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Abstract

:

The increasing usage of unmanned aerial vehicles (UAVs) and their variants carrying complex weapon systems, known as unmanned combat aerial vehicles (UCAVs), has triggered a global revolution in complex military and commercial operations and has attracted researcher attention from different engineering disciplines in order to solve challenging problems regarding these modern vehicles. Path planning is a challenging problem for UAV and UCAV systems that requires the calculation of an optimal solution by considering enemy threats, total flight length, fuel or battery consumption, and some kinematic properties such as turning or climbing angles. In this study, the immune plasma (IP or IPA) algorithm, one of the most recent nature-inspired intelligent optimization methods, was modified by changing the default plasma transfer operations with a newly proposed technique called the extended treatment approach; extended IPA (ExtIPA) was then introduced as a path planner. To analyze the solving capabilities of the ExtIPA, 16 cases from five battlefield scenarios were tested by assigning different values to the algorithm-specific control parameters. The paths calculated with ExtIPA were compared with the paths found by planners on the basis of other intelligent optimization techniques. Comparative studies between ExtIPA and other techniques allowed for stating that the extended treatment approach significantly contributes to both the convergence speed and qualities of the obtained solutions and helps ExtIPA in performing better than its rivals in most cases.
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1. Introduction


Tremendous advances in computing, communication, optical, weapon, and ammunition technologies have brought unexpected reconnaissance, surveillance, and destructive capabilities to unmanned aerial vehicles (UAVs) and unmanned combat aerial vehicles (UCAVs) [1,2]. To increase the likelihood of success of a task assigned to a UAV, UCAV, or similar modern aerial vehicle, a flight path should be carefully calculated by taking into account some optimization goals related to enemy threats, fuel consumption, or battery usage [3,4]. Even though graph-based algorithms such as the Voronoi diagram, A* search, D* lite, and other classical techniques such as rapidly exploring random trees (RRT), artificial potential fields (APF), and probabilistic road maps (PRM) are commonly used for calculating UAV or UCAV paths, they require the generation of cost maps of complex battlefields and usually suffer from convergence to local optimal solutions [5,6].



In recent years, meta-heuristic algorithms, which are a branch of artificial intelligence techniques, have started being used as path planners of UAV or UCAV systems because of their advantages regarding their implementation simplicity, computational complexity, and configurable or adjustable structures [7,8,9]. C. Xu et al. directed the employed foragers of the artificial bee colony (ABC) algorithm to the best current food source by utilizing chaotic variables for their path planner, named chaotic ABC (CABC), and pictorially proved the superiority of the CABC over the ABC algorithm [10]. Y. Zhang et al. converted the raw fitness values of food sources by using a fitness scaling strategy and employed Lorenz equations to generate random numbers required by the bee phases to improve the path-planning performance of the ABC algorithm [11]. In another study, Y. Zhang et al. improved the selection probabilities of qualified solutions by taking into account a fitness scaling mechanism for the particle swarm optimization (PSO) algorithm [12]. Moreover, Y. Zhang et al. adaptively adjusted the inertial weight and acceleration coefficients of the population update equation in PSO and utilized a chaotic random number generator to determine the values of the random coefficients of the same equation [12]. The PSO algorithm introduced by Y. Zhang et al., called the fitness-scaling adaptive chaotic PSO (FAC-PSO), was used as a path planner [12]. P. Li and Duan referenced the idea of memory and social information concept of PSO for their gravitational search algorithm (GSA), and its effectiveness on solving UAV path-planning problems was verified via comparisons with the standard PSO, GSA, and two other GSA-based models [13]. Fu operated a version of the PSO algorithm for which each particle modified the related velocities by guiding the best solution of a small solution group as the path planner [14].



G.-G. Wang et al. designed a new information-sharing approach between the qualified solutions of the firefly algorithm (FA) and presented the modified FA (MFA) [15]. A detailed comparison was presented between the MFA and other meta-heuristic-based UAV path planners such as PSO, ant colony optimization (ACO), differential evolution (DE), biogeograph-based optimization (BBO), evolutionary strategies (ES), population-based incremental learning (PBIL), genetic algorithm (GA), and, lastly, a variant of GA known as stud GA (SGA) [15]. The studies pioneered by G.-G Wang were not limited to the MFA. G.-G. Wang et al. tried to embed some dynamics of the DE algorithm into cuckoo search (CS), and the DE/CS algorithm was announced for planning UCAV paths being operated in a three-dimensional environment [16]. G.-G. Wang et al. altered the solution update procedure of the bat algorithm (BA) with the mutation operator of DE, and BAM was presented [17]. The qualities of the obtained UCAV paths allowed for stating that the mutation operator accelerated the convergence speed of BA while maintaining the existing strong search characteristics of the algorithm [17]. A separate study of G.-G. Wang et al. borrowed the mutation operator from the DE and ported it into the workflow of BA [18]. The BA with the support of the mutation operator of DE was named improved BA (IBA) and was tested in a three-dimensional environment to calculate optimal UCAV paths [18]. The BBO algorithm was updated with chaos theory and the predator–prey concept by W. Zhu and Duan; then, chaotic predator–prey BBO (CPPBBO) was introduced for solving path-planning problems [19]. These authors conducted a set of experiments for a UAV with constraints regarding the maximal yawing angle and flight length [19]. Heidari and Abbaspour varied the communication relationship between the stars and other elements of the black hole (BH) algorithm, and controlled the effects of modifications over UCAV path-planning problems [20]. Tang and Zhou replaced the location update model of glowworm swarm optimization (GSO) with the mechanism inherited from the PSO, and introduced the PGSO algorithm [21]. The performance of PGSO was analyzed in detail for path-planning problems, and it obtained more qualified solutions than other tested algorithms did, especially when the number of segmentation points or waypoints was set to 5 or 10 [21].



G. Yu et al. applied teaching–learning-based optimization (TLBO) to a two-dimensional UAV path-planning problem and reached some critical conclusions regarding the solving capabilities of TLBO compared with the ABC, PSO, DE, and GSO algorithms [22]. X. Zhang and Duan defined multiple constraints such as the total cruise length, flight altitude, turning angle, climbing or gliding slope, terrain, non-flight zones, and enemy threats, including radars, missiles, and anti-air guns, for path-planning problems; they announced a DE algorithm specialized with an  α -level comparison-based constraint-handling technique [23]. Q. Zhou et al. changed the wolf colony search (WCS) algorithm, so that the complex method was responsible for managing the leading strategy of the wolf colony; they simulated a newly proposed technique called CWCS as the path planner [24]. B. Li et al. first developed the balance-evolution strategy (BES) by controlling the trial counters of employed bees to generate candidate solutions in the ABC algorithm, and the BE-ABC algorithm was introduced [25]. They examined the BE-ABC algorithm for planning UCAV paths by using three different battlefield scenarios, and compared BE-ABC, ABC, and two ABC variants, namely, the I-ABC and IF-ABC algorithms [25]. The predator–prey concept was combined with the pigeon-inspired optimization (PIO) by B. Zhang and Duan, and predator–prey pigeon-inspired optimization (PPPIO) was presented [26]. They prepared test scenarios for which danger zones moved dynamically and planned UCAV paths with PPPIO [26]. Y. Zhou et al. specialized some stages of wind-driven optimization (WDO) with the quantum rotation gate and quantum non-gate strategies, and quantum WDO (QWDO) was proposed [27]. The UCAV paths found by QWDO were compared with the paths found by quantum-supported variants of PSO and BA, and standard implementations of the WDO, PSO, and DE algorithms [27].



S. Zhang et al. focused on how the standard implementation of the grey wolf optimizer (GWO) performs on calculating UAV paths for two-dimensional test cases [28]. Luo et al. represented the solution of BA with the quantum encoding and executed the quantum rotation gate to manage update operations and the quantum dot gate to manage the mutation operations for their path planner known as quantum encoding BA (QBA) [29]. Q. Zhang et al. decided to develop a collection decision optimization algorithm (CDOA)-guided technique and verified the effectiveness of it after solving the UAV path-planning problem [30]. Alihodzic et al. investigated the path-planning capabilities of the elephant herding optimization (EHO) algorithm for two-dimensional battlefields [31]. Alihodzic et al. also solved UCAV path-planning problem with the fireworks algorithm (FWA)-based approach in which the qualities of solutions are utilized for determining how many sparks are generated and how the exploitation amplitude is calculated [32]. Miao et al. provided an extensively rich set of experiments about their path planner developed via the hybridization of the simplex method (SM) and the symbiotic organism search (SOS) algorithm [33]. Dolicanin et al. configured the brain storm optimization (BSO) algorithm as a path planner and used a battlefield with five enemy threats for testing [34]. Pan et al. adjusted the scaling factor and fraction probability of the CS algorithm with the help of chaotic sequences of Circle-type Chaotic Maps and showed the superiority of their CS algorithm against the standard CS algorithm for solving the UCAV path-planning problem [35]. The valuable contribution to the literature of intelligent UAV or UCAV path-planning by the studies pioneered by Pan has carried over to current times. Pan et al. remodeled the process of encircling or searching for the prey of the whale optimization algorithm (WOA) with a self-tuning parameter based on the qualities of the agents [36]. Two battlefield scenarios were simulated with the purpose of UCAV path-planning, and it was understood that improved WOA achieves more qualified paths compared to the standard WOA [36]. Moreover, Pan et al. brought together the advantageous sides of two DE variants such as CIPDE and JADE, and CIJADE was proposed [37]. In CIJADE, the crossover rate and scaling factor were determined according to a parameter adaption strategy in each cycle or generation. Some tests carried out for a battlefield with ten enemy threats demonstrated that CIJADE outperforms PSO, DE, ABC, JADE, and CIPDE, and the superiority of CIJADE becomes more apparent when the number of segmentation points is increased [37].



