of the rotation of the motor rotor is the same as
that of the rigid shaft, that is, θm = θs.
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The Stribeck friction model, which is suitable for describing low-speed rotating sys-
tems, is typically used in SADA systems. This model is described as:

Tf = σ0
.
θm +

[
Tc + (Ts − Tc)e

−(
.
θm
ω0

)
2 ]

sgn
( .

θm

)
, (41)

where σ0 is the viscous friction coefficient, Tc is the Coulomb friction coefficient, Ts is the
maximum static friction moment, and ω0 is the critical Stribeck speed.

The load torque expression is obtained from Equation (33) as follows:

TL = Jt
..
θm + F

..
η, (42)

where F and η are vectors whose expressions are given by Equation (34) and Equation (32),
respectively.
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By substituting Equations (39), (41), and (42) into Equation (40), the output equation
can be expressed as:

..
θm =

1.5Pnψr

JT
iq −

Tf

JT
− Tv

JT
, (43)

where JT = Jm + Jt − FM−1
η FT represents the total moment of inertia of the motor and

load, and Tv represents the impact of the flexible solar array vibration on the drive shaft
as follows:

Tv = −FM−1
η Cη

.
η− FM−1

η Kηη, (44)

where Tv only exists when a flexible load is driven. When the motor drives a rigid load,
the modal coordinate η is ignored, and the Tv term in Equation (43) is zero. iq is the input
control current. Both the friction torque and elastic vibration were regarded as system
disturbances that could be eliminated by designing control laws.

3.3. Design of the DCSMC with the ESO

SMC is essentially a switch control method. In general, the required switching gain
needs to be higher than the upper bound of any concentrated disturbance. Therefore,
if a disturbance is observed and its impact is compensated by feedforward control, the
required switching gain needs to only be higher than the upper limit of the disturbance
compensation error, resulting in any system chattering being effectively reduced [34].

Based on this, a DCSMC that could observe disturbances and reduce their impact
was adopted to replace the traditional PI speed controller and thereby improve the overall
dynamic performance.

Considering the total disturbance effect of the system, the motion equation of the
PMSM can be expressed as:

..
θm = χi∗q − fd, (45)

where χ = 3Pnψr
2JT

; fd is a function of
.
θm, which represents the total disturbance of the

system that is observed by the ESO and compensated for by feedforward control, resulting
in improved control; and i∗q represents the current signal output by the controller. Owing
to the significant difference in bandwidth between the speed and current loops, when
adjusting the speed of the outer ring, it is considered that the current in the inner ring has
already been adjusted [19]. Therefore, in the design of the speed loop, the effect of the
current loop was ignored; that is, i∗q = iq.

The first-order system state equation can be expressed as:{ .
x1(t) = f (x1) + hu(t)

y(t) = x1(t)
, (46)

where h is a constant greater than zero. f (x1) represents a bounded nonlinear perturbation
function, and u(t) is the control input.

If x2(t) is selected as the expansion variable, and x2(t) = f (x1) and
.
x2(t) = w(t), the

system expression can be expanded as [35]:
.
x1(t) = x2(t) + hu(t)

.
x2(t) = w(t)

y(t) = x1(t)

, (47)

where if u(t) = i∗q and x1(t) =
.
θm, the ESO based on the hyperbolic tangent function can

be described as: 
e1(t) = z1(t)−

.
θm

.
z1(t) = z2(t) + χi∗q − β1e1(t)

.
z2(t) = −β2tanh(β3e1(t))

, (48)
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where z1(t) observes the velocity feedback signal of the PMSM; z2(t) observes the total
disturbance of the system; and β1, β2, and β3 are design parameters that should satisfy
β1 − β2β3 > 0. The speed-tracking error is defined as:

e =
.
θ
∗
m −

.
θm, (49)

where
.
θ
∗
m and

.
θm represent the given and actual motor speeds, respectively. Combining

Equations (49) and (43), the acceleration-tracking error can be expressed as:

