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Abstract: The increasing usage of unmanned aerial vehicles (UAVs) and their variants carrying
complex weapon systems, known as unmanned combat aerial vehicles (UCAVs), has triggered
a global revolution in complex military and commercial operations and has attracted researcher
attention from different engineering disciplines in order to solve challenging problems regarding
these modern vehicles. Path planning is a challenging problem for UAV and UCAV systems that
requires the calculation of an optimal solution by considering enemy threats, total flight length, fuel
or battery consumption, and some kinematic properties such as turning or climbing angles. In this
study, the immune plasma (IP or IPA) algorithm, one of the most recent nature-inspired intelligent
optimization methods, was modified by changing the default plasma transfer operations with a
newly proposed technique called the extended treatment approach; extended IPA (ExtIPA) was
then introduced as a path planner. To analyze the solving capabilities of the ExtIPA, 16 cases from
five battlefield scenarios were tested by assigning different values to the algorithm-specific control
parameters. The paths calculated with ExtIPA were compared with the paths found by planners on
the basis of other intelligent optimization techniques. Comparative studies between ExtIPA and other
techniques allowed for stating that the extended treatment approach significantly contributes to both
the convergence speed and qualities of the obtained solutions and helps ExtIPA in performing better
than its rivals in most cases.

Keywords: extended treatment; immune plasma algorithm; unmanned combat aerial vehicle;
path planning

1. Introduction

Tremendous advances in computing, communication, optical, weapon, and ammuni-
tion technologies have brought unexpected reconnaissance, surveillance, and destructive
capabilities to unmanned aerial vehicles (UAVs) and unmanned combat aerial vehicles
(UCAVs) [1,2]. To increase the likelihood of success of a task assigned to a UAV, UCAV,
or similar modern aerial vehicle, a flight path should be carefully calculated by taking
into account some optimization goals related to enemy threats, fuel consumption, or bat-
tery usage [3,4]. Even though graph-based algorithms such as the Voronoi diagram, A*
search, D* lite, and other classical techniques such as rapidly exploring random trees (RRT),
artificial potential fields (APF), and probabilistic road maps (PRM) are commonly used
for calculating UAV or UCAV paths, they require the generation of cost maps of complex
battlefields and usually suffer from convergence to local optimal solutions [5,6].

In recent years, meta-heuristic algorithms, which are a branch of artificial intelligence
techniques, have started being used as path planners of UAV or UCAV systems because
of their advantages regarding their implementation simplicity, computational complexity,
and configurable or adjustable structures [7–9]. C. Xu et al. directed the employed foragers
of the artificial bee colony (ABC) algorithm to the best current food source by utilizing
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chaotic variables for their path planner, named chaotic ABC (CABC), and pictorially proved
the superiority of the CABC over the ABC algorithm [10]. Y. Zhang et al. converted
the raw fitness values of food sources by using a fitness scaling strategy and employed
Lorenz equations to generate random numbers required by the bee phases to improve the
path-planning performance of the ABC algorithm [11]. In another study, Y. Zhang et al.
improved the selection probabilities of qualified solutions by taking into account a fitness
scaling mechanism for the particle swarm optimization (PSO) algorithm [12]. Moreover,
Y. Zhang et al. adaptively adjusted the inertial weight and acceleration coefficients of
the population update equation in PSO and utilized a chaotic random number generator
to determine the values of the random coefficients of the same equation [12]. The PSO
algorithm introduced by Y. Zhang et al., called the fitness-scaling adaptive chaotic PSO
(FAC-PSO), was used as a path planner [12]. P. Li and Duan referenced the idea of memory
and social information concept of PSO for their gravitational search algorithm (GSA), and
its effectiveness on solving UAV path-planning problems was verified via comparisons
with the standard PSO, GSA, and two other GSA-based models [13]. Fu operated a version
of the PSO algorithm for which each particle modified the related velocities by guiding the
best solution of a small solution group as the path planner [14].

G.-G. Wang et al. designed a new information-sharing approach between the qualified
solutions of the firefly algorithm (FA) and presented the modified FA (MFA) [15]. A
detailed comparison was presented between the MFA and other meta-heuristic-based UAV
path planners such as PSO, ant colony optimization (ACO), differential evolution (DE),
biogeograph-based optimization (BBO), evolutionary strategies (ES), population-based
incremental learning (PBIL), genetic algorithm (GA), and, lastly, a variant of GA known
as stud GA (SGA) [15]. The studies pioneered by G.-G Wang were not limited to the
MFA. G.-G. Wang et al. tried to embed some dynamics of the DE algorithm into cuckoo
search (CS), and the DE/CS algorithm was announced for planning UCAV paths being
operated in a three-dimensional environment [16]. G.-G. Wang et al. altered the solution
update procedure of the bat algorithm (BA) with the mutation operator of DE, and BAM
was presented [17]. The qualities of the obtained UCAV paths allowed for stating that
the mutation operator accelerated the convergence speed of BA while maintaining the
existing strong search characteristics of the algorithm [17]. A separate study of G.-G. Wang
et al. borrowed the mutation operator from the DE and ported it into the workflow of
BA [18]. The BA with the support of the mutation operator of DE was named improved
BA (IBA) and was tested in a three-dimensional environment to calculate optimal UCAV
paths [18]. The BBO algorithm was updated with chaos theory and the predator–prey
concept by W. Zhu and Duan; then, chaotic predator–prey BBO (CPPBBO) was introduced
for solving path-planning problems [19]. These authors conducted a set of experiments
for a UAV with constraints regarding the maximal yawing angle and flight length [19].
Heidari and Abbaspour varied the communication relationship between the stars and other
elements of the black hole (BH) algorithm, and controlled the effects of modifications over
UCAV path-planning problems [20]. Tang and Zhou replaced the location update model of
glowworm swarm optimization (GSO) with the mechanism inherited from the PSO, and
introduced the PGSO algorithm [21]. The performance of PGSO was analyzed in detail
for path-planning problems, and it obtained more qualified solutions than other tested
algorithms did, especially when the number of segmentation points or waypoints was set
to 5 or 10 [21].

G. Yu et al. applied teaching–learning-based optimization (TLBO) to a two-dimensional
UAV path-planning problem and reached some critical conclusions regarding the solving
capabilities of TLBO compared with the ABC, PSO, DE, and GSO algorithms [22]. X. Zhang
and Duan defined multiple constraints such as the total cruise length, flight altitude, turn-
ing angle, climbing or gliding slope, terrain, non-flight zones, and enemy threats, including
radars, missiles, and anti-air guns, for path-planning problems; they announced a DE algo-
rithm specialized with an α-level comparison-based constraint-handling technique [23]. Q.
Zhou et al. changed the wolf colony search (WCS) algorithm, so that the complex method
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was responsible for managing the leading strategy of the wolf colony; they simulated a
newly proposed technique called CWCS as the path planner [24]. B. Li et al. first developed
the balance-evolution strategy (BES) by controlling the trial counters of employed bees
to generate candidate solutions in the ABC algorithm, and the BE-ABC algorithm was
introduced [25]. They examined the BE-ABC algorithm for planning UCAV paths by using
three different battlefield scenarios, and compared BE-ABC, ABC, and two ABC variants,
namely, the I-ABC and IF-ABC algorithms [25]. The predator–prey concept was combined
with the pigeon-inspired optimization (PIO) by B. Zhang and Duan, and predator–prey
pigeon-inspired optimization (PPPIO) was presented [26]. They prepared test scenarios
for which danger zones moved dynamically and planned UCAV paths with PPPIO [26]. Y.
Zhou et al. specialized some stages of wind-driven optimization (WDO) with the quan-
tum rotation gate and quantum non-gate strategies, and quantum WDO (QWDO) was
proposed [27]. The UCAV paths found by QWDO were compared with the paths found by
quantum-supported variants of PSO and BA, and standard implementations of the WDO,
PSO, and DE algorithms [27].

S. Zhang et al. focused on how the standard implementation of the grey wolf optimizer
(GWO) performs on calculating UAV paths for two-dimensional test cases [28]. Luo et al.
represented the solution of BA with the quantum encoding and executed the quantum
rotation gate to manage update operations and the quantum dot gate to manage the
mutation operations for their path planner known as quantum encoding BA (QBA) [29].
Q. Zhang et al. decided to develop a collection decision optimization algorithm (CDOA)-
guided technique and verified the effectiveness of it after solving the UAV path-planning
problem [30]. Alihodzic et al. investigated the path-planning capabilities of the elephant
herding optimization (EHO) algorithm for two-dimensional battlefields [31]. Alihodzic
et al. also solved UCAV path-planning problem with the fireworks algorithm (FWA)-
based approach in which the qualities of solutions are utilized for determining how many
sparks are generated and how the exploitation amplitude is calculated [32]. Miao et al.
provided an extensively rich set of experiments about their path planner developed via
the hybridization of the simplex method (SM) and the symbiotic organism search (SOS)
algorithm [33]. Dolicanin et al. configured the brain storm optimization (BSO) algorithm
as a path planner and used a battlefield with five enemy threats for testing [34]. Pan
et al. adjusted the scaling factor and fraction probability of the CS algorithm with the
help of chaotic sequences of Circle-type Chaotic Maps and showed the superiority of their
CS algorithm against the standard CS algorithm for solving the UCAV path-planning
problem [35]. The valuable contribution to the literature of intelligent UAV or UCAV
path-planning by the studies pioneered by Pan has carried over to current times. Pan et al.
remodeled the process of encircling or searching for the prey of the whale optimization
algorithm (WOA) with a self-tuning parameter based on the qualities of the agents [36].
Two battlefield scenarios were simulated with the purpose of UCAV path-planning, and
it was understood that improved WOA achieves more qualified paths compared to the
standard WOA [36]. Moreover, Pan et al. brought together the advantageous sides of
two DE variants such as CIPDE and JADE, and CIJADE was proposed [37]. In CIJADE,
the crossover rate and scaling factor were determined according to a parameter adaption
strategy in each cycle or generation. Some tests carried out for a battlefield with ten enemy
threats demonstrated that CIJADE outperforms PSO, DE, ABC, JADE, and CIPDE, and the
superiority of CIJADE becomes more apparent when the number of segmentation points is
increased [37].