Lin et al. altered the position update procedure of BA with the help of APF when designing a BA-guided path planner [38]. They also improved the inertia weight of the mentioned BA by using the optimal success rate strategy and chaos theory to further escape the local optimal solutions [38]. Qu et al. integrated reinforcement learning (RL) into the workflow of GWO by assuming that the population members of GWO correspond to the training agents of RL and introduced RLGWO for calculating optimal UAV paths [39]. RLGWO was tested using three battlefield scenarios and compared with the standard GWO and its variants, including IGWO, MGWO, and EEGWO [39]. The GWO algorithm was selected by Qu et al. in another study. They hybridized a simplified variant of the GWO algorithm with SOS that uses a modified commensalism phase and developed HSGWO-MSOS [40]. Comparative studies between HSGWO-MSOS, GWO, SOS, and simulated annealing (SA) conducted on both two- and three-dimensional scenarios proved the better performance of the newly proposed technique [40]. Monarch butterfly optimization (MBO) was modified by Yi et al. in a manner that quantum operators are responsible for regenerating a certain set of worst butterflies, and quantum-inspired MBO (QMBO) was proposed as a three-dimensional path planner [41]. C. Wu et al. considered some physical constraints of the UAV when exploring the search space and used them in the initialization of the bees belonging to ABC algorithm [42]. Yang Chen et al. changed the global update equation of the flower pollination algorithm (FPA) to guarantee a non-monotonic decreasing sequence [43]. In addition to this, a population reconstruction mechanism was added to protect the algorithm from premature convergence [43]. The new implementation of the FPA, named neighborhood global-learning-based FPA (NGFPA), was executed to find optimal UAV paths, and its results were compared with the results of some well-known techniques such as A*, APF, and RRT [43].



H. Zhu et al. provided a detailed comparative study by using standard versions of ABC, BA, DE, FA, GWO, PSO, WOA, CS, a modified variant of MBO called GSMBO, harmony search (HS) and spider monkey algorithm (SMA) and concluded that SMO is able to planning more safe UCAV paths than other tested algorithms do [44]. The superior performance of SMO gave inspiration to H. Zhu et al. for developing new path planners on the basis of the mentioned algorithm. The SMO supported with cooperative co-evolution, which is a method helping the division of the parameter set into smaller sub-sets first to solve them independently and then combining the partial solutions appropriately, was used by H. Zhu et al. when planning UCAV paths [45]. In order to validate the competitiveness of the SMA-based technique, twenty-five cases under five different scales were described and tested [45]. X. Zhou et al. tried to handle the poor local search ability of BA with the help of the ABC algorithm, and the improved BA (IBA) was presented and tested for planning UAV paths in an environment containing specially modeled enemy radars, missiles, anti-aircraft weapons, and climate effects [46]. P. Wu et al. determined the values of the random coefficients in the PSO algorithm using a Zaslavskii chaos map, and a path planner named improved chaotic PSO was announced [47]. H. Xu et al. remodeled the critical sections of the GSA by using an adaptive alpha-adjusting strategy and a Cauchy mutation strategy. The GSA variant, also called mixed-strategy-based GSA (MSGSA for short) was used to obtain optimal UAV paths by considering enemy threats, total flight length, turning angles, and non-flight zones [48].



One of the most specialized UAV path planners was introduced by Jiang et al. at the beginning of 2022 [49]. They changed the workflow of the standard GWO by adding a communication mechanism for avoiding local optimum solutions in the search process and  ϵ -level comparison for managing constraints [49]. Moreover, they utilized the partially observable Markov decision process and Monte Carlo tree search algorithm for the purpose of collision avoidance [49]. X. Wang et al. supported different stages of the mayfly algorithm (MA) and offered the modified MA (modMA) [50]. In the modMA, the gravity coefficient was determined with an exponent inertia weight strategy, and the position of each male mayfly was adjusted by employing Cauchy-based mutation approach [50]. Finally, they integrated the horizontal crossover strategy in which the solution space is divided into hypercubes to allow the parent individuals to generate candidates of distant regions [50]. Niu et al. controlled different stages of the artificial ecosystem optimizer (AEO) and proposed an adaptive neighborhood-based search-enhanced AEO (NSEAEO for short) to address the UCAV path planning problem [51]. In NSEAEO, distance-fitness-based information was used to define neighborhoods for consumers and a significant contribution was given to the global exploration capability of the algorithm [51]. Moreover, Niu et al. employed a novel decomposition method maintaining the population diversity. Experimental studies on both two- and three-dimensional environments showed that NSEAEO is able to handle challenging objectives regarding enemy threats, total flight length, and turning and climbing angles more robustly than other techniques can, such as the salp swarm algorithm (SSA), the stain bowerbird optimizer (SBO), the pathfinder algorithm (PFA), the sine–cosine algorithm (SCA), two PSO variants named GAPSO and CIPSO, GA, MFO, a modified TLBO (ECTLBO), HSGWO-MSOS, and AEO [51]. Jia et al. developed a new approach called double-layer coding (DLC) used for deciding which segmentation points or waypoints are considered to define a UCAV path and used it with their PSO variant known as rotation-based PSO (RPSO) [52].



When the details given about a how a meta-heuristic algorithm is specialized or modified in order to solve UAV or UCAV path-planning problem are given, it can be easily seen that nature has a tremendous potential to inspire researchers in the development of new computational intelligence techniques. The immune plasma algorithm (IP algorithm or IPA) is one of the most recent meta-heuristic methods that shows the immense richness of nature by modeling the fundamental steps of a medical method. This algorithm gained popularity again with the COVID-19 pandemic and was named as the convalescent or immune plasma treatment [53]. If the main operations executed by the IPA are investigated, it can be easily seen that the IPA differs from the most representative meta-heuristics including ACO, ABC, PSO, BA, FA, FWA, DE, and GA [53]. While the exploitation-dominant operations of the IPA are designed in a semi-adaptive manner and adjust the convergence dynamically without changing the initial values of the control parameters, a quasi-deterministic approach is responsible for managing the important part of exploration, and its promising performance has been validated recently for engineering problems such as channel assignment [54], time series prediction [55], wireless sensor deployment [56], signal noise minimization [57], neural network training [58], and also UAV or UCAV path planning [59]. In this study, the plasma transfer scheme of the IP algorithm was changed with a newly introduced approach called extended treatment, and an extended IP algorithm, or ExtIPA, was designed to solve the path-planning problem. The extended treatment approach mainly depends on continuing the transfer of plasma from the donor to the selected receiver until the receiver becomes better than its donor and allows for the algorithm to search the vicinity of the eligible solutions more sensitively. The contribution of the extended treatment approach on the qualities of planned UCAV paths was investigated by using different battlefield scenarios, and obtained solutions were compared with the solutions of other meta-heuristic-based path planners. Comparative studies between ExtIPA and other techniques showed that the newly introduced treatment approach significantly improves the exploitation performance of the IPA while maintaining the existing exploration capabilities, and ExtIPA outperforms its competitors in most of the test cases. The rest of the paper is organized as follows: Details of the path-planning problem and score calculation method are given in Section 2. Fundamental steps of the IP algorithm are summarized in Section 3. Section 4 is devoted to the extended treatment approach and its integration into the IPA. The results of the experiments and comparative studies are presented in Section 5. Finally, some conclusions and future works about the development of new IPA-based path planning techniques are mentioned in Section 6.




2. Mathematical Description of the UCAV Path-Planning Problem


Before we start to determine a UCAV path, a strong mathematical model that describes enemy threats and their effects, the fuel or battery consumption over the total flight length, and a score calculation schema to understand how the path is qualified should be introduced. One of the commonly used mathematical models depends on describing an enemy threat by utilizing the radius of a circle with a known center coordinate to show the effect range and the grade or level to show the destructive capability. Given that there is a UCAV being planned to destroy a target positioned at    P t  =  (  x t  ,  y t  )    by taking off from the start point at    P s  =  (  x s  ,  y s  )   , a reference line between   P s   and   P t   is drawn. Moreover, the reference line between   P s   and   P t   is divided equally into   D + 1   segments with the help of D segmentation points [59]. Each segmentation point on the reference line is intersected with a line that is vertical to the reference line, such as   L 1   for point   P 1   and   L 2   for point   P 2  ; then, line set   L = {  L 1  ,  L 2  , … ,  L  D − 1   ,  L D  }   is obtained. Set L serves a critical function in determining a flight path. Assume that only one point is selected from each line in the set L and combined appropriately with   P s   and   P t  ; then, a set of points described as   P = {  P 1  ,  P 2  , … ,  P  D − 1   ,  P D  }   can be generated. When each subsequent pair of points in set P is connected with a line segment, a UCAV path from start point   P s   to the target point   P t   can also be found [59].