.
e =

..
θ
∗
m − χi∗q − fd. (50)

In the sliding mode variable-structure control, the design of the controller is typically
divided into two parts [36]. The first step is to select the sliding mode surface. The integral
sliding surface used in this study is as follows:

s = e + c
∫ t

0
e(τ)dτ, c > 0, (51)

The second step involves designing reaching laws. In this study, we designed a VGSRL,
which can be expressed as:

.
s = −ε|e|asat(s)− k|s|b·sgn(|s|−1)s, (52)

where ε > 0, k > 0, 0 < a < 1, 0 < b < 1. The function sat(s) is defined as [36]:

sat(s) =
{

sgn(s) |s| > ∆
s
∆ |s| < ∆

, (53)

where 0 < ∆� 1 denotes the boundary layer.
The VGSRL is based on the traditional exponential reaching law (TERL), and the

system error is introduced as a variable to ensure that the variable gain reaches the slid-
ing surface. We obtained the following conclusions by analyzing the reaching law in
Equation (52).

If the system state was far from the sliding surface, that is, if e was large and s > 1,
then the system state approached the sliding surface at a rate of ε|e|a and k|s|bs. When
the system state gradually reached the sliding mode surface, the errors e and s gradually
decreased, and the variable-gain reaching speed ε|e|a and variable-index reaching speed
k|s|bs also decreased. In other words, as the system state approached the sliding surface,
the reaching speed automatically decreased to reduce chattering. When the system state
entered the boundary layer (|s| < ∆), linear feedback control was used instead of sgn(s) to
reduce chattering. However, when s < 1, the reaching speed of the TERL decreased to zero,
resulting in the speed of the system decreasing to reach a steady state. Since sgn(|s| − 1)
was adopted in the index, the variable-index reaching speed was k|s|−bs, which was larger
than k|s|bs under the TERL and could reach the sliding surface faster.

In summary, by combining Equations (50)–(52), the signal output of the speed con-
troller, namely, the value of the reference current of the q-axis, can be expressed as:

i∗q =
1
χ

[ ..
θ
∗
m − fd + ε|e|asgn(s) + k|s|b·sgn(|s|−1)s + ce

]
, (54)

where − fd/χ represents the impact compensated for by feedforward control based on
the ESO.
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3.4. Stability Proof

The Lyapunov function can be constructed as:

V =
1
2

s2, (55)

By combining Equations (50)–(52), the derivation of Equation (53) is obtained as follows:

.
V = s

.
s = s

( .
e + ce

)
= s
( ..

θ
∗
m − χi∗q − fd + ce

)
= −s

[
ε|e|asat(s) + k|s|b·sgn(|s|−1)s

]
≤ 0,

(56)

When the parameter selection satisfies ε > 0, k > 0, 0 < a < 1, and 0 < b < 1,
then

.
V ≤ 0 is obtained. Then, according to the Lyapunov stability theory, the system is

asymptotically stable.

4. Numerical Results and Discussion
4.1. Validation of the Dynamic Model

The geometric parameters and material properties of the motor shaft with the pair of
solar arrays are listed in Table 1. To verify the validity and accuracy of the model obtained
by the GMM, the results were compared with those obtained by using the commercial finite
element software ANSYS. Figure 4 shows the finite element model of the SSH in ANSYS.
The rigid-axis model was built with a body element, the flexible solar array was made of
a shell element, and the flexible hinge connecting them was expressed using multipoint
constraints (MPCs).

Table 1. The structural parameters of the SADA system.