Lin et al. altered the position update procedure of BA with the help of APF when
designing a BA-guided path planner [38]. They also improved the inertia weight of the
mentioned BA by using the optimal success rate strategy and chaos theory to further escape
the local optimal solutions [38]. Qu et al. integrated reinforcement learning (RL) into the
workflow of GWO by assuming that the population members of GWO correspond to the
training agents of RL and introduced RLGWO for calculating optimal UAV paths [39].
RLGWO was tested using three battlefield scenarios and compared with the standard GWO
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and its variants, including IGWO, MGWO, and EEGWO [39]. The GWO algorithm was
selected by Qu et al. in another study. They hybridized a simplified variant of the GWO
algorithm with SOS that uses a modified commensalism phase and developed HSGWO-
MSOS [40]. Comparative studies between HSGWO-MSOS, GWO, SOS, and simulated
annealing (SA) conducted on both two- and three-dimensional scenarios proved the bet-
ter performance of the newly proposed technique [40]. Monarch butterfly optimization
(MBO) was modified by Yi et al. in a manner that quantum operators are responsible for
regenerating a certain set of worst butterflies, and quantum-inspired MBO (QMBO) was
proposed as a three-dimensional path planner [41]. C. Wu et al. considered some physical
constraints of the UAV when exploring the search space and used them in the initialization
of the bees belonging to ABC algorithm [42]. Yang Chen et al. changed the global update
equation of the flower pollination algorithm (FPA) to guarantee a non-monotonic decreas-
ing sequence [43]. In addition to this, a population reconstruction mechanism was added
to protect the algorithm from premature convergence [43]. The new implementation of
the FPA, named neighborhood global-learning-based FPA (NGFPA), was executed to find
optimal UAV paths, and its results were compared with the results of some well-known
techniques such as A*, APF, and RRT [43].

H. Zhu et al. provided a detailed comparative study by using standard versions
of ABC, BA, DE, FA, GWO, PSO, WOA, CS, a modified variant of MBO called GSMBO,
harmony search (HS) and spider monkey algorithm (SMA) and concluded that SMO is
able to planning more safe UCAV paths than other tested algorithms do [44]. The superior
performance of SMO gave inspiration to H. Zhu et al. for developing new path planners on
the basis of the mentioned algorithm. The SMO supported with cooperative co-evolution,
which is a method helping the division of the parameter set into smaller sub-sets first to
solve them independently and then combining the partial solutions appropriately, was used
by H. Zhu et al. when planning UCAV paths [45]. In order to validate the competitiveness
of the SMA-based technique, twenty-five cases under five different scales were described
and tested [45]. X. Zhou et al. tried to handle the poor local search ability of BA with
the help of the ABC algorithm, and the improved BA (IBA) was presented and tested
for planning UAV paths in an environment containing specially modeled enemy radars,
missiles, anti-aircraft weapons, and climate effects [46]. P. Wu et al. determined the values
of the random coefficients in the PSO algorithm using a Zaslavskii chaos map, and a path
planner named improved chaotic PSO was announced [47]. H. Xu et al. remodeled the
critical sections of the GSA by using an adaptive alpha-adjusting strategy and a Cauchy
mutation strategy. The GSA variant, also called mixed-strategy-based GSA (MSGSA for
short) was used to obtain optimal UAV paths by considering enemy threats, total flight
length, turning angles, and non-flight zones [48].

One of the most specialized UAV path planners was introduced by Jiang et al. at the
beginning of 2022 [49]. They changed the workflow of the standard GWO by adding a
communication mechanism for avoiding local optimum solutions in the search process and
ε-level comparison for managing constraints [49]. Moreover, they utilized the partially ob-
servable Markov decision process and Monte Carlo tree search algorithm for the purpose of
collision avoidance [49]. X. Wang et al. supported different stages of the mayfly algorithm
(MA) and offered the modified MA (modMA) [50]. In the modMA, the gravity coefficient
was determined with an exponent inertia weight strategy, and the position of each male
mayfly was adjusted by employing Cauchy-based mutation approach [50]. Finally, they
integrated the horizontal crossover strategy in which the solution space is divided into hy-
percubes to allow the parent individuals to generate candidates of distant regions [50]. Niu
et al. controlled different stages of the artificial ecosystem optimizer (AEO) and proposed
an adaptive neighborhood-based search-enhanced AEO (NSEAEO for short) to address
the UCAV path planning problem [51]. In NSEAEO, distance-fitness-based information
was used to define neighborhoods for consumers and a significant contribution was given
to the global exploration capability of the algorithm [51]. Moreover, Niu et al. employed
a novel decomposition method maintaining the population diversity. Experimental stud-
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ies on both two- and three-dimensional environments showed that NSEAEO is able to
handle challenging objectives regarding enemy threats, total flight length, and turning
and climbing angles more robustly than other techniques can, such as the salp swarm
algorithm (SSA), the stain bowerbird optimizer (SBO), the pathfinder algorithm (PFA), the
sine–cosine algorithm (SCA), two PSO variants named GAPSO and CIPSO, GA, MFO, a
modified TLBO (ECTLBO), HSGWO-MSOS, and AEO [51]. Jia et al. developed a new
approach called double-layer coding (DLC) used for deciding which segmentation points
or waypoints are considered to define a UCAV path and used it with their PSO variant
known as rotation-based PSO (RPSO) [52].

When the details given about a how a meta-heuristic algorithm is specialized or modi-
fied in order to solve UAV or UCAV path-planning problem are given, it can be easily seen
that nature has a tremendous potential to inspire researchers in the development of new
computational intelligence techniques. The immune plasma algorithm (IP algorithm or IPA)
is one of the most recent meta-heuristic methods that shows the immense richness of nature
by modeling the fundamental steps of a medical method. This algorithm gained popularity
again with the COVID-19 pandemic and was named as the convalescent or immune plasma
treatment [53]. If the main operations executed by the IPA are investigated, it can be easily
seen that the IPA differs from the most representative meta-heuristics including ACO, ABC,
PSO, BA, FA, FWA, DE, and GA [53]. While the exploitation-dominant operations of the IPA
are designed in a semi-adaptive manner and adjust the convergence dynamically without
changing the initial values of the control parameters, a quasi-deterministic approach is
responsible for managing the important part of exploration, and its promising performance
has been validated recently for engineering problems such as channel assignment [54],
time series prediction [55], wireless sensor deployment [56], signal noise minimization [57],
neural network training [58], and also UAV or UCAV path planning [59]. In this study, the
plasma transfer scheme of the IP algorithm was changed with a newly introduced approach
called extended treatment, and an extended IP algorithm, or ExtIPA, was designed to solve
the path-planning problem. The extended treatment approach mainly depends on continu-
ing the transfer of plasma from the donor to the selected receiver until the receiver becomes
better than its donor and allows for the algorithm to search the vicinity of the eligible
solutions more sensitively. The contribution of the extended treatment approach on the
qualities of planned UCAV paths was investigated by using different battlefield scenarios,
and obtained solutions were compared with the solutions of other meta-heuristic-based
path planners. Comparative studies between ExtIPA and other techniques showed that the
newly introduced treatment approach significantly improves the exploitation performance
of the IPA while maintaining the existing exploration capabilities, and ExtIPA outperforms
its competitors in most of the test cases. The rest of the paper is organized as follows:
Details of the path-planning problem and score calculation method are given in Section 2.
Fundamental steps of the IP algorithm are summarized in Section 3. Section 4 is devoted
to the extended treatment approach and its integration into the IPA. The results of the
experiments and comparative studies are presented in Section 5. Finally, some conclusions
and future works about the development of new IPA-based path planning techniques are
mentioned in Section 6.

2. Mathematical Description of the UCAV Path-Planning Problem

Before we start to determine a UCAV path, a strong mathematical model that describes
enemy threats and their effects, the fuel or battery consumption over the total flight
length, and a score calculation schema to understand how the path is qualified should be
introduced. One of the commonly used mathematical models depends on describing an
enemy threat by utilizing the radius of a circle with a known center coordinate to show the
effect range and the grade or level to show the destructive capability. Given that there is
a UCAV being planned to destroy a target positioned at Pt = (xt, yt) by taking off from
the start point at Ps = (xs, ys), a reference line between Ps and Pt is drawn. Moreover, the
reference line between Ps and Pt is divided equally into D + 1 segments with the help of
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D segmentation points [59]. Each segmentation point on the reference line is intersected
with a line that is vertical to the reference line, such as L1 for point P1 and L2 for point
P2; then, line set L = {L1, L2, . . . , LD−1, LD} is obtained. Set L serves a critical function
in determining a flight path. Assume that only one point is selected from each line in
the set L and combined appropriately with Ps and Pt; then, a set of points described as
P = {P1, P2, . . . , PD−1, PD} can be generated. When each subsequent pair of points in set P
is connected with a line segment, a UCAV path from start point Ps to the target point Pt can
also be found [59].