Even though the forming a UCAV path by connecting each subsequent pair of points with a line segment seems relatively straightforward, finding the members of the set L and determining the coordinates of points in the set P require difficult calculations. To simplify the required calculations when generating the set L and set P, some properties of a new coordinate system in which the reference line corresponds to the horizontal axis can be utilized [59]. In order to transform a point of the original coordinate system into the appropriate counterpart of the new coordinate system, Equation (1) can be used [59]. While   x k   and   y k   are matched with the x-axis and y-axis values of point   P k   in the original coordinate system,    x ´  k   and    y ´  k   are matched with the   x ´  -axis and   y ´  -axis values of the transformed   P k   or    P ´  k   in Equation (1).  θ  is the angle between the x-axis of the original coordinate system and reference line and can be calculated as the results of the   a r c t a n (  (  y s  −  y t  )  /  (  x s  −  x t  )  )   operation [59]:


        x ´  k        y ´  k      =      c o s ( θ )     s i n ( θ )       − s i n ( θ )     c o s ( θ )      ×       x k  −  x s         y k  −  y s        



(1)







Because the reference line becomes the horizontal axis of the new coordinate system and is divided equally into   D + 1   segments with D different segmentation points, the distance between two subsequent segmentation points is found equal to    |   P s   P t   | /  ( D + 1 )    , and the    x ´  k  -axis value of the ith segmentation point or    x ´  i   is also found equal to    i |   P s   P t   | /  ( D + 1 )     [59]. As stated earlier, each segmentation point is intersected with a line vertical to the reference line, and a point is selected from this vertical line. Considering the vertical line passing through the ith segmentation point, the   x ´  -axis value of any point being selected from this line becomes equal to    i |   P s   P t   | /  ( D + 1 )    , and only the   y ´  -axis value is required [59]. If only the   y ´  -axis values of the points being selected from the vertical lines are considered and organized in a set such as   {   y ´  1  ,   y ´  2  , … ,   y ´   D − 1   ,   y ´  D  }  , path planning can be turned into a problem for which the   y ´  -axis values of D different points are optimally determined by selecting one for each vertical line with the purpose of a safe and efficient flight mission. A visual investigation can be conducted in order to understand the relationship between the original and transformed coordinate systems by controlling the Figure 1.



The geometrical modeling of the path-planning problem allows one to find an infinite set of possible solutions due to the continuous search spaces of the points. In order to compare two possible solutions to decide which path is better, a quality or score measurement schema should be described. A quality or score measurement schema used for comparing different paths is introduced in Equation (2) [59]. In Equation (2),   J t   is used to represent the cost of enemy threats for the considered path, and it is calculated using the integral of   w f   from 0 to the total length of the path, abbreviated as l. Similarly,   J f   is used on behalf of the cost of fuel consumption, and it is calculated using the integral of   w f   from 0 to the total length of the path. To adjust the weights of   J t   and   J f   in the construction of the J score, a constant called  λ , chosen between 0 and 1, is directly multiplied by   J t  , and the value of   1 − λ   operation is multiplied by   J f   [59].


  J = λ  J t  +  ( 1 − λ )   J f  = λ  ∫  0  l   w t  d l +  ( 1 − λ )   ∫  0  l   w f  d l  



(2)







The integral calculations about the cost of enemy threats and cost of fuel consumption can be carried out by using some approximations with acceptable accuracies. Given that   w f   is set to a constant such as 1, the   J f   is found to simply equal the length of the flight path [59]. If the length of the flight path increases, it is seen that the cost of fuel consumption also increases, as expected. When calculating the cost of enemy threats, integral-based operations are replaced with an approximation model in which the whole path is first divided by considering the subsequent points in the set P, and then each line segment is evaluated to understand whether it is in the effect ranges of enemy threats or not. Assume that   P i   and   P j   are two subsequent points, and the length of the path segment between these points is shown as   L  i j   . The path segment of length   L  i j    is divided into ten subsegments and the first, third, fifth, seventh, and ninth subsegmentation points are named points   0.1  ,   0.3  ,   0.5  ,   0.7  , and   0.9  . If the mentioned path segment is in the effect range of the kth enemy threat of grade   t k  , the cost of the kth enemy threat on the path segment between   P i   and   P j   or   J  t , ( i j ) , k    is determined with Equation (3) [59]. In Equation (3), while   d  0.1 , i , k  4  ,   d  0.3 , i , k  4  , and   d  0.5 , i , k  4   show the Euclidean distances between the center of the kth enemy threat and   0.1  ,   0.3  , and   0.5   subsegmentation points,   d  0.7 , i , k  4   and   d  0.9 , i , k  4   correspond to the Euclidean distances between the center of the kth enemy threat and   0.7   and   0.9   subsegmentation points. When the cost of all enemy threats are determined for each path segment and then summed, the value of   J t   can be obtained. As easily seen from the calculation details of   J t   and   J f   values, qualified paths have smaller J scores compared to other paths of the same battlefield [59].


   J  t , ( i j ) , k   =    L  i j    t k   5   (  1  d  0.1 , i , k  4   +  1  d  0.3 , i , k  4   +  1  d  0.5 , i , k  4   +  1  d  0.7 , i , k  4   +  1  d  0.9 , i , k  4   )   



(3)








3. Immune Plasma Algorithm


The new coronavirus, or COVID-19, first seen in Wuhan, China, at the beginning of 2019, caused a global health crisis that still affects people all over the world, and different medical methods and treatment approaches were developed in response. Immune or convalescent plasma treatment, used previously for the 1918 great influenza pandemic, also became a promising medical method for COVID-19. The idea behind this mentioned treatment approach that is over a hundred years old is transferring the blood and antibodies in the blood from an individual recovered recently to a critically ill patient. When the biologically strong idea lying behind the immune or convalescent plasma treatment is investigated from the viewpoint of a computer scientist, it is easily seen that there is an analogy with the transfer of blood from the selected donor to the critical patient and the exploitation of dominant operations of a meta-heuristic algorithm [53]. Aslan utilized the described analogy and introduced an IP algorithm (IPA for short) to the literature of artificial intelligence techniques [53]. When a problem that requires searching for optimal values for a set of decision parameters by considering the minimization or maximization of an objective function is attempted to be solved using IPA, a person or individual corresponds to a solution and the antibody amount or immune response of this individual is measured by using the objective function. If the IP algorithm decides that an individual in the population is a critical patient, or receiver, it selects another individual from the same population as a plasma donor, and treatment is started. Until the IPA completes a run because it reaches the maximum evaluation number or satisfies a similar termination criterion, the distribution of the infection between all members of the population, the selection of receiver and donor individuals, and the application of plasma treatment are carried out in a circular manner.



3.1. Generating Initial Members of the Population


The IP algorithm employs a randomized generation schema to determine initial values of its population members. Given that the problem being solved has D different parameters, the IP algorithm will start subsequent operations with a population of size   P S  . When representing an individual or member of population, a D-dimensional vector is used. By assuming that   x k   is the kth member of the population and   x  k j    is the jth element or parameter of the mentioned individual, Equation (4) given below is executed in the IP algorithm with the purpose of assigning the initial value of   x  k j    [53]. In Equation (4),   x  j   m a x    and   x  j   m i n    are problem-dependent upper and lower bounds for the jth parameter.   r a n d ( 0 , 1 )   also corresponds to a random number generated between 0 and 1 [53].


   x  k j   =  x  j   m i n   + r a n d  ( 0 , 1 )   (  x  j   m a x   −  x  j   m i n   )   



(4)








3.2. Distributing Infection within a Population


Each member or individual of the population in the IPA is matched with a possible solution to the considered problem. When the initialization of individuals is completed, the IPA starts to distribute infection using a relatively simple model, as described in Equation (5), where   x  k j    and   x  m j    are used to represent the randomly selected jth parameters of   x k   and   x m   individuals, respectively [53].   x  k   i n f    corresponds to the   x k   individual infected by the   x m  , which is also chosen randomly from the population of size   P S  .   x  k j   i n f    represents the jth parameter of   x  k   i n f    newly calculated with the transmission of infection. Because   x  k   i n f    indicates the infectious   x k   individual, all of its parameters, except the jth one, are the same as the parameters of   x k   individuals. Finally, in Equation (5),   r a n d ( − 1 , 1 )   is matched with a random number generated between −1 and 1.


   x  k j   i n f   =  x  k j   + r a n d  ( − 1 , 1 )   (  x  k j   −  x  m j   )   



(5)







An infection triggers the immune system of the host, and a specific immune response in terms of the synthesized antibodies is given. To measure the level of a given response by an infectious individual, the IP algorithm directly utilizes the objective function of the problem [53]. When the IP algorithm tries to solve a minimization problem with the objective function f, the immune response or level of antibodies is determined as   f (  x k  )   for the   x k   individual before the infection and   f (  x  k   i n f   )   for the   x k   individual immediately after the infection. If   f (  x k  )   is higher than   f (  x  k   i n f   )  , it is decided that the   x k   individual and its immune system is strong enough to handle the infection and the immune memory of   x k   should be updated for subsequent infection cycles by changing   x  k j    to   x  k j   i n f   . Otherwise, the   x k   individual remains unchanged, as described in Equation (6) [53].


   x  k j   =       x  k j   i n f   ,     i f   f  (  x  k   i n f   )  < f  (  x k  )         x  k j   ,     o t h e r w i s e       



(6)