Components Parameters Values

Solar arrays Length L (m) 4.0
Width h (m) 0.3

Thickness of solar array b (m) 0.01
Elastic modulus of aluminum 7 × 1010

Mass density of aluminum ρ0 (kg m−3) 2700
Poisson ratio µ 0.33

Hinge Torsional rigidity kL (Nm/rad) 400
Rigid shaft Radius r (m) 0.01
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Figure 5 shows the first six bending mode shapes of the SSH structure solved by
using the GMM and ANSYS when L = 2 m. The modal shapes obtained by using the two
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methods were clearly consistent. The first-, third-, and fifth-order modes were positively
symmetric, and the second-, fourth-, and sixth-order modes were antisymmetric.
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modes with FEM.

Tables 2–4 show the first frequencies of the SSH model at different L, Js, and kL values.
The relative error (Re) between the analytical solution obtained by using the GMM and the
numerical solution obtained by using ANSYS are also listed. Re can be expressed as:

Re =
fcal − fFEM

fFEM
, (57)

where fcal and fFEM are the results calculated using Equation (29) and ANSYS, respectively.
According to Tables 2–4, the maximum absolute value of Re is 1.93%, which indicates the
high accuracy of the model with the GMM.

Table 2. Frequencies of the first six bending modes with different L (Hz).

Modal
Order *

L=2 m L=4 m L=8 m

Ansys GMM Re (%) Ansys GMM Re (%) Ansys GMM Re (%)

1 1.941 1.971 −1.55% 0.504 0.509 −0.99% 0.124 0.126 −1.61%

2 9.038 9.029 0.10% 2.25 2.233 0.76% 0.556 0.557 −0.18%

3 12.479 12.72 −1.93% 3.169 3.192 −0.73% 0.778 0.788 −1.29%

4 29.82 29.448 1.25% 7.369 7.254 1.56% 1.822 1.805 0.93%

5 35.524 34.978 1.54% 8.965 8.924 0.46% 2.129 2.104 1.17%

6 63.212 62.774 0.69% 15.629 15.34 1.85% 3.829 3.776 1.38%

* (Js = 0.078 kgm2 kL = 400 Nm/rad).
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Table 3. Frequencies of the first six bending modes with different Js (Hz).

Modal
Order *

Js=0.078 kgm2 Js=0.78 kgm2 Js=7.8 kgm2

Ansys GMM Re (%) Ansys GMM Re (%) Ansys GMM Re (%)

1 0.124 0.126 −1.61% 0.124 0.126 −1.61% 0.124 0.126 −1.61%

2 0.556 0.557 −0.18% 0.556 0.557 −0.18% 0.556 0.557 −0.18%

3 0.778 0.788 −1.29% 0.778 0.788 −1.29% 0.778 0.788 −1.29%

4 1.822 1.805 0.93% 1.822 1.805 0.93% 1.822 1.805 0.93%

5 2.129 2.104 1.17% 2.129 2.104 1.17% 2.129 2.104 1.17%

6 3.829 3.776 1.38% 3.829 3.776 1.38% 3.829 3.776 1.38%

* (L = 2 m, kL = 600 Nm/rad).

Table 4. Frequencies of the first six bending modes with different kL (Hz).

Modal
Order *

kL=300 Nm/rad kL=800 Nm/rad kL=1200 Nm/rad

Ansys GMM Re (%) Ansys GMM Re (%) Ansys GMM Re (%)

1 1.868 1.859 0.48% 2.058 2.071 −0.63% 2.081 2.101 −0.96%

2 9.038 9.029 0.10% 9.038 9.029 0.10% 9.038 9.029 0.10%

3 11.889 12.014 −1.05% 12.935 13.026 −0.70% 13.076 13.165 −0.68%

4 29.82 29.448 1.25% 29.82 29.448 1.25% 29.82 29.448 1.25%

5 33.993 33.773 0.65% 36.741 36.174 1.54% 37.149 36.864 0.77%

6 63.212 62.774 0.69% 63.212 62.774 0.69% 63.212 62.774 0.69%

* (L = 2 m, Js = 0.078 kgm2).