Even though the forming a UCAV path by connecting each subsequent pair of points
with a line segment seems relatively straightforward, finding the members of the set L
and determining the coordinates of points in the set P require difficult calculations. To
simplify the required calculations when generating the set L and set P, some properties
of a new coordinate system in which the reference line corresponds to the horizontal axis
can be utilized [59]. In order to transform a point of the original coordinate system into the
appropriate counterpart of the new coordinate system, Equation (1) can be used [59]. While
xk and yk are matched with the x-axis and y-axis values of point Pk in the original coordinate
system, x́k and ýk are matched with the x́-axis and ý-axis values of the transformed Pk
or Ṕk in Equation (1). θ is the angle between the x-axis of the original coordinate system
and reference line and can be calculated as the results of the arctan((ys − yt)/(xs − xt))
operation [59]: [

x́k
ýk

]
=

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
×
[

xk − xs
yk − ys

]
(1)

Because the reference line becomes the horizontal axis of the new coordinate system and
is divided equally into D + 1 segments with D different segmentation points, the distance
between two subsequent segmentation points is found equal to |PsPt|/(D + 1), and the
x́k-axis value of the ith segmentation point or x́i is also found equal to i|PsPt|/(D + 1) [59].
As stated earlier, each segmentation point is intersected with a line vertical to the reference
line, and a point is selected from this vertical line. Considering the vertical line passing
through the ith segmentation point, the x́-axis value of any point being selected from
this line becomes equal to i|PsPt|/(D + 1), and only the ý-axis value is required [59]. If
only the ý-axis values of the points being selected from the vertical lines are considered
and organized in a set such as {ý1, ý2, . . . , ýD−1, ýD}, path planning can be turned into a
problem for which the ý-axis values of D different points are optimally determined by
selecting one for each vertical line with the purpose of a safe and efficient flight mission. A
visual investigation can be conducted in order to understand the relationship between the
original and transformed coordinate systems by controlling the Figure 1.

The geometrical modeling of the path-planning problem allows one to find an infinite
set of possible solutions due to the continuous search spaces of the points. In order to com-
pare two possible solutions to decide which path is better, a quality or score measurement
schema should be described. A quality or score measurement schema used for comparing
different paths is introduced in Equation (2) [59]. In Equation (2), Jt is used to represent
the cost of enemy threats for the considered path, and it is calculated using the integral of
w f from 0 to the total length of the path, abbreviated as l. Similarly, J f is used on behalf
of the cost of fuel consumption, and it is calculated using the integral of w f from 0 to the
total length of the path. To adjust the weights of Jt and J f in the construction of the J score,
a constant called λ, chosen between 0 and 1, is directly multiplied by Jt, and the value of
1− λ operation is multiplied by J f [59].

J = λJt + (1− λ)J f = λ
∫ l

0
wtdl + (1− λ)

∫ l

0
w f dl (2)

The integral calculations about the cost of enemy threats and cost of fuel consumption
can be carried out by using some approximations with acceptable accuracies. Given that
w f is set to a constant such as 1, the J f is found to simply equal the length of the flight
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path [59]. If the length of the flight path increases, it is seen that the cost of fuel consumption
also increases, as expected. When calculating the cost of enemy threats, integral-based
operations are replaced with an approximation model in which the whole path is first
divided by considering the subsequent points in the set P, and then each line segment is
evaluated to understand whether it is in the effect ranges of enemy threats or not. Assume
that Pi and Pj are two subsequent points, and the length of the path segment between these
points is shown as Lij. The path segment of length Lij is divided into ten subsegments
and the first, third, fifth, seventh, and ninth subsegmentation points are named points 0.1,
0.3, 0.5, 0.7, and 0.9. If the mentioned path segment is in the effect range of the kth enemy
threat of grade tk, the cost of the kth enemy threat on the path segment between Pi and
Pj or Jt,(ij),k is determined with Equation (3) [59]. In Equation (3), while d4

0.1,i,k, d4
0.3,i,k, and

d4
0.5,i,k show the Euclidean distances between the center of the kth enemy threat and 0.1, 0.3,

and 0.5 subsegmentation points, d4
0.7,i,k and d4

0.9,i,k correspond to the Euclidean distances
between the center of the kth enemy threat and 0.7 and 0.9 subsegmentation points. When
the cost of all enemy threats are determined for each path segment and then summed, the
value of Jt can be obtained. As easily seen from the calculation details of Jt and J f values,
qualified paths have smaller J scores compared to other paths of the same battlefield [59].

Jt,(ij),k =
Lijtk

5
(

1
d4

0.1,i,k
+

1
d4

0.3,i,k
+

1
d4

0.5,i,k
+

1
d4

0.7,i,k
+

1
d4

0.9,i,k
) (3)

(a)

y

x

L 1

L 2
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L D - 1

L D

L D - 2

θps

p
t

(d)
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D
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Figure 1. Initial (a) and transformed (b) coordinate systems, calculated paths (c), and their counter-
parts for the initial coordinate system (d).

3. Immune Plasma Algorithm

The new coronavirus, or COVID-19, first seen in Wuhan, China, at the beginning of
2019, caused a global health crisis that still affects people all over the world, and different
medical methods and treatment approaches were developed in response. Immune or
convalescent plasma treatment, used previously for the 1918 great influenza pandemic,
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also became a promising medical method for COVID-19. The idea behind this mentioned
treatment approach that is over a hundred years old is transferring the blood and antibodies
in the blood from an individual recovered recently to a critically ill patient. When the
biologically strong idea lying behind the immune or convalescent plasma treatment is
investigated from the viewpoint of a computer scientist, it is easily seen that there is an
analogy with the transfer of blood from the selected donor to the critical patient and the
exploitation of dominant operations of a meta-heuristic algorithm [53]. Aslan utilized the
described analogy and introduced an IP algorithm (IPA for short) to the literature of artificial
intelligence techniques [53]. When a problem that requires searching for optimal values
for a set of decision parameters by considering the minimization or maximization of an
objective function is attempted to be solved using IPA, a person or individual corresponds to
a solution and the antibody amount or immune response of this individual is measured by
using the objective function. If the IP algorithm decides that an individual in the population
is a critical patient, or receiver, it selects another individual from the same population as a
plasma donor, and treatment is started. Until the IPA completes a run because it reaches the
maximum evaluation number or satisfies a similar termination criterion, the distribution of
the infection between all members of the population, the selection of receiver and donor
individuals, and the application of plasma treatment are carried out in a circular manner.

3.1. Generating Initial Members of the Population

The IP algorithm employs a randomized generation schema to determine initial
values of its population members. Given that the problem being solved has D different
parameters, the IP algorithm will start subsequent operations with a population of size
PS. When representing an individual or member of population, a D-dimensional vector is
used. By assuming that xk is the kth member of the population and xkj is the jth element
or parameter of the mentioned individual, Equation (4) given below is executed in the IP
algorithm with the purpose of assigning the initial value of xkj [53]. In Equation (4), xmax

j

and xmin
j are problem-dependent upper and lower bounds for the jth parameter. rand(0, 1)

also corresponds to a random number generated between 0 and 1 [53].

xkj = xmin
j + rand(0, 1)(xmax

j − xmin
j ) (4)

3.2. Distributing Infection within a Population

Each member or individual of the population in the IPA is matched with a possible
solution to the considered problem. When the initialization of individuals is completed,
the IPA starts to distribute infection using a relatively simple model, as described in
Equation (5), where xkj and xmj are used to represent the randomly selected jth parameters

of xk and xm individuals, respectively [53]. xin f
k corresponds to the xk individual infected

by the xm, which is also chosen randomly from the population of size PS. xin f
kj represents

the jth parameter of xin f
k newly calculated with the transmission of infection. Because xin f

k
indicates the infectious xk individual, all of its parameters, except the jth one, are the same
as the parameters of xk individuals. Finally, in Equation (5), rand(−1, 1) is matched with a
random number generated between −1 and 1.

xin f
kj = xkj + rand(−1, 1)(xkj − xmj) (5)

An infection triggers the immune system of the host, and a specific immune response
in terms of the synthesized antibodies is given. To measure the level of a given response
by an infectious individual, the IP algorithm directly utilizes the objective function of
the problem [53]. When the IP algorithm tries to solve a minimization problem with the
objective function f , the immune response or level of antibodies is determined as f (xk)

for the xk individual before the infection and f (xin f
k ) for the xk individual immediately

after the infection. If f (xk) is higher than f (xin f
k ), it is decided that the xk individual and its
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immune system is strong enough to handle the infection and the immune memory of xk

should be updated for subsequent infection cycles by changing xkj to xin f
kj . Otherwise, the

xk individual remains unchanged, as described in Equation (6) [53].

xkj =

{
xin f

kj , i f f (xin f
k ) < f (xk)

xkj, otherwise

}
(6)

3.3. Treatment of Receivers with Donors

The IP algorithm continues the distribution of the infection until all population mem-
bers meet with the infection. When all of the individuals meet with the infection, the IPA is
ready to start its second main phase in which one or more individuals are treated by the
support of one or more individuals chosen from the same population. In order to decide
how individuals will be chosen as critical and labeled as receiver and how individuals
will be chosen as recovered and labeled as donor, the IPA introduces two specific con-
trol parameters called NoR and NoD [53]. NoR is the number of receivers, and the NoR
individuals who are worse than the remaining members are selected as receivers. The
NoD abbreviation is used on behalf of number of donors, and the NoD individuals who
are better than the remaining members are selected as donors. Assume that xrcv

k is the
kth receiver from the set of receivers with the NoR individuals and xdnr

m is the randomly
selected donor from the set of donors with NoD individuals. To model the transfer of a
single plasma dose, Equation (7) is used by the IP algorithm [53]. In Equation (7), xrcv

kj and

xdnr
mj show the jth parameters of xrcv

k and xdnr
m , and j is selected from the set {1, 2, . . . , D}

sequentially. Moreover, xrcv−p
kj is matched with the jth parameter of xrcv−p

k , and xrcv−p
k is

used to represent the xrcv
k after transferring a single dose of plasma. If f (xrcv−p

k ) is less
than f (xdnr

m ) for the first dose of plasma, xrcv
k is updated with xrcv−p

k appropriately, and
treatment is continued, with the second dose taken from the same donor [53]. Otherwise,
it is decided that the treatment does not cause a dramatic improvement in the immune
system of xrcv

k and it should be completed. However, in order to guarantee that at least one
dose of plasma is given, xrcv

k is updated with xdnr
m , and treatment is concluded immediately

after the first dose [53].