3.3. Treatment of Receivers with Donors


The IP algorithm continues the distribution of the infection until all population members meet with the infection. When all of the individuals meet with the infection, the IPA is ready to start its second main phase in which one or more individuals are treated by the support of one or more individuals chosen from the same population. In order to decide how individuals will be chosen as critical and labeled as receiver and how individuals will be chosen as recovered and labeled as donor, the IPA introduces two specific control parameters called   N o R   and   N o D   [53].   N o R   is the number of receivers, and the   N o R   individuals who are worse than the remaining members are selected as receivers. The   N o D   abbreviation is used on behalf of number of donors, and the   N o D   individuals who are better than the remaining members are selected as donors. Assume that   x  k   r c v    is the kth receiver from the set of receivers with the   N o R   individuals and   x  m   d n r    is the randomly selected donor from the set of donors with   N o D   individuals. To model the transfer of a single plasma dose, Equation (7) is used by the IP algorithm [53]. In Equation (7),   x  k j   r c v    and   x  m j   d n r    show the jth parameters of   x  k   r c v    and   x  m   d n r   , and j is selected from the set   { 1 , 2 , … , D }   sequentially. Moreover,   x  k j   r c v − p    is matched with the jth parameter of   x  k   r c v − p   , and   x  k   r c v − p    is used to represent the   x  k   r c v    after transferring a single dose of plasma. If   f (  x  k   r c v − p   )   is less than   f (  x  m   d n r   )   for the first dose of plasma,   x  k   r c v    is updated with   x  k   r c v − p    appropriately, and treatment is continued, with the second dose taken from the same donor [53]. Otherwise, it is decided that the treatment does not cause a dramatic improvement in the immune system of   x  k   r c v    and it should be completed. However, in order to guarantee that at least one dose of plasma is given,   x  k   r c v    is updated with   x  m   d n r   , and treatment is concluded immediately after the first dose [53].


   x  k j   r c v − p   =  x  k j   r c v   + r a n d  ( − 1 , 1 )   (  x  k j   r c v   −  x  m j   d n r   )   



(7)







The second and other doses of plasma are transferred to   x  k   r c v    from   x  m   d n r    by referencing the model introduced in Equation (7). However, the IPA changes the decision mechanism for understanding whether the plasma treatment is continued with a third dose of plasma or not. If   f (  x  k   r c v − p   )   corresponding to the antibody level of   x  k   r c v    after the second dose of plasma is less than the antibody level of   x  k   r c v    after the first dose of plasma,   x  k   r c v    is updated by using   x  k   r c v − p   , and then the treatment of   x  k   r c v    is continued with a third dose of plasma from   x  m   d n r    [53]. Otherwise, treatment is concluded for   x  k   r c v   , and the next receiver is selected, if they exist.




3.4. Modification of Donor Individuals


The antibody amount synthesized for a specific infection by the immune system of an individual recovered previously can decrease with time or incidence of encountering the infection. To model this type of change, the IP algorithm utilizes a random number generated between 0 and 1 and the ratio between   t  c r    and   t  m a x    [53]. Moreover,   t  c r    is used to represent the current evaluation number, and it is increased by one for each evaluation.   t  m a x    is used on behalf of the maximum evaluation number, and the IPA terminates when   t  c r    becomes equal to   t  m a x    [53]. If the ratio between   t  c r    and   t  m a x    is less than the generated random number,   x  m   d n r    is reinitialized by using Equation (4) to indicate that the immune memory of the mentioned donor individual is not strong enough to synthesize the required amount of antibodies quickly [53]. Otherwise,   x  m   d n r    donor individual is changed slightly, as described in Equation (8), where the j index ranges from 1 to D [53]. When the IP algorithm continues its run,    t  c r   /  t  m a x     reaches 1, and the probability of generating a random number between 0 and 1 less than    t  c r   /  t  m a x     increases intrinsically. As an expected result of this situation, the probability of using Equation (8) also increases, and the IPA tries to protect the immune memories of its donors. After executing the update procedure for all donors, the infection cycle of the IPA is completed and a new one is started.


   x  m j   d n r   =  x  m j   d n r   + r a n d  ( − 1 , 1 )   x  m j   d n r    



(8)









4. Details of Extended Treatment Approach


The treatment schema modeled in the standard implementation of the IP algorithm guarantees that a poor solution corresponding to a receiver is replaced with a solution represented by the selected donor or a solution better than the solution represented by the selected donor when the plasma transfer is completed. If the first dose of plasma cannot provide a satisfactory contribution and the receiver for which the first dose of plasma is given does not match to a solution better than the solution represented by its donor, the treatment is simply ended after replacing the receiver with a copy of the selected donor. Even though the idea underlying the used treatment schema brings some advantages to the IP algorithm, the possibility of copying the same donor more than once should be taken into account. When the treatment of receivers is completed by copying the same donor more than once, the population can have difficulties in managing solution diversities. Moreover, in the subsequent infection cycle, the chance of selecting the previously utilized donor and its copies also increases, and the IP algorithm requires a subtle configuration for the   N o R   and   N o D   parameters in order to handle the possible drawbacks stemming from the existing workflow of the plasma treatment.



The performance of the IP algorithm can be further improved by remodeling how the plasma from the donor will be transferred to the receiver and when the treatment will be completed. The requirement of   N o R   or   N o D   parameters and setting them appropriately can be removed completely if the exploitation characteristics of the newly designed plasma transfer and treatment operations are configured subtly. Given that   x  k   r c v    is the kth receiver from the set of critical individuals of size   N o R   and   x  d n r    is the best individual of the entire population, when transferring the plasma from the   x  d n r    to the   x  k   r c v    individual, it is assumed that all of the parameters belonging to the   x  d n r   , except the randomly determined jth one, are copied into the   x  k   r c v    and then jth parameter of the   x  k   r c v    is calculated with the Equation (9) after plasma treatment is concluded. In Equation (9),   x  k j   r c v − p    corresponds to the jth parameter of   x  k   r c v − p    and   x  k   r c v − p    is used on behalf of the   x  k   r c v    individual who receives a dose of plasma from the donor.


   x  k j   r c v − p   =  x  j   d n r   + r a n d  ( − 1 , 1 )   (  x  j   d n r   −  x  k j   r c v   )   



(9)







Standard implementation of the IP algorithm compares the antibody amount of   x  k   r c v    immediately after the first dose of plasma calculated as   f (  x  k   r c v − p   )   with the antibody amount of   x  d n r    calculated as   f (  x  d n r   )  . For a minimization problem, if   f (  x  k   r c v − p   )   is not less than   f (  x  d n r   )  , in other words,   x  k   r c v − p    is not better than   x  d n r   , and   x  k   r c v    is replaced with a copy of   x  d n r    and treatment is ended. The replacement of   x  k   r c v    with a copy of   x  d n r    ensures that   x  k   r c v    or a poor solution corresponding to   x  k   r c v    is discarded from the population and a more qualified solution represented by   x  d n r    is added. However, it should be noticed that some difficulties about the population diversity and efficiency of the subsequent treatment operations can be encountered and solving performance of the IP algorithm can deteriorate. In order to handle the possible problems to do with the replacement procedure between   x  k   r c v    and   x  d n r    individuals, an extended treatment approach that repeats the same plasma transfer operations as modeled by guiding Equation (9) until the   x  k   r c v − p    becomes better than the   x  d n r    is developed. By using the extended treatment approach, the IP algorithm empowers its exploitation characteristics because of the repetitive search in the neighborhood of the selected donor without requiring neither   N o D   parameter nor its sensitive configuration. Newly proposed treatment approach allows IP algorithm to guarantee that   x  k   r c v    will be replaced with a solution better than the solution represented by   x  d n r   . The IP algorithm that transfers plasma from the best individual in the population or   x  d n r    to the   x  k   r c v    in the receiver set of size   N o R  , as described by Equation (9), and continues plasma transfer until the receiver becomes better than its donor is called extended IPA for short ExtIPA. The details of treatment operations in ExtIPA can be controlled over the Algorithm 1.






	Algorithm 1 Fundamental steps of extended treatment approach



	
	 1:

	
   x  b e s t   ←   get the best solution found so far




	 2:

	
  r c v I n d e x e s [ 1 … N o R ] ←   get the indexes of the receivers




	 3:

	
for     i ← 1 … N o R    do




	 4:

	
       x  d n r   ←   get the best individual in the population as donor




	 5:

	
      k ← r c v I n d e x e s [ i ]   and determine   x  k   r c v    as the current receiver




	 6:

	
    if    t  c r   <  t  m a x     then




	 7:

	
           t  c r   ←  t  c r   + 1  




	 8:

	
           x  k   r c v − p   ←   apply plasma treatment to   x  k   r c v    with   x  d n r    using Equation (9)




	 9:

	
        while   f  (  x  k   r c v − p   )  > f  (  x  d n r   )    do




	10:

	
            if    t  c r   <  t  m a x     then




	11:

	
                   t  c r   ←  t  c r   + 1  




	12:

	
                   x  k   r c v − p   ←   apply plasma treatment to   x  k   r c v    with   x  d n r    using Equation (9)




	13:

	
            else




	14:

	
                Terminate the run and send   x  b e s t    as the final solution




	15:

	
            end if




	16:

	
        end while




	17:

	
           Update   x  k   r c v    with   x  k   r c v − p   




	18:

	
        if   f  (  x  b e s t   )  > f  (  x  k   r c v   )    then




	19:

	
            Update   x  b e s t    with   x  k   r c v   




	20:

	
        end if




	21:

	
    else




	22:

	
        Terminate the run and send   x  b e s t    as the final solution




	23:

	
    end if




	24:

	
end for















5. Experimental Studies


The qualities of the solutions calculated by a path planner can change with the properties of the considered battlefield in terms of the starting and target points, the number of enemy threats and their locations, sensing or shooting ranges, and grades. By taking into account this major requirement about the performance investigation, five challenging battlefields, detailed in Table 1, were used. For the first and second battlefields, the number of segmentation points and number of parameters, also abbreviated as D, were determined to be 30 and 50, while the number of segmentation points was determined to be 20 and 25 for the third battlefield and fourth battlefield, which were related with two test cases, one of which has 20 segmentation points determined optimally and the latter has 30 segmentation points. The  λ  constant was set to   0.5   with the purpose of equally weighting the cost of enemy threats and cost of fuel consumption on the J score calculation of a path [59]. In the experiments, the population size of ExtIPA was taken to be equal to 30, and five different constants, including 1, 2, 3, 4, and 5, were assigned to the   N o R   parameter. The experiments on the first and second battlefields were repeated 50 times by setting the maximum evaluation numbers to 30,000 and 60,000, respectively [59]. Similarly, the experiments on the third and fourth battlefields were repeated 50 times by setting the maximum evaluation number to 6000 [59]. At the end of each run or test of ExtIPA, the best path found and the value of its objective function were recorded and summarized in Table 2 as the mean best, best, and worst objective function values and standard deviations.