The natural frequency decreased with an increase in the length of the solar array,
indicating the increased density and flexibility of the system mode. When the moment
of inertia of the rigid shaft Js increased, the frequencies of orders 1, 3, and 5 remained
unchanged, and the frequencies of orders 2, 4, and 6 decreased, indicating the coupling of
the antisymmetric mode with the rigid shaft and the lack of coupling between the positive
symmetric mode and the rigid shaft. In contrast, when the torsional stiffness of the hinge
increased, the modal frequencies of orders 1, 3, and 5 increased, and the modal frequencies
of orders 2, 4, and 6 remained almost unchanged, indicating that the stiffness of the flexible
joint had affected the flexibility of the system but hardly affected the coupling between the
rigid and flexible bodies.

4.2. Numerical Simulation Results of the Driving Process

Figure 6 shows the disturbance torque response curves for different windsurfer sizes
from zero acceleration to 0.06 ◦/s. The remaining attribute parameters of the solar array
are listed in Table 1. In general, when there were no increases in the external disturbances,
the disturbance torque gradually decayed to zero. Figure 6a shows that as the length of
the sail increased, the disturbance frequency decreased, the amplitude increased, and the
attenuation rate decreased. Figure 6b shows that as the thickness of the sail increased, the
frequency of the disturbance and attenuation speed increased, indicating an increase in
modal damping. However, the amplitude of the disturbance also increased simultaneously
owing to the larger thickness, resulting in a greater moment of inertia.
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Figure 6. (a) Disturbance torque response of different L; (b) disturbance torque response of different b.

Figure 7 shows the disturbance torque curve considering the SVPWM current harmon-
ics. The amplitude of the disturbance torque oscillation gradually decayed and ultimately
stabilized at a lower level. The coupling of the flexible torque and current harmonics in-
creased the amplitude of the disturbance torque and made attenuation difficult. Therefore,
it was necessary to design a control law to improve these results.
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Figure 7. Disturbance torque with current harmonics.

This section presents the results of the simulation and comparison with PI and SMC
strategies that were performed to verify the superiority of the control performance of the
proposed algorithm. PI control adopted a two-closed-loop structure that included speed
and current loops [37], while SMC adopted the traditional exponential reaching law shown
in Equation (58) and the integral sliding surface shown in Equation (59) [38].

.
s = −dssgn(s)− kss, (58)

s = e + cs

∫ t

0
e(τ)dτ, c > 0, (59)
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The parameters of PI control were designed via the root locus method, while the
parameters of SMC and DCSMC were iteratively tuned using a trial-and-error method
based on the system performance, and the parameter selection method for the ESO was
based on the method in reference [35]. Equation (52) shows that when a = 0, b = 0, the
VGSRL will collapse into the traditional exponential reaching law, and the parameters
c, k, and ε in DCSMC will correspond to parameters cs, ks, and ds in SMC. It was easy
to note that the large parameters could lead to a large gain, which could accelerate the
vibration suppression. However, if the parameters were too large, a divergence in the
computation may result. The specific values could be calibrated by simulation results; thus,
we iteratively tuned the parameters a and b by increasing their value from zero and tuned
c, k, and ε by decreasing their values from a small positive number. The parameters of SMC
were also determined through a trial-and-error method. In this work, the parameters of the
three controllers were set as in Table 5. The parametric inaccuracy, external disturbance
torque, and all control parameters of the current loop in the three cases remained the same.

Table 5. The parameters of three controllers.

Controller Parameters Values

PI control Proportional coefficient
(Speed loop) 2

Integral coefficient
(Speed loop) 20

Proportional coefficient
(Current loop) 20

Integral coefficient
20(Current loop)

SMC cs 2
ks 2.5
ds 2.8

DCSMC a 0.45
b 0.65
c 20
ε 5
k 23

β1 160
β2 160
β3 0.94

Figure 6 clearly shows that the characteristics of disturbance torque depend on the
physical parameters of the solar array. To make a clear comparison, the physical parameters
of the solar array and the motor were selected, as shown in Tables 1, 5 and 6. When the
satellite operated in the solar-synchronous orbit, the solar arrays needed to rotate at a
constant speed of 0.06 ◦/s to be oriented toward the Sun. Thus, the driving speed of this
simulation was selected as 0.06 ◦/s.