xrcv−p
kj = xrcv

kj + rand(−1, 1)(xrcv
kj − xdnr

mj ) (7)

The second and other doses of plasma are transferred to xrcv
k from xdnr

m by referencing
the model introduced in Equation (7). However, the IPA changes the decision mechanism
for understanding whether the plasma treatment is continued with a third dose of plasma
or not. If f (xrcv−p

k ) corresponding to the antibody level of xrcv
k after the second dose of

plasma is less than the antibody level of xrcv
k after the first dose of plasma, xrcv

k is updated
by using xrcv−p

k , and then the treatment of xrcv
k is continued with a third dose of plasma

from xdnr
m [53]. Otherwise, treatment is concluded for xrcv

k , and the next receiver is selected,
if they exist.

3.4. Modification of Donor Individuals

The antibody amount synthesized for a specific infection by the immune system of
an individual recovered previously can decrease with time or incidence of encountering
the infection. To model this type of change, the IP algorithm utilizes a random number
generated between 0 and 1 and the ratio between tcr and tmax [53]. Moreover, tcr is used
to represent the current evaluation number, and it is increased by one for each evaluation.
tmax is used on behalf of the maximum evaluation number, and the IPA terminates when
tcr becomes equal to tmax [53]. If the ratio between tcr and tmax is less than the generated
random number, xdnr

m is reinitialized by using Equation (4) to indicate that the immune
memory of the mentioned donor individual is not strong enough to synthesize the required
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amount of antibodies quickly [53]. Otherwise, xdnr
m donor individual is changed slightly, as

described in Equation (8), where the j index ranges from 1 to D [53]. When the IP algorithm
continues its run, tcr/tmax reaches 1, and the probability of generating a random number
between 0 and 1 less than tcr/tmax increases intrinsically. As an expected result of this
situation, the probability of using Equation (8) also increases, and the IPA tries to protect
the immune memories of its donors. After executing the update procedure for all donors,
the infection cycle of the IPA is completed and a new one is started.

xdnr
mj = xdnr

mj + rand(−1, 1)xdnr
mj (8)

4. Details of Extended Treatment Approach

The treatment schema modeled in the standard implementation of the IP algorithm
guarantees that a poor solution corresponding to a receiver is replaced with a solution
represented by the selected donor or a solution better than the solution represented by the
selected donor when the plasma transfer is completed. If the first dose of plasma cannot
provide a satisfactory contribution and the receiver for which the first dose of plasma is
given does not match to a solution better than the solution represented by its donor, the
treatment is simply ended after replacing the receiver with a copy of the selected donor.
Even though the idea underlying the used treatment schema brings some advantages to
the IP algorithm, the possibility of copying the same donor more than once should be
taken into account. When the treatment of receivers is completed by copying the same
donor more than once, the population can have difficulties in managing solution diversities.
Moreover, in the subsequent infection cycle, the chance of selecting the previously utilized
donor and its copies also increases, and the IP algorithm requires a subtle configuration for
the NoR and NoD parameters in order to handle the possible drawbacks stemming from
the existing workflow of the plasma treatment.

The performance of the IP algorithm can be further improved by remodeling how the
plasma from the donor will be transferred to the receiver and when the treatment will be
completed. The requirement of NoR or NoD parameters and setting them appropriately
can be removed completely if the exploitation characteristics of the newly designed plasma
transfer and treatment operations are configured subtly. Given that xrcv

k is the kth receiver
from the set of critical individuals of size NoR and xdnr is the best individual of the
entire population, when transferring the plasma from the xdnr to the xrcv

k individual, it is
assumed that all of the parameters belonging to the xdnr, except the randomly determined
jth one, are copied into the xrcv

k and then jth parameter of the xrcv
k is calculated with the

Equation (9) after plasma treatment is concluded. In Equation (9), xrcv−p
kj corresponds to

the jth parameter of xrcv−p
k and xrcv−p

k is used on behalf of the xrcv
k individual who receives

a dose of plasma from the donor.

xrcv−p
kj = xdnr

j + rand(−1, 1)(xdnr
j − xrcv

kj ) (9)

Standard implementation of the IP algorithm compares the antibody amount of xrcv
k

immediately after the first dose of plasma calculated as f (xrcv−p
k ) with the antibody amount

of xdnr calculated as f (xdnr). For a minimization problem, if f (xrcv−p
k ) is not less than

f (xdnr), in other words, xrcv−p
k is not better than xdnr, and xrcv

k is replaced with a copy of
xdnr and treatment is ended. The replacement of xrcv

k with a copy of xdnr ensures that xrcv
k or

a poor solution corresponding to xrcv
k is discarded from the population and a more qualified

solution represented by xdnr is added. However, it should be noticed that some difficulties
about the population diversity and efficiency of the subsequent treatment operations can
be encountered and solving performance of the IP algorithm can deteriorate. In order
to handle the possible problems to do with the replacement procedure between xrcv

k and
xdnr individuals, an extended treatment approach that repeats the same plasma transfer
operations as modeled by guiding Equation (9) until the xrcv−p

k becomes better than the
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xdnr is developed. By using the extended treatment approach, the IP algorithm empowers
its exploitation characteristics because of the repetitive search in the neighborhood of the
selected donor without requiring neither NoD parameter nor its sensitive configuration.
Newly proposed treatment approach allows IP algorithm to guarantee that xrcv

k will be
replaced with a solution better than the solution represented by xdnr. The IP algorithm
that transfers plasma from the best individual in the population or xdnr to the xrcv

k in the
receiver set of size NoR, as described by Equation (9), and continues plasma transfer until
the receiver becomes better than its donor is called extended IPA for short ExtIPA. The
details of treatment operations in ExtIPA can be controlled over the Algorithm 1.

Algorithm 1 Fundamental steps of extended treatment approach

1: xbest ← get the best solution found so far
2: rcvIndexes[1 . . . NoR]← get the indexes of the receivers
3: for i← 1 . . . NoR do
4: xdnr ← get the best individual in the population as donor
5: k← rcvIndexes[i] and determine xrcv

k as the current receiver
6: if tcr < tmax then
7: tcr ← tcr + 1
8: xrcv−p

k ← apply plasma treatment to xrcv
k with xdnr using Equation (9)

9: while f (xrcv−p
k ) > f (xdnr) do

10: if tcr < tmax then
11: tcr ← tcr + 1
12: xrcv−p

k ← apply plasma treatment to xrcv
k with xdnr using Equation (9)

13: else
14: Terminate the run and send xbest as the final solution
15: end if
16: end while
17: Update xrcv

k with xrcv−p
k

18: if f (xbest) > f (xrcv
k ) then

19: Update xbest with xrcv
k

20: end if
21: else
22: Terminate the run and send xbest as the final solution
23: end if
24: end for

5. Experimental Studies

The qualities of the solutions calculated by a path planner can change with the prop-
erties of the considered battlefield in terms of the starting and target points, the number
of enemy threats and their locations, sensing or shooting ranges, and grades. By taking
into account this major requirement about the performance investigation, five challenging
battlefields, detailed in Table 1, were used. For the first and second battlefields, the number
of segmentation points and number of parameters, also abbreviated as D, were determined
to be 30 and 50, while the number of segmentation points was determined to be 20 and 25
for the third battlefield and fourth battlefield, which were related with two test cases, one of
which has 20 segmentation points determined optimally and the latter has 30 segmentation
points. The λ constant was set to 0.5 with the purpose of equally weighting the cost of
enemy threats and cost of fuel consumption on the J score calculation of a path [59]. In the
experiments, the population size of ExtIPA was taken to be equal to 30, and five different
constants, including 1, 2, 3, 4, and 5, were assigned to the NoR parameter. The experiments
on the first and second battlefields were repeated 50 times by setting the maximum evalua-
tion numbers to 30,000 and 60,000, respectively [59]. Similarly, the experiments on the third
and fourth battlefields were repeated 50 times by setting the maximum evaluation number
to 6000 [59]. At the end of each run or test of ExtIPA, the best path found and the value of
its objective function were recorded and summarized in Table 2 as the mean best, best, and
worst objective function values and standard deviations.
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Table 1. Properties of the battlefields in the experiments.