The test results given in Table 2 allow us to investigate the relationship between the qualities of the calculated path, the dimensionality of the test case, and the value of the   N o R   parameter. For six of the eight test cases, ExtIPA performs better by assigning 1 to the   N o R   parameter when compared to the same algorithm with the remaining   N o R   configurations. Moreover, in the 30-dimensional test cases belonging to the first and fourth battlefields, ExtIPA obtains more efficient paths with the   N o R   configured as 2. The treatment schema of ExtIPA continues to transfer the plasma from the best individual to the receiver until the antibody level of the receiver becomes higher than the antibody level of the donor. By executing this type of treatment schema, ExtIPA consumes more evaluations on the plasma transfer operations that are responsible for maintaining the exploitation characteristics of the algorithm when ExtIPA completes the treatment of the receiver or a receivers is not determined in advance. If ExtIPA spends more evaluations on the treatment of the receiver or receivers, exploration-dominant operations related to the phase of infection distribution and the phase of the donor update cannot be sufficiently executed, and some difficulties can arise about escaping from the local optimum solution or solutions. When the   N o R   parameter of ExtIPA is configured inappropriately for the existing population size, the qualities of the final solutions can deteriorate for some of the repetitive runs.



The population size of ExtIPA can change the performance of the algorithm like in other meta-heuristics. In order to analyze how the performance of ExtIPA varies with the different values of the   P S   parameter, 20, 40, 50, 75, and 100 constants were used. The   N o R   parameter of ExtIPA was set to 1 in the experiments. While 50 independent runs were carried out for the first and second battlefield scenarios after setting the maximum number of evaluations to 30,000 and 60,000, 50 independent runs were carried out for the third and fourth battlefield scenarios after setting the maximum evaluation number to 6000. The mean best, best, and worst objective function values and standard deviations given in Table 3 for various   P S   values of ExtIPA showed that the population size should be equal to or less than 40 if the dimensionality of the test cases and termination criteria are determined as detailed above. When the properties of the first four battlefields are visually inspected in Figure 2, Figure 3, Figure 4 and Figure 5, it is clearly seen that the test cases belonging to the second and third battlefields require paths containing more challenging maneuvers. When starting ExtIPA with a population in which there are some individuals partially satisfying the needed maneuvers, a relatively high population size should be chosen to increase the probability of producing the mentioned individuals or solutions. Because of this main reason, while ExtIPA with   P S   equal to 30 or 40 finds more robust paths for the majority of the test cases related to the second and third battlefield scenarios, it should start the work with   P S   equal to 20 or 30 for the test cases of the first and fourth battlefield scenarios.



The test cases used to evaluate the path-planning performance of ExtIPA contain at least 20 segmentation points and at most 30 segmentation points. However, the complexity of the path-planning problem can change unexpectedly with the number of segmentation points. Even though a relatively small number of segmentation points is chosen, some of the lines in the set L can intersect with the circles representing the enemy threats, and thus, selecting a point that is outside the circle or circles and on the related line becomes more difficult. Different experiments should therefore be carried out by assigning values less than 20 and more than 30 to the number of segmentation points. For this purpose, the fifth battlefield scenario containing eight cases with 5, 10, 15, 20, 25, 30, 35, and 40 segmentation points was tested. In the experiments, while the value of the   P S   parameter of ExtIPA was set to 20, 30, 40, 50, 75, and 100, the   N o R   parameter was taken as equal to 1. Each test case generated by combining the D and   P S   parameters was solved 100 times by ExtIPA after setting the maximum number of evaluations to 6000 [59]. The best solution found by ExtIPA at the end of each run was recorded and then summarized in Table 4 with the mean best, best, and worst objective function values and the calculated standard deviations. When the results given in Table 4 are investigated, it is clearly seen that ExtIPA performs better if the   P S   parameter is equal to 20 or 30 for the test case of fifth battlefield. Another important conclusion that can be extracted from the results of ExtIPA for the fifth battlefield scenario is about its relatively stable performance. As stated earlier, the values being assigned to the number of segmentation points can trigger unpredictable changes in the characteristics of the path-planning problem, and an algorithm should preserve its performance for different configurations of the same battlefield. While the number of segmentation points for the fifth battlefield scenario is increased eight times from the first to the last case, the difference between the mean best objective function values is found to only be   2.459   for the ExtIPA with 20 individuals. The best and worst paths found by ExtIPA for the fifth scenario can be seen in Figure 6.



In order to determine whether the paths planned by ExtIPA are promising or not, they should be compared with the paths found by other meta-heuristic-based path planners. For this purpose, ExtIPA was compared with the IP, ABC, I-ABC, IF-ABC, and BE-ABC algorithms for the test cases of the first and second battlefields [25,59]. To guarantee that all of the compared algorithms obtain their solutions under equal conditions, the population size and maximum evaluation number were fixed to 30 and 30,000 when solving test cases about the first battlefield scenario [25,59]. Similarly, the population size and maximum evaluation number were fixed to 30 and 60,000 when solving test cases in the second battlefield scenario [25,59]. From the test results summarized in Table 5 after completing 50 independent runs for each algorithm, it is seen that ExtIPA has a promising performance against other competitors. While ExtIPA outperforms IPA, ABC, I-ABC, IF-ABC and BE-ABC and its rank is determined as first for the test cases in the first battlefield scenario, it lags slightly behind the IPA for the 30-dimensional case in the second battlefield, and its rank becomes second. ExtIPA lags slightly behind the BE-ABC for the 50-dimensional case in the second battlefield and its rank is found to be second. Even though the positive contribution of the extended treatment approach on the exploitation characteristics becomes more apparent in the first battlefield, some special requirements of the second battlefield concerning its exploitation limit the efficiency of the proposed method. However, it should be noticed that ExtIPA still maintains its promising performance and provides better solutions than four of its five competitors.



A path planned in the third battlefield requires challenging maneuvers similar to a safe and efficient path of the second battlefield, and a meta-heuristic-based planner should manage exploration-dominant operations more carefully. To determine whether the changes made in the workflow with the extended treatment approach allow ExtIPA to calculate more qualified paths or not, a comparison between the performances of ExtIPA, IPA, DE, PSO, BA, WDO, QPSO, QBA, and QWDO for the third battlefield was conducted. The population size of the algorithms was equal to 30 and the maximum evaluation number was set to 6000 to emphasize that they are executed under the same conditions [27,59]. When the results obtained after 50 independent runs and presented in Table 6 are investigated, it is seen that ExtIPA has some problems maintaining a comparative performance, especially for the 25-dimensional case in the third battlefield scenario. The initial population diversity and exploration-dominant operations of ExtIPA are generally found to be sufficient to calculate better paths compared to IPA, DE, PSO, BA, WDO, QPSO, QBA, and QWDO. However, for the 25-dimensional test case in the third battlefield scenario, because of the huge volume of the maximum evaluation number consumed by the operations related to the extended treatment approach, new solutions are not sufficiently explored, and the performance of ExtIPA deteriorates.



The comparative studies between ExtIPA and other meta-heuristic-based planners, including IPA, PSO, ABC, DE, CIJADE, JADE, and CIPDE, were continued in the fourth battlefield scenario. In these comparisons, the colony size of ABC and the population size of IPA and ExtIPA were set to 30, and the population size of PSO, DE, CIJADE, JADE, and CIPDE were set equal to 60, roughly equalizing the total number of evaluations per cycle or iteration [37]. While ABC, IPA, and ExtIPA were tested 50 times with random seeds by fixing the maximum evaluation number to 6000, PSO, DE, CIJADE, JADE, and CIPDE were tested 20 times by fixing the maximum evaluation number to 6000 [37]. The mean best, best, and worst objective function values and standard deviations calculated after completing the tests are recorded and summarized in Table 7. As seen from the results given in Table 7, ExtIPA produces more robust and efficient paths compared to the other tested algorithms. The promising performance of the ExtIPA can already be seen for the 30- and 50-dimensional cases in the first and second battlefields, and 20-dimensional case in the third battlefield was also validated for the 20- and 30-dimensional cases in the fourth battlefield. A detailed search within the vicinity of a qualified solution, as is performed in the extended treatment, helps the algorithm to subtly calibrate the selected points from the lines and thus plan more satisfactory UCAV paths. Because of the presence of enemy threats and their locations, effect ranges, and grades in the fourth battlefield decrease the probability of generating eligible paths using dense exploration-based operations, ExtIPA gets a chance to show its robust and stable convergence performance more apparently in the mean best objective function values and standard deviations.