Table 6. The parameters of the PMSM.

Parameters Values

Pole pairs Pn 32
Flux linkage ψr (Wb) 0.0625

Inductance of q-axis Lq (mH) 5
Inductance of d-axis Ld (mH) 5
Armature resistance Rs (Ohm) 2.25

Bus voltage Vdc (V) 28
Rotor inertia Jm (kg m2) 0.01

Maximum output torque Tmax (Nm) 4
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Figure 8 shows the rotation angle, angular velocity, disturbance torque, and solar
tip elastic displacement curves of the SADA driven by the PI, SMC, and DCSMC strate-
gies. Given the initial signal at 0 s, the system accelerated from zero to 0.06 ◦/s at a
constant speed.
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In Figure 8a, the three curves almost completely coincide, indicating that all
three algorithms could effectively control the solar array such that it would reach the
designated position. Figure 8b shows that the PI method had a larger speed overshoot
than the SMC method did; however, its oscillation decayed faster owing to the inherent
high-frequency chattering effect of the SMC method. The DCSMC method adopted
a reaching law to suppress chattering and compensate for the disturbance torque,
resulting in a lower speed overshoot and faster oscillation attenuation compared to
those using the other two methods. Figure 8c,d show that using the DCSMC, the
amplitude of disturbance torque was smaller, and the decay rate was faster than those
with the other two methods.

In some scenarios, solar arrays need to quickly maneuver to a certain position or the
operating speed needs to be changed, and any change in speed will cause changes in torque
and affect the operation of the overall satellite. Considering these conditions, the speed
regulation process of SADA was simulated. Figure 9 shows the motor starting, speed
switching, and stopping curves. The speed command changed from 0.06 to 0.3 ◦/s at the
10th second, and the motor stopped working at the 20th second.

Figure 9b clearly shows that the system using the PI and SMC methods exhibited
a significant speed overshoot and oscillation after speed regulation, while the DCSMC
method had a smaller overshoot and faster oscillation attenuation. When the speed com-
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mand changed from 0.06 to 0.3 ◦/s, the overshoots of the PI, SMC, and DCSMC schemes
were 0.027, 0.015, and 0.006 ◦/s, respectively. The DCSMC method reduced the overshoot
by 77.8 and 60%, respectively, compared to the reductions obtained by the PI and SMC
methods. Figure 9c shows that the PI method, owing to its large gain, triggered a large
instantaneous disturbance torque, which was detrimental to the stable operation of the
system. The disturbance torque excited by the DCSMC was relatively small and exhibited
the fastest decay rate; the same conclusion was drawn from Figure 9d.
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Satellites are affected by various disturbances when operating in orbit; thus, simu-
lating the operation of the system under external disturbances is necessary. Figure 10
shows the curve of the system subjected to external disturbances during operation. The
speed command was set to 0.06 ◦/s at 0 s, and the step additional disturbance torque
was increased to τd = 0.5 Nm at the 10th second to test the dynamic performance of
the system.

As shown in Figure 9b, the absolute values of velocity fluctuations after external distur-
bances in the DCSMC, SMC, and PI schemes were 0.007, 0.018, and 0.013◦/s, respectively.
The DCSMC method reduced the overshoot by 46.1 and 61.1%, respectively, compared to
the reductions obtained by the PI and SMC methods, which indicates better speed stability
and robustness.