Sc. Threat Centers Threat Radius Threat Grade Start-Target Point

1 (52, 52), (32, 40), (12, 48), (36, 26),
(80, 60), (63, 56), (50, 42), (30, 70)

10, 10, 8, 12,
9, 7, 10, 10

2, 10, 1, 2,
3, 5, 2, 4 (11, 11)–(75, 75)

2 (0, 200), (200, 0), (50, 50), (95, 95),
(150, 150), (95, 50), (50, 95), (140, 105), (105, 140)

90, 90, 20, 20,
20, 20, 20, 20, 20

7, 7, 5, 5
5, 6, 5, 6, 5 (0, 0)–(200, 200)

3 (59, 52), (55, 80), (27, 58), (24, 33),
(12, 48), (70, 65), (70, 34), (70, 30)

10, 9, 9, 9,
12, 7, 12, 10

9, 7, 3, 12,
1, 5, 13, 2 (10, 15)–(80, 75)

4 (10, 50), (20, 20), (30, 42), (30, 80), (50, 55),
(60, 10), (60, 80), (65, 38), (75, 65), (90, 80)

10, 9, 8, 10, 10,
10, 10, 12, 8, 10

8, 6, 5, 4, 7,
6, 7, 6, 8, 10 (0, 0)–(80, 100)

5 (45, 50), (12, 40), (32, 68), (36, 26), (58, 80) 10, 10, 8, 12, 9 2, 10, 1, 2, 3 (10, 10)–(55, 100)

The test results given in Table 2 allow us to investigate the relationship between the
qualities of the calculated path, the dimensionality of the test case, and the value of the NoR
parameter. For six of the eight test cases, ExtIPA performs better by assigning 1 to the NoR
parameter when compared to the same algorithm with the remaining NoR configurations.
Moreover, in the 30-dimensional test cases belonging to the first and fourth battlefields,
ExtIPA obtains more efficient paths with the NoR configured as 2. The treatment schema
of ExtIPA continues to transfer the plasma from the best individual to the receiver until
the antibody level of the receiver becomes higher than the antibody level of the donor. By
executing this type of treatment schema, ExtIPA consumes more evaluations on the plasma
transfer operations that are responsible for maintaining the exploitation characteristics of
the algorithm when ExtIPA completes the treatment of the receiver or a receivers is not
determined in advance. If ExtIPA spends more evaluations on the treatment of the receiver
or receivers, exploration-dominant operations related to the phase of infection distribution
and the phase of the donor update cannot be sufficiently executed, and some difficulties
can arise about escaping from the local optimum solution or solutions. When the NoR
parameter of ExtIPA is configured inappropriately for the existing population size, the
qualities of the final solutions can deteriorate for some of the repetitive runs.

The population size of ExtIPA can change the performance of the algorithm like in
other meta-heuristics. In order to analyze how the performance of ExtIPA varies with
the different values of the PS parameter, 20, 40, 50, 75, and 100 constants were used. The
NoR parameter of ExtIPA was set to 1 in the experiments. While 50 independent runs
were carried out for the first and second battlefield scenarios after setting the maximum
number of evaluations to 30,000 and 60,000, 50 independent runs were carried out for the
third and fourth battlefield scenarios after setting the maximum evaluation number to
6000. The mean best, best, and worst objective function values and standard deviations
given in Table 3 for various PS values of ExtIPA showed that the population size should
be equal to or less than 40 if the dimensionality of the test cases and termination criteria
are determined as detailed above. When the properties of the first four battlefields are
visually inspected in Figures 2–5, it is clearly seen that the test cases belonging to the
second and third battlefields require paths containing more challenging maneuvers. When
starting ExtIPA with a population in which there are some individuals partially satisfying
the needed maneuvers, a relatively high population size should be chosen to increase the
probability of producing the mentioned individuals or solutions. Because of this main
reason, while ExtIPA with PS equal to 30 or 40 finds more robust paths for the majority of
the test cases related to the second and third battlefield scenarios, it should start the work
with PS equal to 20 or 30 for the test cases of the first and fourth battlefield scenarios.
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Table 2. Results of ExtIPA for the first four battlefields.

Sc. D
NoR

1 2 3 4 5

1

30

Mean 48.595 48.593 48.716 48.942 49.676

Best 48.158 48.144 48.160 48.200 48.368

Worst 49.771 50.245 50.562 51.697 53.322

Std. 0.450 0.606 0.702 0.795 1.285

50

Mean 51.167 52.057 53.198 55.562 59.367

Best 48.600 48.694 48.829 49.875 51.629

Worst 54.260 57.969 61.228 62.909 66.841

Std. 1.783 2.534 3.069 3.908 4.407

2

30

Mean 152.053 153.018 152.951 153.266 153.515

Best 149.743 149.734 149.730 149.750 150.047

Worst 153.706 155.659 155.673 155.820 155.624

Std. 1.347 1.659 1.666 1.844 1.486

50

Mean 153.816 156.198 156.791 157.848 159.582

Best 149.273 151.898 149.288 152.155 153.410

Worst 157.542 159.238 160.430 162.613 164.025

Std. 2.188 2.300 2.660 2.840 2.780

3

20

Mean 47.969 52.358 49.969 55.187 49.727

Best 47.812 47.829 47.956 48.084 47.970

Worst 48.373 58.260 63.699 63.723 58.526

Std. 0.131 4.628 4.608 6.616 2.529

25

Mean 50.098 57.073 50.589 53.720 56.734

Best 48.019 47.946 48.009 48.411 48.983

Worst 63.774 68.047 67.839 62.637 69.766

Std. 4.079 7.450 4.478 5.190 7.432

4

20

Mean 66.397 66.570 66.596 66.664 67.480

Best 66.363 66.345 66.370 66.335 66.942

Worst 66.594 66.993 66.937 67.315 68.466

Std. 0.074 0.172 0.167 0.265 0.413

30

Mean 68.170 67.617 68.162 70.649 72.665

Best 67.207 66.870 67.152 68.033 68.649

Worst 70.135 68.644 70.628 83.549 82.528

Std. 0.958 0.669 0.716 2.534 3.567
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Table 3. Results of ExtIPA for the first four battlefields with different PS values.

Sc. D
PS

20 30 40 50 75 100

1

30

Mean 48.526 48.595 48.835 48.606 49.223 49.472

Best 48.160 48.158 48.185 48.181 48.197 48.206

Worst 49.420 49.771 50.173 50.146 51.569 52.023

Std. 0.404 0.450 0.597 0.497 1.009 1.190

50

Mean 51.173 51.167 51.556 51.511 53.373 56.069

Best 48.435 48.600 48.602 48.863 49.467 49.683

Worst 53.388 54.260 56.341 56.046 57.929 63.702

Std. 1.579 1.783 2.202 2.074 2.355 3.523

2

30

Mean 152.234 152.053 151.950 152.261 152.193 152.146

Best 149.744 149.743 149.734 149.751 149.764 149.737

Worst 153.747 153.706 153.720 153.834 155.036 154.023

Std. 1.456 1.347 1.340 1.371 1.551 1.349

50

Mean 154.318 153.816 154.440 155.328 156.165 157.016

Best 149.298 149.273 149.544 149.656 150.530 150.619

Worst 157.417 157.542 158.112 158.697 160.588 161.196

Std. 1.959 2.188 1.956 2.037 2.618 2.558

3

20

Mean 50.744 47.969 48.269 50.380 52.674 55.004

Best 47.820 47.812 48.003 48.094 48.163 48.887

Worst 63.587 48.373 50.386 57.907 64.312 61.872

Std. 6.070 0.131 0.452 3.548 6.082 4.588

25

Mean 56.700 50.098 53.058 54.155 60.303 61.740

Best 47.849 48.019 48.216 48.246 49.302 54.614

Worst 63.880 63.774 64.016 64.329 72.984 72.348

Std. 6.813 4.079 6.608 5.864 9.532 5.049

4

20

Mean 66.452 66.497 66.720 66.875 67.760 68.036

Best 66.263 66.363 66.473 66.468 66.976 67.263

Worst 66.748 66.594 66.967 67.564 69.513 69.935

Std. 0.123 0.074 0.180 0.306 0.889 0.518

30

Mean 67.300 68.170 68.123 69.796 72.439 78.074

Best 66.706 67.207 67.564 68.193 68.574 71.222

Worst 67.752 70.135 69.620 72.624 76.452 86.972

Std. 0.352 0.958 0.525 1.241 2.710 5.664
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Figure 2. The best and worst paths of ExtIPA with PS equal to 30 for 30-dimensional (a) and 50-
dimensional (b) cases of the first scenario and with PS equal to 100 for 30-dimensional (c) and
50-dimensional (d) cases of the first scenario.

The test cases used to evaluate the path-planning performance of ExtIPA contain at
least 20 segmentation points and at most 30 segmentation points. However, the complexity
of the path-planning problem can change unexpectedly with the number of segmentation
points. Even though a relatively small number of segmentation points is chosen, some of
the lines in the set L can intersect with the circles representing the enemy threats, and thus,
selecting a point that is outside the circle or circles and on the related line becomes more
difficult. Different experiments should therefore be carried out by assigning values less
than 20 and more than 30 to the number of segmentation points. For this purpose, the fifth
battlefield scenario containing eight cases with 5, 10, 15, 20, 25, 30, 35, and 40 segmentation
points was tested. In the experiments, while the value of the PS parameter of ExtIPA was
set to 20, 30, 40, 50, 75, and 100, the NoR parameter was taken as equal to 1. Each test case
generated by combining the D and PS parameters was solved 100 times by ExtIPA after
setting the maximum number of evaluations to 6000 [59]. The best solution found by ExtIPA
at the end of each run was recorded and then summarized in Table 4 with the mean best,
best, and worst objective function values and the calculated standard deviations. When the
results given in Table 4 are investigated, it is clearly seen that ExtIPA performs better if the
PS parameter is equal to 20 or 30 for the test case of fifth battlefield. Another important
conclusion that can be extracted from the results of ExtIPA for the fifth battlefield scenario
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is about its relatively stable performance. As stated earlier, the values being assigned to the
number of segmentation points can trigger unpredictable changes in the characteristics of
the path-planning problem, and an algorithm should preserve its performance for different
configurations of the same battlefield. While the number of segmentation points for the
fifth battlefield scenario is increased eight times from the first to the last case, the difference
between the mean best objective function values is found to only be 2.459 for the ExtIPA
with 20 individuals. The best and worst paths found by ExtIPA for the fifth scenario can be
seen in Figure 6.
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Figure 3. The best and worst paths of ExtIPA with PS equal to 30 for 30-dimensional (a) and 50-
dimensional (b) cases of the second scenario and with PS equal to 100 for 30-dimensional (c) and
50-dimensional (d) cases of the second scenario.