The performance validation of ExtIPA was concluded after a comparison with other meta-heuristic algorithms, including IPA, ABC, BA, ACO, BBO, DE, ES, FA, GA, PBIL, and PSO and some of their variants, such as BAM, MFA, SGA, and PGSO, in the fifth battlefield scenario. The path planners used for the test cases of the fifth battlefield were run 100 times by setting the population size to 30 and the maximum evaluation number to 6000 [21,57]. The mean best, best, and worst objective function values and related standard deviations of them calculated after 100 independent runs are given in Table 8. One of the important results extracted from this table is the superiority of the ExtIPA over all of fifteen competitors for the 5-, 10-, 15-, and 20-dimensional cases in the existing battlefield scenario. On the other hand, when the remaining test cases in the fifth battlefield are considered, it is seen that ExtIPA lags behind both BAM and MFA and becomes the third best path planner. As stated previously, the number of segmentation points can completely change the properties of the optimal path being planned for a UAV or UCAV, even if the same battlefield is considered. Each extra segmentation point can cause problems related to the escaping enemy threats and increasing total flight length, and handling these special requirements for all test cases of a battlefield, such as the fifth battlefield, can be challenging. Because of this situation, while ExtIPA dominates other algorithms for some test cases and is ranked as the best planner among them, other problem instances become more suitable to the search characteristics of the BAM and MFA path planners for the 25-, 30-, 35-, and 40-dimensional cases in the fifth battlefield. However, it should be still considered that ExtIPA is able to preserve its path-planning capability compared to BAM and MFA when all eight cases are evaluated together, and its average and overall ranks and smaller standard deviations prove the strong and stable performance of the algorithm.



The paths and their objective function values found by different path planners are relatively close to each other for most cases of the fifth battlefield scenario. Even though the average and overall ranks provide information which algorithm is capable of dominating other competitors, an appropriate test should also be employed for investigating whether the superiority of the considered algorithm can be validated statistically or not. Wilcoxon signed rank test is one of the most commonly used tests for deciding there is a statistical difference in favor of one of the compared techniques. If the significance level abbreviated as  ρ  with Wilcoxon signed rank test is less than a constant that is usually determined as   0.05  , it is said that one of the algorithm is statistically better than another [60]. In order to understand that ExtIPA is statistically better than other path planners for the fifth battlefield scenario or not, Wilcoxon signed rank test with the significance level   0.05   was executed by considering the mean best, best and worst objective function values and its results were presented in Table 9, Table 10 and Table 11. In these tables, Z value shows the test statistics. While the   W +   abbreviation represents the sum of ranks for which ExtIPA is worse than other planner, the   W −   abbreviation represents the sum of ranks for which ExtIPA is better than other planner. From the test results given in Table 9, Table 10 and Table 11, it is seen that while the performance of ExtIPA is statistically better than the IPA, ABC, BA, ACO, BBO, DE, ES, FA, GA, PBIL, PSO, SGA and PGSO with  ρ  values less than 0.05, the significance is not in favor of ExtIPA for the comparison between ExtIPA and BAM or MFA.



The extended treatment approach can accelerate the convergence speed. Because the treatment of a receiver is continued until the antibody level of the receiver becomes higher than the antibody level of its donor, the extended treatment can boost the convergence to the global optimum. However, it should be noticed that if the treatment takes longer, different stagnation periods can be seen on the convergence curves. To evaluate the convergence performances of the algorithms, the success rate (  S r  ) and mean evaluations (  M e  ) are two commonly used metrics [60]. If an algorithm obtains a solution whose objective function value is better than the previously determined threshold, it is assumed that the algorithm is successful for the considered run and the percentage of the number of successful runs to the total number of runs corresponds to the   S r  . When a run is labeled as successful, the minimum number of evaluations required to find a solution with an objective function value better than threshold is recorded. The average of the recorded values is also matched with the   M e   metric. From the   S r   and   M e   metrics calculated by setting the threshold as 55, as given in Table 12 for the fifth battlefield, it is understood that the convergence performance of ExtIPA is more robust than the convergence performances of both the IPA- and ABC-based planners. For the first four test cases related to the considered battlefield scenario, ExtIPA, IPA, and ABC are capable of obtaining better solutions with objective function values less than the threshold in each of the 100 independent runs. However, it should be noticed that ExtIPA requires at least two times fewer evaluations compared to IPA and ABC for the 5-, 10-, 15-, and 20-dimensional test cases. When the dimensionality of the test cases is increased starting from 25 to 40, while ExtIPA and IPA still preserve their convergence characteristics, ABC has some difficulties reaching the given threshold, and no successful run is detected for the cases with 35 and 40 segmentation points.




6. Conclusions


Recent years have witnessed dramatic paradigm and strategic changes in the military and commercial operations carried out by UAVs and their customized variants carrying complex optical, targeting, and weapon systems called UCAVs. To improve the success of a task being employed with one of these advanced aerial vehicles, a flight path should be carefully determined by taking into account some challenging optimization objectives that must be satisfied about the enemy air defense systems, fuel or battery usage, or total cruise length. The immune plasma algorithm (IP algorithm or IPA) is one of the most recent nature-inspired computational intelligence techniques, and its promising performance has been validated on different numerical benchmarks and engineering problems. In this study, the plasma transfer schema of the IPA was completely changed with a newly introduced extended treatment approach, and the extended IP algorithm (ExtIPA) was proposed as a UAV or UCAV path planner. To investigate the path-planning capabilities of ExtIPA, five different battlefield scenarios and various algorithm-specific parameter configurations were used.



The paths found by the ExtIPA were also compared with the paths found by well-known meta-heuristic algorithms such as ABC, BA, ACO, BBO, DE, ES, FA, GA, PSO, PBIL, and WDO and some of their improved versions, such as BAM, MFA, SGA, PGSO, I-ABC, IF-ABC, BE-ABC, QPSO, QBA, QWDO, CIJADE, JADE, and CIPDE. Comparative studies between ExtIPA and other path planners showed that the extended treatment approach contributes to the efficiency of plasma transfer operations by ensuring the treatment will be continued until a poor solution, represented by a receiver individual becoming better than its donor, and ExtIPA outperforms the other algorithms in most of the test cases. Moreover, ExtIPA removed the necessity of using the   N o D   parameter and resolved some difficulties around guessing the interaction between   N o D   and   N o R   and then assigning appropriate values to them to obtain better solutions. In the future, ExtIPA can be further improved by integrating a mechanism that adjusts the   N o R   parameter adaptively. The IP algorithm with multiple populations each executing a unique treatment procedure can be designed and used to solve UAV or UCAV path-planning problems made difficult by the existence of dynamic obstacles, enemy threats, and real-time calculations.
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Figure 1. Initial (a) and transformed (b) coordinate systems, calculated paths (c), and their counterparts for the initial coordinate system (d). 
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Figure 2. The best and worst paths of ExtIPA with   P S   equal to 30 for 30-dimensional (a) and 50-dimensional (b) cases of the first scenario and with   P S   equal to 100 for 30-dimensional (c) and 50-dimensional (d) cases of the first scenario. 






Figure 2. The best and worst paths of ExtIPA with   P S   equal to 30 for 30-dimensional (a) and 50-dimensional (b) cases of the first scenario and with   P S   equal to 100 for 30-dimensional (c) and 50-dimensional (d) cases of the first scenario.
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Figure 3. The best and worst paths of ExtIPA with   P S   equal to 30 for 30-dimensional (a) and 50-dimensional (b) cases of the second scenario and with   P S   equal to 100 for 30-dimensional (c) and 50-dimensional (d) cases of the second scenario. 
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Figure 4. The best and worst paths of ExtIPA with   P S   equal to 30 for 20-dimensional (a) and 25-dimensional (b) cases of the third scenario and with   P S   equal to 100 for 20-dimensional (c) and 25-dimensional (d) cases of the third scenario. 
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[image: Aerospace 10 00487 g004]







[image: Aerospace 10 00487 g005 550] 





Figure 5. The best and worst paths of ExtIPA with   P S   equal to 30 for 20-dimensional (a) and 30-dimensional (b) cases of the fourth scenario and with   P S   equal to 100 for 20-dimensional (c) and 30-dimensional (d) cases of the fourth scenario. 
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Figure 6. The best and worst paths of ExtIPA with   P S   equal to 30 for 25-dimensional (a) and 40-dimensional (b) cases of the fifth scenario and with   P S   equal to 100 for 25-dimensional (c) and 40-dimensional (d) cases of the fifth scenario. 
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[image: Aerospace 10 00487 g006]







[image: Table] 





Table 1. Properties of the battlefields in the experiments.






Table 1. Properties of the battlefields in the experiments.