During the actual operation of the system, motor or structural parameters can be
changed; thus, comparing the robustness of the control methods is necessary. This study
used the Gaussian random torque to simulate disturbances caused by parameter changes.
Figure 11 shows the random disturbance torque.
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Figure 12b clearly shows that the system using the PI and SMC methods exhibited
significant speed chatter under the influence of random disturbances. In Figure 12c, the
high-frequency disturbance torque of PI and SMC significantly increased, while the torque
when using DCSMC had almost no change, once again demonstrating the high robustness
of this method. In Figure 12d, the elastic displacement of the solar array under the control
of three methods is shown to increase to varying degrees, but the system under the control
of the DCSMC method had the smallest elastic displacement and the fastest decay speed.
This indicates that DCSMC has better robustness under the influence of unknown high-
frequency disturbances.
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5. Conclusions

In this study, a SADA model was established, and a high-stability control strategy was
proposed to suppress vibration. A linearization model of a flexible array with a rigid-shaft
flexible connection was established and simulated. The comparison of the simulation results
with those of the commercial finite element software ANSYS verified the effectiveness of
the global model obtained by the GMM.

A variable-gain saturation reaching law was proposed, and a disturbance compensa-
tion SMC strategy was designed based on the ESO. The stability of the system was proved
using the Lyapunov theory. Low-speed simulations showed that the system controlled by
the DCSMC method had a better performance in the settling time, the overshoot, and the
tracking error of angular velocity control. On the basis of this paper, compared with the
PI and SMC methods, DCSMC can reduce the overshoot of angular velocity by 77.8 and
60%, respectively. Additionally, the system controlled by the DCSMC method had a lower
disturbance torque amplitude and faster disturbance torque attenuation under uniform
step and random disturbance conditions.

Therefore, disturbance compensation sliding mode control can suppress the flexible
vibration and improve the angular velocity control performance.
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Appendix A

ξ11(λ) =
∫ r+L

r ρx cosh(λx)dx, ξ12(λ) =
∫ r+L

r ρxsinh(λx)dx,

ξ13(λ) =
∫ r+L

r ρx cos(λx)dx, ξ14(λ) =
∫ r+L

r ρx sin(λx)dx,

ξ21(λ) =
∫ −r
−r−L ρx cosh(λx)dx, ξ22(λ) =

∫ −r
−r−L ρxsinh(λx)dx,

ξ23(λ) =
∫ −r
−r−L ρx cos(λx)dx, ξ24(λ) =

∫ −r
−r−L ρx sin(λx)dx,

B11(x) = cosh(λx) + x
Jt

ξ11(λ), B12(x) = sinh(λx) + x
Jt

ξ12(λ),

B13(x) = cos(λx) + x
Jt

ξ13(λ), B14(x) = sin(λx) + x
Jt

ξ14(λ),

B21(x) = cosh(λx) + x
Jt

ξ21(λ), B22(x) = sinh(λx) + x
Jt

ξ22(λ),

B23(x) = cos(λx) + x
Jt

ξ23(λ), B24(x) = sin(λx) + x
Jt

ξ24(λ),

b1(x) = C21ξ21(λ)
x
Jt
+ C22ξ22(λ)

x
Jt
+ C23ξ23(λ)

x
Jt
+ C24ξ24(λ)

x
Jt
+ JLx

Jt
θk1,

b2(x) = C11ξ11(λ)
x
Jt
+ C12ξ12(λ)

x
Jt
+ C13ξ13(λ)

x
Jt
+ C14ξ14(λ)

x
Jt
+ JLx

Jt
θk2,

H(ω) =



H0101 H0102 H0103 H0104 H0105 H0106 H0107 H0108 H0109 H0110

H0201 H0202 H0203 H0204 H0205 H0206 H0207 H0208 H0209 H0210

H0301 H0302 H0303 H0304 0 0 0 0 H0309 0
H0401 H0402 H0403 H0404 0 0 0 0 0 0
H0501 H0502 H0503 H0504 0 0 0 0 0 0
H0601 H0602 H0603 H0604 H0605 H0606 H0607 H0608 H0609 H0610