In order to determine whether the paths planned by ExtIPA are promising or not, they
should be compared with the paths found by other meta-heuristic-based path planners.
For this purpose, ExtIPA was compared with the IP, ABC, I-ABC, IF-ABC, and BE-ABC
algorithms for the test cases of the first and second battlefields [25,59]. To guarantee that all
of the compared algorithms obtain their solutions under equal conditions, the population
size and maximum evaluation number were fixed to 30 and 30,000 when solving test cases
about the first battlefield scenario [25,59]. Similarly, the population size and maximum
evaluation number were fixed to 30 and 60,000 when solving test cases in the second
battlefield scenario [25,59]. From the test results summarized in Table 5 after completing
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50 independent runs for each algorithm, it is seen that ExtIPA has a promising performance
against other competitors. While ExtIPA outperforms IPA, ABC, I-ABC, IF-ABC and BE-
ABC and its rank is determined as first for the test cases in the first battlefield scenario,
it lags slightly behind the IPA for the 30-dimensional case in the second battlefield, and
its rank becomes second. ExtIPA lags slightly behind the BE-ABC for the 50-dimensional
case in the second battlefield and its rank is found to be second. Even though the positive
contribution of the extended treatment approach on the exploitation characteristics becomes
more apparent in the first battlefield, some special requirements of the second battlefield
concerning its exploitation limit the efficiency of the proposed method. However, it should
be noticed that ExtIPA still maintains its promising performance and provides better
solutions than four of its five competitors.

0 10 20 30 40 50 60 70
(b)

80 90

0 10 20 30 40 50 60 70
(d)

80 90

0 10 20 30 40 50 60 70
(a)

80 90
10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70
(c)

80 90
10

20

30

40

50

60

70

80

90

ExtIPA(Best)
ExtIPA(Worst)

PsPt

Figure 4. The best and worst paths of ExtIPA with PS equal to 30 for 20-dimensional (a) and 25-
dimensional (b) cases of the third scenario and with PS equal to 100 for 20-dimensional (c) and
25-dimensional (d) cases of the third scenario.
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Figure 5. The best and worst paths of ExtIPA with PS equal to 30 for 20-dimensional (a) and 30-
dimensional (b) cases of the fourth scenario and with PS equal to 100 for 20-dimensional (c) and
30-dimensional (d) cases of the fourth scenario.

Table 4. Results of ExtIPA for the fifth battlefield with different PS values.

D
PS

20 30 40 50 75 100

5

Mean 50.384 50.384 50.389 50.391 50.387 50.393

Best 50.384 50.384 50.387 50.389 50.386 50.388

Worst 50.385 50.385 50.390 50.393 50.389 50.396

Std. 0.002 0.001 0.001 0.002 0.001 0.003

10

Mean 50.375 50.372 50.379 50.375 50.382 50.396

Best 50.371 50.370 50.371 50.370 50.375 50.372

Worst 50.389 50.377 50.385 50.385 50.395 50.433

Std. 0.005 0.003 0.004 0.004 0.006 0.020
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Table 4. Cont.

D
PS

20 30 40 50 75 100

15

Mean 50.373 50.402 50.431 50.457 50.765 51.068

Best 50.370 50.378 50.389 50.389 50.417 50.430

Worst 50.381 50.438 50.491 50.703 51.259 52.782

Std. 0.003 0.022 0.043 0.091 0.308 0.792

20

Mean 50.472 50.457 50.740 50.821 51.491 52.351

Best 50.375 50.395 50.407 50.458 50.633 50.836

Worst 50.595 50.595 51.537 52.190 53.378 54.884

Std. 0.070 0.057 0.392 0.464 0.731 1.081

25

Mean 50.957 51.031 51.254 51.327 52.853 53.923

Best 50.497 50.472 50.479 50.771 50.687 51.530

Worst 53.463 52.156 53.793 52.498 54.850 57.218

Std. 0.649 0.516 0.755 0.476 1.433 1.895

30

Mean 51.345 51.602 52.291 52.962 53.873 55.254

Best 50.524 50.673 51.240 51.116 51.340 51.765

Worst 52.165 53.083 53.467 56.638 56.377 62.244

Std. 0.520 0.781 0.613 1.622 1.570 3.101

35

Mean 52.150 52.446 53.464 54.362 56.593 62.090

Best 50.895 51.010 51.933 50.859 51.193 52.200

Worst 54.227 55.444 59.277 58.869 62.877 68.912

Std. 0.919 1.191 1.194 2.016 3.619 4.815

40

Mean 52.843 53.365 54.230 57.676 60.464 64.279

Best 51.608 50.868 51.947 52.673 52.018 52.446

Worst 55.143 55.475 56.874 61.631 71.521 81.205

Std. 0.900 1.482 1.435 2.741 5.592 8.667

A path planned in the third battlefield requires challenging maneuvers similar to a safe
and efficient path of the second battlefield, and a meta-heuristic-based planner should man-
age exploration-dominant operations more carefully. To determine whether the changes
made in the workflow with the extended treatment approach allow ExtIPA to calculate
more qualified paths or not, a comparison between the performances of ExtIPA, IPA, DE,
PSO, BA, WDO, QPSO, QBA, and QWDO for the third battlefield was conducted. The
population size of the algorithms was equal to 30 and the maximum evaluation number was
set to 6000 to emphasize that they are executed under the same conditions [27,59]. When
the results obtained after 50 independent runs and presented in Table 6 are investigated, it
is seen that ExtIPA has some problems maintaining a comparative performance, especially
for the 25-dimensional case in the third battlefield scenario. The initial population diversity
and exploration-dominant operations of ExtIPA are generally found to be sufficient to
calculate better paths compared to IPA, DE, PSO, BA, WDO, QPSO, QBA, and QWDO.
However, for the 25-dimensional test case in the third battlefield scenario, because of the
huge volume of the maximum evaluation number consumed by the operations related
to the extended treatment approach, new solutions are not sufficiently explored, and the
performance of ExtIPA deteriorates.
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Figure 6. The best and worst paths of ExtIPA with PS equal to 30 for 25-dimensional (a) and 40-
dimensional (b) cases of the fifth scenario and with PS equal to 100 for 25-dimensional (c) and
40-dimensional (d) cases of the fifth scenario.

Table 5. Comparison between ExtIPA and other techniques for the first and second battlefields.

Sc. D ExtIPA IPA ABC I-ABC IF-ABC BE-ABC

1

30

Mean 48.593 49.289 52.988 60.459 51.939 50.456

Std. 0.606 0.465 1.425 3.288 1.343 0.672

Rank 1 2 5 6 4 3

50

Mean 52.057 59.354 59.972 80.174 59.956 54.982

Std. 2.534 4.914 2.913 7.757 2.214 2.231

Rank 1 3 5 6 4 2

2

30

Mean 152.053 151.499 154.927 185.792 153.583 153.410

Std. 1.347 1.285 2.512 3.754 0.492 0.554

Rank 2 1 5 6 4 3

50

Mean 153.816 157.368 157.204 164.990 157.814 153.524

Std. 2.188 1.596 3.603 2.811 1.905 1.047

Rank 2 4 3 6 5 1
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Table 5. Cont.

Sc. D ExtIPA IPA ABC I-ABC IF-ABC BE-ABC

Average Rank 1.500 2.500 4.500 6.000 4.250 2.250

Overall Rank 1 3 5 6 4 2

Table 6. Comparison between ExtIPA and other techniques for the third battlefield.

Sc. D ExtIPA IPA DE PSO BA WDO QPSO QBA QWDO

3

20

Mean 47.969 52.703 50.073 53.869 50.861 66.955 49.524 50.958 49.503

Best 47.812 50.211 47.935 50.434 48.069 57.013 48.018 48.134 47.868

Worst 48.373 55.154 51.575 59.962 52.765 74.820 51.634 56.006 50.828

Std. 0.131 2.820 - - - - - - -

Rank 1 7 4 8 5 9 3 6 2

25

Mean 50.098 62.164 49.842 51.481 50.901 66.668 49.679 50.071 48.814

Best 48.019 54.652 48.126 49.246 48.163 58.430 48.397 48.333 47.807

Worst 63.774 71.302 52.110 54.246 67.441 75.967 51.307 53.423 49.749

Std. 4.079 5.516 - - - - - - -

Rank 5 8 3 7 6 9 2 4 1

Average Rank 3 7.5 3.5 7.5 5.5 9 2.5 5 1.5

Overall Rank 3 7 4 7 6 9 2 5 1

The comparative studies between ExtIPA and other meta-heuristic-based planners,
including IPA, PSO, ABC, DE, CIJADE, JADE, and CIPDE, were continued in the fourth
battlefield scenario. In these comparisons, the colony size of ABC and the population size
of IPA and ExtIPA were set to 30, and the population size of PSO, DE, CIJADE, JADE, and
CIPDE were set equal to 60, roughly equalizing the total number of evaluations per cycle
or iteration [37]. While ABC, IPA, and ExtIPA were tested 50 times with random seeds
by fixing the maximum evaluation number to 6000, PSO, DE, CIJADE, JADE, and CIPDE
were tested 20 times by fixing the maximum evaluation number to 6000 [37]. The mean
best, best, and worst objective function values and standard deviations calculated after
completing the tests are recorded and summarized in Table 7. As seen from the results
given in Table 7, ExtIPA produces more robust and efficient paths compared to the other
tested algorithms. The promising performance of the ExtIPA can already be seen for the 30-
and 50-dimensional cases in the first and second battlefields, and 20-dimensional case in
the third battlefield was also validated for the 20- and 30-dimensional cases in the fourth
battlefield. A detailed search within the vicinity of a qualified solution, as is performed
in the extended treatment, helps the algorithm to subtly calibrate the selected points from
the lines and thus plan more satisfactory UCAV paths. Because of the presence of enemy
threats and their locations, effect ranges, and grades in the fourth battlefield decrease the
probability of generating eligible paths using dense exploration-based operations, ExtIPA
gets a chance to show its robust and stable convergence performance more apparently in
the mean best objective function values and standard deviations.