	Sc.
	Threat Centers
	Threat Radius
	Threat Grade
	Start-Target Point





	1
	(52, 52), (32, 40), (12, 48), (36, 26),

(80, 60), (63, 56), (50, 42), (30, 70)
	10, 10, 8, 12,

9, 7, 10, 10
	2, 10, 1, 2,

3, 5, 2, 4
	(11, 11)–(75, 75)



	2
	(0, 200), (200, 0), (50, 50), (95, 95),

(150, 150), (95, 50), (50, 95), (140, 105), (105, 140)
	90, 90, 20, 20,

20, 20, 20, 20, 20
	7, 7, 5, 5

5, 6, 5, 6, 5
	(0, 0)–(200, 200)



	3
	(59, 52), (55, 80), (27, 58), (24, 33),

(12, 48), (70, 65), (70, 34), (70, 30)
	10, 9, 9, 9,

12, 7, 12, 10
	9, 7, 3, 12,

1, 5, 13, 2
	(10, 15)–(80, 75)



	4
	(10, 50), (20, 20), (30, 42), (30, 80), (50, 55),

(60, 10), (60, 80), (65, 38), (75, 65), (90, 80)
	10, 9, 8, 10, 10,

10, 10, 12, 8, 10
	8, 6, 5, 4, 7,

6, 7, 6, 8, 10
	(0, 0)–(80, 100)



	5
	(45, 50), (12, 40), (32, 68), (36, 26), (58, 80)
	10, 10, 8, 12, 9
	2, 10, 1, 2, 3
	(10, 10)–(55, 100)
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Table 2. Results of ExtIPA for the first four battlefields.
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Sc.

	
D

	
   NoR  




	
1

	
2

	
3

	
4

	
5






	
1

	
30

	
Mean

	
48.595

	
48.593

	
48.716

	
48.942

	
49.676




	
Best

	
48.158

	
48.144

	
48.160

	
48.200

	
48.368




	
Worst

	
49.771

	
50.245

	
50.562

	
51.697

	
53.322




	
Std.

	
0.450

	
0.606

	
0.702

	
0.795

	
1.285




	
50

	
Mean

	
51.167

	
52.057

	
53.198

	
55.562

	
59.367




	
Best

	
48.600

	
48.694

	
48.829

	
49.875

	
51.629




	
Worst

	
54.260

	
57.969

	
61.228

	
62.909

	
66.841




	
Std.

	
1.783

	
2.534

	
3.069

	
3.908

	
4.407




	
2

	
30

	
Mean

	
152.053

	
153.018

	
152.951

	
153.266

	
153.515




	
Best

	
149.743

	
149.734

	
149.730

	
149.750

	
150.047




	
Worst

	
153.706

	
155.659

	
155.673

	
155.820

	
155.624




	
Std.

	
1.347

	
1.659

	
1.666

	
1.844

	
1.486




	
50

	
Mean

	
153.816

	
156.198

	
156.791

	
157.848

	
159.582




	
Best

	
149.273

	
151.898

	
149.288

	
152.155

	
153.410




	
Worst

	
157.542

	
159.238

	
160.430

	
162.613

	
164.025




	
Std.

	
2.188

	
2.300

	
2.660

	
2.840

	
2.780




	
3

	
20

	
Mean

	
47.969

	
52.358

	
49.969

	
55.187

	
49.727




	
Best

	
47.812

	
47.829

	
47.956

	
48.084

	
47.970




	
Worst

	
48.373

	
58.260

	
63.699

	
63.723

	
58.526




	
Std.

	
0.131

	
4.628

	
4.608

	
6.616

	
2.529




	
25

	
Mean

	
50.098

	
57.073

	
50.589

	
53.720

	
56.734




	
Best

	
48.019

	
47.946

	
48.009

	
48.411

	
48.983




	
Worst

	
63.774

	
68.047

	
67.839

	
62.637

	
69.766




	
Std.

	
4.079

	
7.450

	
4.478

	
5.190

	
7.432




	
4

	
20

	
Mean

	
66.397

	
66.570

	
66.596

	
66.664

	
67.480




	
Best

	
66.363

	
66.345

	
66.370

	
66.335

	
66.942




	
Worst

	
66.594

	
66.993

	
66.937

	
67.315

	
68.466




	
Std.

	
0.074

	
0.172

	
0.167

	
0.265

	
0.413




	
30

	
Mean

	
68.170

	
67.617

	
68.162

	
70.649

	
72.665




	
Best

	
67.207

	
66.870

	
67.152

	
68.033

	
68.649




	
Worst

	
70.135

	
68.644

	
70.628

	
83.549

	
82.528




	
Std.

	
0.958

	
0.669

	
0.716

	
2.534

	
3.567
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Table 3. Results of ExtIPA for the first four battlefields with different   P S   values.
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Sc.

	
D

	
   PS  




	
20

	
30

	
40

	
50

	
75

	
100






	
1

	
30

	
Mean

	
48.526

	
48.595

	
48.835

	
48.606

	
49.223

	
49.472




	
Best

	
48.160

	
48.158

	
48.185

	
48.181

	
48.197

	
48.206




	
Worst

	
49.420

	
49.771

	
50.173

	
50.146

	
51.569

	
52.023




	
Std.

	
0.404

	
0.450

	
0.597

	
0.497

	
1.009

	
1.190




	
50

	
Mean

	
51.173

	
51.167

	
51.556

	
51.511

	
53.373

	
56.069




	
Best

	
48.435

	
48.600

	
48.602

	
48.863

	
49.467

	
49.683




	
Worst

	
53.388

	
54.260

	
56.341

	
56.046

	
57.929

	
63.702




	
Std.

	
1.579

	
1.783

	
2.202

	
2.074

	
2.355

	
3.523




	
2

	
30

	
Mean

	
152.234

	
152.053

	
151.950

	
152.261

	
152.193

	
152.146




	
Best

	
149.744

	
149.743

	
149.734

	
149.751

	
149.764

	
149.737




	
Worst

	
153.747

	
153.706

	
153.720

	
153.834

	
155.036

	
154.023




	
Std.

	
1.456

	
1.347

	
1.340

	
1.371

	
1.551

	
1.349




	
50

	
Mean

	
154.318

	
153.816

	
154.440

	
155.328

	
156.165

	
157.016




	
Best

	
149.298

	
149.273

	
149.544

	
149.656

	
150.530

	
150.619




	
Worst

	
157.417

	
157.542

	
158.112

	
158.697

	
160.588

	
161.196




	
Std.

	
1.959

	
2.188

	
1.956

	
2.037

	
2.618

	
2.558




	
3

	
20

	
Mean

	
50.744

	
47.969

	
48.269

	
50.380

	
52.674

	
55.004




	
Best

	
47.820

	
47.812

	
48.003

	
48.094

	
48.163

	
48.887




	
Worst

	
63.587

	
48.373

	
50.386

	
57.907

	
64.312

	
61.872




	
Std.

	
6.070

	
0.131

	
0.452

	
3.548

	
6.082

	
4.588




	
25

	
Mean

	
56.700

	
50.098

	
53.058

	
54.155

	
60.303

	
61.740




	
Best

	
47.849

	
48.019

	
48.216

	
48.246

	
49.302

	
54.614




	
Worst

	
63.880

	
63.774

	
64.016

	
64.329

	
72.984

	
72.348




	
Std.

	
6.813

	
4.079

	
6.608

	
5.864

	
9.532

	
5.049




	
4

	
20

	
Mean

	
66.452

	
66.497

	
66.720

	
66.875

	
67.760

	
68.036




	
Best

	
66.263

	
66.363

	
66.473

	
66.468

	
66.976

	
67.263




	
Worst

	
66.748

	
66.594

	
66.967

	
67.564

	
69.513

	
69.935




	
Std.

	
0.123

	
0.074

	
0.180

	
0.306

	
0.889

	
0.518




	
30

	
Mean

	
67.300

	
68.170

	
68.123

	
69.796

	
72.439

	
78.074




	
Best

	
66.706

	
67.207

	
67.564

	
68.193

	
68.574

	
71.222




	
Worst

	
67.752

	
70.135

	
69.620

	
72.624

	
76.452

	
86.972




	
Std.

	
0.352

	
0.958

	
0.525

	
1.241

	
2.710

	
5.664
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Table 4. Results of ExtIPA for the fifth battlefield with different   P S   values.
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D

	
   PS  




	
20

	
30

	
40

	
50

	
75

	
100






	
5

	
Mean

	
50.384

	
50.384

	
50.389

	
50.391

	
50.387

	
50.393




	
Best

	
50.384

	
50.384

	
50.387

	
50.389

	
50.386

	
50.388




	
Worst

	
50.385

	
50.385

	
50.390

	
50.393

	
50.389

	
50.396




	
Std.

	
0.002

	
0.001

	
0.001

	
0.002

	
0.001

	
0.003




	
10

	
Mean

	
50.375

	
50.372

	
50.379

	
50.375

	
50.382

	
50.396




	
Best

	
50.371

	
50.370

	
50.371

	
50.370

	
50.375

	
50.372




	
Worst

	
50.389

	
50.377

	
50.385

	
50.385

	
50.395

	
50.433




	
Std.

	
0.005

	
0.003

	
0.004

	
0.004

	
0.006

	
0.020




	
15

	
Mean

	
50.373

	
50.402

	
50.431

	
50.457

	
50.765

	
51.068




	
Best

	
50.370

	
50.378

	
50.389

	
50.389

	
50.417

	
50.430




	
Worst

	
50.381

	
50.438

	
50.491

	
50.703

	
51.259

	
52.782




	
Std.

	
0.003

	
0.022

	
0.043

	
0.091

	
0.308

	
0.792




	
20

	
Mean

	
50.472

	
50.457

	
50.740

	
50.821

	
51.491

	
52.351




	
Best

	
50.375

	
50.395

	
50.407

	
50.458

	
50.633

	
50.836




	
Worst

	
50.595

	
50.595

	
51.537

	
52.190

	
53.378

	
54.884




	
Std.