H0701 H0702 H0703 H0704 H0705 H0706 H0707 H0708 H0709 H0710

0 0 0 0 H0806 H0807 H0808 H0809 0 H0810

0 0 0 0 H0906 H0907 H0908 H0909 0 0
0 0 0 0 H1006 H1007 H1008 H1009 0 0



,

H0101 = cosh(λr) + r
Jt

ξ11(λ), H0102 = sinh(λr) + r
Jt

ξ12(λ),

H0103 = cos(λr) + r
Jt

ξ13(λ), H0104 = sin(λr) + r
Jt

ξ14(λ),

H0105 = r
Jt

ξ21(λ), H0106 = r
Jt

ξ22(λ),

H0107 = r
Jt

ξ23(λ), H0108 = r
Jt

ξ24(λ),

H0109 = JLr
Jt

, H0110 = JLr
Jt

,

H0201 = λ sin h(λr) + ξ11(λ)
Jt

, H0202 = λ cosh(λr) + ξ12(λ)
Jt

,

H0203 = −λ sin(λr) + ξ13(λ)
Jt

, H0204 = λ cos(λr) + ξ14(λ)
Jt

,

H0205 = ξ21(λ)
Jt

, H0206 = ξ22(λ)
Jt

,

H0207 = ξ23(λ)
Jt

, H0208 = ξ24(λ)
Jt

,

H0209 = JL−Jt
Jt

, H0210 = JL−Jt
Jt

,

H0301 = λ2 cosh(λr), H0302 = λ2sinh(λr),

H0303 = −λ2 cos(λr), H0304 = −λ2 sin(λr),, H0309 = − KL
EIZ

,

H0401 = λ2 cosh(λ(r + L)), H0402 = λ2sinh(λ(r + L)),
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H0403 = −λ2 cos(λ(r + L)), H0404 = −λ2 sin(λ(r + L)),

H0501 = λ3sinh(λ(r + L)), H0502 = λ3 cosh(λ(r + L)),

H0503 = λ3sinh(λ(r + L)), H0504 = λ3 cosh(λ(r + L)),

H0601 = −r
Jt

ξ11(λ), H0602 = −r
Jt

ξ12(λ),

H0603 = −r
Jt

ξ13(λ), H0108 = −r
Jt

ξ14(λ),

H0605 = cosh(−λr) + −r
Jt

ξ21(λ), H0606 = sinh(λr) + −r
Jt

ξ22(λ),

H0607 = cos(λr) + −r
Jt

ξ23(λ), H0608 = sin(λr) + −r
Jt

ξ24(λ),

H0609 = −JLr
Jt

, H0610 = −JLr
Jt

,

H0701 = ξ11(λ)
Jt

, H0702 = ξ12(λ)
Jt

,

H0703 = ξ13(λ)
Jt

, H0704 = ξ14(λ)
Jt

,

H0705 = λ sin h(−λr) + ξ21(λ)
Jt

, H0706 = λ cosh(−λr) + ξ22(λ)
Jt

,

H0707 = −λ sin(−λr) + ξ23(λ)
Jt

, H0708 = λ cos(−λr) + ξ24(λ)
Jt

,
H0709 = JL−Jt

Jt
, H0710 = JL−Jt

Jt
,

H0805 = λ2 cosh(−λr), H0806 = λ2sinh(−λr),

H0807 = −λ2 cos(−λr), H0808 = −λ2 sin(−λr), H0810 = − KL
EIZ

,

H0905 = λ2 cosh(−λ(r + L)), H0906 = λ2sinh(−λ(r + L)),

H0907 = −λ2 cos(−λ(r + L)), H0908 = −λ2 sin(−λ(r + L)),

H1005 = λ3sinh(−λ(r + L)), H1006 = λ3 cosh(−λ(r + L)),

H1007 = λ3sinh(−λ(r + L)), H1008 = λ3 cosh(−λ(r + L)).
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