The performance validation of ExtIPA was concluded after a comparison with other
meta-heuristic algorithms, including IPA, ABC, BA, ACO, BBO, DE, ES, FA, GA, PBIL,
and PSO and some of their variants, such as BAM, MFA, SGA, and PGSO, in the fifth
battlefield scenario. The path planners used for the test cases of the fifth battlefield were
run 100 times by setting the population size to 30 and the maximum evaluation number to
6000 [21,57]. The mean best, best, and worst objective function values and related standard
deviations of them calculated after 100 independent runs are given in Table 8. One of the
important results extracted from this table is the superiority of the ExtIPA over all of fifteen
competitors for the 5-, 10-, 15-, and 20-dimensional cases in the existing battlefield scenario.
On the other hand, when the remaining test cases in the fifth battlefield are considered,
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it is seen that ExtIPA lags behind both BAM and MFA and becomes the third best path
planner. As stated previously, the number of segmentation points can completely change
the properties of the optimal path being planned for a UAV or UCAV, even if the same
battlefield is considered. Each extra segmentation point can cause problems related to
the escaping enemy threats and increasing total flight length, and handling these special
requirements for all test cases of a battlefield, such as the fifth battlefield, can be challenging.
Because of this situation, while ExtIPA dominates other algorithms for some test cases and
is ranked as the best planner among them, other problem instances become more suitable
to the search characteristics of the BAM and MFA path planners for the 25-, 30-, 35-, and
40-dimensional cases in the fifth battlefield. However, it should be still considered that
ExtIPA is able to preserve its path-planning capability compared to BAM and MFA when all
eight cases are evaluated together, and its average and overall ranks and smaller standard
deviations prove the strong and stable performance of the algorithm.

Table 7. Comparison between ExtIPA and other techniques for the fourth battlefield.

Sc. D ExtIPA IPA CIJADE PSO DE ABC JADE CIPDE

4

20

Mean 66.397 68.297 66.426 70.794 67.397 67.260 66.524 66.469

Best 66.363 67.297 66.298 67.663 66.730 66.631 66.321 66.331

Worst 66.594 70.009 66.646 73.960 72.571 68.184 67.007 66.751

Std. 0.074 0.682 0.087 1.869 1.249 0.512 0.193 0.126

Rank 1 7 2 8 6 5 4 3

30

Mean 68.170 76.496 70.297 78.982 75.197 72.656 70.407 71.033

Best 67.207 71.334 67.622 73.753 71.766 67.845 67.521 68.170

Worst 70.135 82.250 75.256 85.561 81.645 76.718 81.631 78.238

Std. 0.958 2.823 1.813 3.828 2.434 2.147 3.026 2.502

Rank 1 7 2 8 6 5 3 4

Average Rank 1 7 2 8 6 5 3.500 3.500

Overall Rank 1 7 2 8 6 5 3 3

The paths and their objective function values found by different path planners are
relatively close to each other for most cases of the fifth battlefield scenario. Even though the
average and overall ranks provide information which algorithm is capable of dominating
other competitors, an appropriate test should also be employed for investigating whether
the superiority of the considered algorithm can be validated statistically or not. Wilcoxon
signed rank test is one of the most commonly used tests for deciding there is a statistical
difference in favor of one of the compared techniques. If the significance level abbreviated
as ρ with Wilcoxon signed rank test is less than a constant that is usually determined as
0.05, it is said that one of the algorithm is statistically better than another [60]. In order to
understand that ExtIPA is statistically better than other path planners for the fifth battlefield
scenario or not, Wilcoxon signed rank test with the significance level 0.05 was executed by
considering the mean best, best and worst objective function values and its results were
presented in Tables 9–11. In these tables, Z value shows the test statistics. While the W+
abbreviation represents the sum of ranks for which ExtIPA is worse than other planner, the
W− abbreviation represents the sum of ranks for which ExtIPA is better than other planner.
From the test results given in Tables 9–11, it is seen that while the performance of ExtIPA
is statistically better than the IPA, ABC, BA, ACO, BBO, DE, ES, FA, GA, PBIL, PSO, SGA
and PGSO with ρ values less than 0.05, the significance is not in favor of ExtIPA for the
comparison between ExtIPA and BAM or MFA.
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Table 8. Comparison between ExtIPA and other techniques for the fifth battlefield.

Sc. D ExtIPA IPA ABC BA BAM ACO BBO DE ES FA GA MFA PBIL PSO SGA PGSO

5

5

Mean 50.384 50.384 50.384 106.483 59.054 61.520 72.730 58.596 80.720 58.750 60.470 59.167 66.139 59.906 60.501 53.669

Best 50.384 50.384 50.384 60.690 54.357 61.372 60.330 54.357 59.590 54.359 55.247 54.357 59.763 55.167 55.654 53.380

Worst 50.385 50.385 50.385 345.255 60.240 63.320 171.500 62.200 112.260 65.740 61.600 62.419 72.250 66.071 61.200 60.630

Std. 0.001 0.001 0.001 - - - - 2.160 - 3.010 - 2.250 - 2.620 1.560 2.260

Rank 1 1 1 16 7 12 14 5 15 6 10 8 13 9 11 4

10

Mean 50.372 50.398 50.384 69.425 52.707 61.950 57.965 53.104 76.280 52.180 52.542 51.574 101.440 57.041 52.279 50.849

Best 50.370 50.376 50.371 52.360 51.395 60.228 52.947 51.395 57.420 51.399 51.607 51.397 83.112 52.207 51.549 50.649

Worst 50.377 50.457 50.406 108.738 60.7244 68.190 76.820 56.736 123.460 56.710 60.110 53.786 119.250 68.622 56.165 53.330

Std. 0.003 0.024 0.013 - - - - 2.600 - 2.370 - 1.730 - 2.250 1.430 1.870

Rank 1 3 2 14 9 13 12 10 15 6 8 5 16 11 7 4

15

Mean 50.402 50.570 50.591 63.601 51.231 60.260 59.526 52.278 71.860 52.822 52.188 50.897 128.250 58.340 51.891 51.516

Best 50.378 50.424 50.425 53.075 50.609 58.530 52.557 50.611 58.255 50.617 50.871 50.612 107.223 52.097 50.807 50.452

Worst 50.438 51.219 50.789 85.745 60.192 61.000 90.370 62.580 103.860 94.276 57.447 53.832 189.200 87.320 61.800 55.460

Std. 0.022 0.193 0.100 - - - - 3.730 - 4.250 - 1.340 - 4.010 2.450 1.490

Rank 1 2 3 14 5 13 12 9 15 10 8 4 16 11 7 6

20

Mean 50.457 50.925 52.181 63.630 50.760 66.220 61.88 52.722 70.190 53.733 53.090 50.700 185.430 58.248 53.167 52.398

Best 50.395 50.495 50.866 52.395 50.467 60.445 54.723 50.510 60.232 50.463 50.825 50.455 130.152 52.464 50.846 50.657

Worst 50.595 51.271 54.672 83.706 53.742 67.180 78.200 64.570 81.450 78.914 59.180 52.028 337.300 78.160 68.950 59.850

Std. 0.057 0.196 0.994 - - - - 3.710 - 7.580 - 1.020 - 6.950 3.990 1.560

Rank 1 4 5 13 2 14 12 7 15 10 8 2 16 11 9 6
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Table 8. Cont.

Sc. D ExtIPA IPA ABC BA BAM ACO BBO DE ES FA GA MFA PBIL PSO SGA PGSO

25

Mean 51.031 51.678 54.690 64.901 50.709 61.570 64.780 54.408 72.780 53.904 53.781 50.999 257.720 60.263 54.157 54.587

Best 50.472 50.790 51.911 55.017 50.448 61.549 55.528 50.551 63.369 50.491 51.242 50.457 159.740 53.738 51.239 50.782

Worst 52.156 57.314 57.530 74.926 53.519 62.070 80.330 69.660 83.910 66.452 60.398 53.704 699.600 78.139 65.700 63.160

Std. 0.516 1.503 1.618 - - - - 4.120 - 8.660 - 0.810 - 7.550 4.060 2.380

Rank 3 4 10 14 1 12 13 8 15 6 5 2 16 11 7 9

30

Mean 51.602 51.789 59.805 66.616 51.106 63.950 67.870 59.988 74.780 54.962 55.008 51.357 395.540 62.385 54.521 56.891

Best 50.673 50.997 54.527 57.247 50.467 63.230 56.607 50.898 65.725 50.683 51.921 50.516 230.150 53.299 51.617 51.019

Worst 53.083 61.565 64.940 80.084 60.285 64.710 78.580 74.120 91.300 65.976 62.718 58.336 2396 93.695 64.710 75.320

Std. 0.781 2.275 2.366 - - - - 6.740 - 9.120 - 1.230 - 8.200 4.110 3.450

Rank 3 4 9 13 1 12 14 10 15 6 7 2 16 11 5 8

35

Mean 52.446 55.889 66.187 67.703 51.461 68.310 71.560 67.900 76.520 55.996 55.960 51.601 684.660 64.135 55.826 59.744

Best 51.010 51.005 57.259 57.448 50.479 66.960 63.021 52.537 66.745 51.083 52.311 50.471 270.330 55.503 51.633 54.136

Worst 55.444 96.301 74.095 82.737 58.819 68.720 93.850 84.440 88.76 83.887 74.479 55.883 6362 82.833 67.610 71.450

Std. 1.191 12.249 4.298 - - - - 9.150 - 9.550 - 1.650 - 8.650 4.120 4.010

Rank 3 5 10 11 1 13 14 12 15 7 6 2 16 9 4 8

40

Mean 53.365 55.994 75.595 69.973 51.876 74.580 74.850 77.620 80.260 57.856 57.493 52.198 1169 64.885 57.110 62.420

Best 50.868 51.025 63.269 58.650 50.602 69.795 63.550 54.549 68.231 51.523 52.208 50.561 390.620 55.737 52.618 55.092

Worst 55.475 116.195 86.613 83.263 58.427 77.060 90.700 93.260 96.420 86.663 72.069 57.724 7103 84.730 67.870 72.650

Std. 1.482 16.188 5.356 - - - - 10.900 - 10.430 - 2.380 - 9.410 4.550 4.540

Rank 3 4 13 10 1 11 12 14 15 7 6 2 16 9 5 8

Average Rank 2.000 3.375 6.625 13.125 3.375 12.500 12.875 9.375 15.000 7.250 7.250 3.375 15.625 10.250 6.875 6.625

Overall Rank 1 2 5 14 2 12 13 10 15 8 8 2 16 11 7 5
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Table 9. Statistical comparison between ExtIPA and other planners for the fifth scenario using the
mean best objective function values.

ExtIPA vs. IPA ABC BA BAM ACO

Z-val. 2.417 2.417 2.660 0.197 2.660

ρ-val. 0.015 0.015 0.007 0.843 0.007

W+ 0 0 0 16 0

W− 28 28 36 20 36

Sign. ExtIPA ExtIPA ExtIPA - ExtIPA

ExtIPA vs. BBO DE ES FA GA

Z-val. 2.660 2.660 2.660 2.660 2.660

ρ-val. 0.007 0.007 0.007 0.007 0.007

W+ 0 0 0 0 0

W− 36 36 36 36 36

Sign. ExtIPA ExtIPA ExtIPA ExtIPA ExtIPA

ExtIPA vs. MFA PBIL PSO SGA PGSO

Z-val. 0.328 2.660 2.660 2.660 2.660

ρ-val. 0.742 0.007 0.007 0.007 0.007

W+ 15 0 0 0 0

W− 21 36 36 36 36

Sign. - ExtIPA ExtIPA ExtIPA ExtIPA

Table 10. Statistical comparison between ExtIPA and other planners for the fifth scenario using the
best objective function values.

ExtIPA vs. IPA ABC BA BAM ACO

Z-val. 2.153 2.417 2.660 0.328 2.660

ρ-val. 0.031 0.015 0.007 0.742 0.007

W+ 1 0 0 15 0

W− 27 28 36 21 36

Sign. ExtIPA ExtIPA ExtIPA - ExtIPA

ExtIPA vs. BBO DE ES FA GA

Z-val. 2.660 2.660 2.660 2.660 2.660

ρ-val. 0.007 0.007 0.007 0.007 0.007

W+ 0 0 0 0 0

W− 36 36 36 36 36

Sign. ExtIPA ExtIPA ExtIPA ExtIPA ExtIPA

ExtIPA vs. MFA PBIL PSO SGA PGSO

Z-val. 0.328 2.660 2.660 2.660 2.660

ρ-val. 0.742 0.007 0.007 0.007 0.007

W+ 15 0 0 0 0

W− 21 36 36 36 36

Sign. - ExtIPA ExtIPA ExtIPA ExtIPA
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Table 11. Statistical comparison between ExtIPA and other planners for the fifth scenario using the
worst objective function values.

ExtIPA vs. IPA ABC BA BAM ACO

Z-val. 2.153 2.417 2.660 0.328 2.660

ρ-val. 0.031 0.015 0.007 0.742 0.007

W+ 1 0 0 15 0

W− 27 28 36 21 36

Sign. ExtIPA ExtIPA ExtIPA - ExtIPA

ExtIPA vs. BBO DE ES FA GA

Z-val. 2.660 2.660 2.660 2.660 2.660

ρ-val. 0.007 0.007 0.007 0.007 0.007

W+ 0 0 0 0 0

W− 36 36 36 36 36

Sign. ExtIPA ExtIPA ExtIPA ExtIPA ExtIPA

ExtIPA vs. MFA PBIL PSO SGA PGSO

Z-val. 0.328 2.660 2.660 2.660 2.660

p-val. 0.742 0.007 0.007 0.007 0.007

W+ 15 0 0 0 0

W− 21 36 36 36 36

Sign. - ExtIPA ExtIPA ExtIPA ExtIPA

The extended treatment approach can accelerate the convergence speed. Because the
treatment of a receiver is continued until the antibody level of the receiver becomes higher
than the antibody level of its donor, the extended treatment can boost the convergence to the
global optimum. However, it should be noticed that if the treatment takes longer, different
stagnation periods can be seen on the convergence curves. To evaluate the convergence
performances of the algorithms, the success rate (Sr) and mean evaluations (Me) are two
commonly used metrics [60]. If an algorithm obtains a solution whose objective function
value is better than the previously determined threshold, it is assumed that the algorithm
is successful for the considered run and the percentage of the number of successful runs to
the total number of runs corresponds to the Sr. When a run is labeled as successful, the
minimum number of evaluations required to find a solution with an objective function
value better than threshold is recorded. The average of the recorded values is also matched
with the Me metric. From the Sr and Me metrics calculated by setting the threshold as 55, as
given in Table 12 for the fifth battlefield, it is understood that the convergence performance
of ExtIPA is more robust than the convergence performances of both the IPA- and ABC-
based planners. For the first four test cases related to the considered battlefield scenario,
ExtIPA, IPA, and ABC are capable of obtaining better solutions with objective function
values less than the threshold in each of the 100 independent runs. However, it should be
noticed that ExtIPA requires at least two times fewer evaluations compared to IPA and ABC
for the 5-, 10-, 15-, and 20-dimensional test cases. When the dimensionality of the test cases
is increased starting from 25 to 40, while ExtIPA and IPA still preserve their convergence
characteristics, ABC has some difficulties reaching the given threshold, and no successful
run is detected for the cases with 35 and 40 segmentation points.
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Table 12. Sr and Me values of ExtIPA, IPA, and ABC for the fifth scenario.

D ExtIPA IPA ABC

5
Sr 100.000 100.000 100.000

Me 103.920 217.454 210.474

10
Sr 100.000 100.000 100.000

Me 308.170 1324.990 850.474

15
Sr 100.000 100.000 100.000

Me 782.190 2049.330 2037.113

20
Sr 100.000 100.000 100.000

Me 1244.450 2609.247 3946.557

25
Sr 100.000 98.990 61.856

Me 1885.310 3889.194 5435.733

30
Sr 100.000 98.990 5.155

Me 2887.850 3904.888 5923.000

35
Sr 95.000 86.000 0.000

Me 3465.211 4305.440 -

40
Sr 90.000 90.000 0.000

Me 4147.200 4380.840 -

6. Conclusions

Recent years have witnessed dramatic paradigm and strategic changes in the military
and commercial operations carried out by UAVs and their customized variants carrying
complex optical, targeting, and weapon systems called UCAVs. To improve the success
of a task being employed with one of these advanced aerial vehicles, a flight path should
be carefully determined by taking into account some challenging optimization objectives
that must be satisfied about the enemy air defense systems, fuel or battery usage, or total
cruise length. The immune plasma algorithm (IP algorithm or IPA) is one of the most recent
nature-inspired computational intelligence techniques, and its promising performance has
been validated on different numerical benchmarks and engineering problems. In this study,
the plasma transfer schema of the IPA was completely changed with a newly introduced
extended treatment approach, and the extended IP algorithm (ExtIPA) was proposed as
a UAV or UCAV path planner. To investigate the path-planning capabilities of ExtIPA,
five different battlefield scenarios and various algorithm-specific parameter configurations
were used.

The paths found by the ExtIPA were also compared with the paths found by well-
known meta-heuristic algorithms such as ABC, BA, ACO, BBO, DE, ES, FA, GA, PSO, PBIL,
and WDO and some of their improved versions, such as BAM, MFA, SGA, PGSO, I-ABC,
IF-ABC, BE-ABC, QPSO, QBA, QWDO, CIJADE, JADE, and CIPDE. Comparative studies
between ExtIPA and other path planners showed that the extended treatment approach
contributes to the efficiency of plasma transfer operations by ensuring the treatment will be
continued until a poor solution, represented by a receiver individual becoming better than
its donor, and ExtIPA outperforms the other algorithms in most of the test cases. Moreover,
ExtIPA removed the necessity of using the NoD parameter and resolved some difficulties
around guessing the interaction between NoD and NoR and then assigning appropriate
values to them to obtain better solutions. In the future, ExtIPA can be further improved
by integrating a mechanism that adjusts the NoR parameter adaptively. The IP algorithm
with multiple populations each executing a unique treatment procedure can be designed
and used to solve UAV or UCAV path-planning problems made difficult by the existence of
dynamic obstacles, enemy threats, and real-time calculations.
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