	
0.070

	
0.057

	
0.392

	
0.464

	
0.731

	
1.081




	
25

	
Mean

	
50.957

	
51.031

	
51.254

	
51.327

	
52.853

	
53.923




	
Best

	
50.497

	
50.472

	
50.479

	
50.771

	
50.687

	
51.530




	
Worst

	
53.463

	
52.156

	
53.793

	
52.498

	
54.850

	
57.218




	
Std.

	
0.649

	
0.516

	
0.755

	
0.476

	
1.433

	
1.895




	
30

	
Mean

	
51.345

	
51.602

	
52.291

	
52.962

	
53.873

	
55.254




	
Best

	
50.524

	
50.673

	
51.240

	
51.116

	
51.340

	
51.765




	
Worst

	
52.165

	
53.083

	
53.467

	
56.638

	
56.377

	
62.244




	
Std.

	
0.520

	
0.781

	
0.613

	
1.622

	
1.570

	
3.101




	
35

	
Mean

	
52.150

	
52.446

	
53.464

	
54.362

	
56.593

	
62.090




	
Best

	
50.895

	
51.010

	
51.933

	
50.859

	
51.193

	
52.200




	
Worst

	
54.227

	
55.444

	
59.277

	
58.869

	
62.877

	
68.912




	
Std.

	
0.919

	
1.191

	
1.194

	
2.016

	
3.619

	
4.815




	
40

	
Mean

	
52.843

	
53.365

	
54.230

	
57.676

	
60.464

	
64.279




	
Best

	
51.608

	
50.868

	
51.947

	
52.673

	
52.018

	
52.446




	
Worst

	
55.143

	
55.475

	
56.874

	
61.631

	
71.521

	
81.205




	
Std.

	
0.900

	
1.482

	
1.435

	
2.741

	
5.592

	
8.667
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Table 5. Comparison between ExtIPA and other techniques for the first and second battlefields.






Table 5. Comparison between ExtIPA and other techniques for the first and second battlefields.





	
Sc.

	
D

	
ExtIPA

	
IPA

	
ABC

	
I-ABC

	
IF-ABC

	
BE-ABC






	
1

	
30

	
Mean

	
48.593

	
49.289

	
52.988

	
60.459

	
51.939

	
50.456




	
Std.

	
0.606

	
0.465

	
1.425

	
3.288

	
1.343

	
0.672




	
Rank

	
1

	
2

	
5

	
6

	
4

	
3




	
50

	
Mean

	
52.057

	
59.354

	
59.972

	
80.174

	
59.956

	
54.982




	
Std.

	
2.534

	
4.914

	
2.913

	
7.757

	
2.214

	
2.231




	
Rank

	
1

	
3

	
5

	
6

	
4

	
2




	
2

	
30

	
Mean

	
152.053

	
151.499

	
154.927

	
185.792

	
153.583

	
153.410




	
Std.

	
1.347

	
1.285

	
2.512

	
3.754

	
0.492

	
0.554




	
Rank

	
2

	
1

	
5

	
6

	
4

	
3




	
50

	
Mean

	
153.816

	
157.368

	
157.204

	
164.990

	
157.814

	
153.524




	
Std.

	
2.188

	
1.596

	
3.603

	
2.811

	
1.905

	
1.047




	
Rank

	
2

	
4

	
3

	
6

	
5

	
1




	
Average Rank

	
1.500

	
2.500

	
4.500

	
6.000

	
4.250

	
2.250




	
Overall Rank

	
1

	
3

	
5

	
6

	
4

	
2
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Table 6. Comparison between ExtIPA and other techniques for the third battlefield.






Table 6. Comparison between ExtIPA and other techniques for the third battlefield.





	
Sc.

	
D

	
ExtIPA

	
IPA

	
DE

	
PSO

	
BA

	
WDO

	
QPSO

	
QBA

	
QWDO






	
3

	
20

	
Mean

	
47.969

	
52.703

	
50.073

	
53.869

	
50.861

	
66.955

	
49.524

	
50.958

	
49.503




	
Best

	
47.812

	
50.211

	
47.935

	
50.434

	
48.069

	
57.013

	
48.018

	
48.134

	
47.868




	
Worst

	
48.373

	
55.154

	
51.575

	
59.962

	
52.765

	
74.820

	
51.634

	
56.006

	
50.828




	
Std.

	
0.131

	
2.820

	
-

	
-

	
-

	
-

	
-

	
-

	
-




	
Rank

	
1

	
7

	
4

	
8

	
5

	
9

	
3

	
6

	
2




	
25

	
Mean

	
50.098

	
62.164

	
49.842

	
51.481

	
50.901

	
66.668

	
49.679

	
50.071

	
48.814




	
Best

	
48.019

	
54.652

	
48.126

	
49.246

	
48.163

	
58.430

	
48.397

	
48.333

	
47.807




	
Worst

	
63.774

	
71.302

	
52.110

	
54.246

	
67.441

	
75.967

	
51.307

	
53.423

	
49.749




	
Std.

	
4.079

	
5.516

	
-

	
-

	
-

	
-

	
-

	
-

	
-




	
Rank

	
5

	
8

	
3

	
7

	
6

	
9

	
2

	
4

	
1




	
Average Rank

	
3

	
7.5

	
3.5

	
7.5

	
5.5

	
9

	
2.5

	
5

	
1.5




	
Overall Rank

	
3

	
7

	
4

	
7

	
6

	
9

	
2

	
5

	
1
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Table 7. Comparison between ExtIPA and other techniques for the fourth battlefield.






Table 7. Comparison between ExtIPA and other techniques for the fourth battlefield.





	
Sc.

	
D

	
ExtIPA

	
IPA

	
CIJADE

	
PSO

	
DE

	
ABC

	
JADE

	
CIPDE






	
4

	
20

	
Mean

	
66.397

	
68.297

	
66.426

	
70.794

	
67.397

	
67.260

	
66.524

	
66.469




	
Best

	
66.363

	
67.297

	
66.298

	
67.663

	
66.730

	
66.631

	
66.321

	
66.331




	
Worst

	
66.594

	
70.009

	
66.646

	
73.960

	
72.571

	
68.184

	
67.007

	
66.751




	
Std.

	
0.074

	
0.682

	
0.087

	
1.869

	
1.249

	
0.512

	
0.193

	
0.126




	
Rank

	
1

	
7

	
2

	
8

	
6

	
5

	
4

	
3




	
30

	
Mean

	
68.170

	
76.496

	
70.297

	
78.982

	
75.197

	
72.656

	
70.407

	
71.033




	
Best

	
67.207

	
71.334

	
67.622

	
73.753

	
71.766

	
67.845

	
67.521

	
68.170




	
Worst

	
70.135

	
82.250

	
75.256

	
85.561

	
81.645

	
76.718

	
81.631

	
78.238




	
Std.

	
0.958

	
2.823

	
1.813

	
3.828

	
2.434

	
2.147

	
3.026

	
2.502




	
Rank

	
1

	
7

	
2

	
8

	
6

	
5

	
3

	
4




	
Average Rank

	
1

	
7

	
2

	
8

	
6

	
5

	
3.500

	
3.500




	
Overall Rank

	
1

	
7

	
2

	
8

	
6

	
5

	
3

	
3
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Table 8. Comparison between ExtIPA and other techniques for the fifth battlefield.






Table 8. Comparison between ExtIPA and other techniques for the fifth battlefield.





	
Sc.

	
D

	
ExtIPA

	
IPA

	
ABC

	
BA

	
BAM

	
ACO

	
BBO

	
DE

	
ES

	
FA

	
GA

	
MFA

	
PBIL

	
PSO

	
SGA

	
PGSO






	
5

	
5

	
Mean

	
50.384

	
50.384

	
50.384

	
106.483

	
59.054

	
61.520

	
72.730

	
58.596

	
80.720

	
58.750

	
60.470

	
59.167

	
66.139

	
59.906

	
60.501

	
53.669




	
Best

	
50.384

	
50.384

	
50.384

	
60.690

	
54.357

	
61.372

	
60.330

	
54.357

	
59.590

	
54.359

	
55.247

	
54.357

	
59.763

	
55.167

	
55.654

	
53.380




	
Worst

	
50.385

	
50.385

	
50.385

	
345.255

	
60.240

	
63.320

	
171.500

	
62.200

	
112.260

	
65.740

	
61.600

	
62.419

	
72.250

	
66.071

	
61.200

	
60.630




	
Std.

	
0.001

	
0.001

	
0.001

	
-

	
-

	
-

	
-

	
2.160

	
-

	
3.010

	
-

	
2.250

	
-

	
2.620

	
1.560

	
2.260




	
Rank

	
1

	
1

	
1

	
16

	
7

	
12

	
14

	
5

	
15

	
6

	
10

	
8

	
13

	
9

	
11

	
4




	
10

	
Mean

	
50.372

	
50.398

	
50.384

	
69.425

	
52.707

	
61.950

	
57.965

	
53.104

	
76.280

	
52.180

	
52.542

	
51.574

	
101.440

	
57.041

	
52.279

	
50.849




	
Best

	
50.370

	
50.376

	
50.371

	
52.360

	
51.395

	
60.228

	
52.947

	
51.395

	
57.420

	
51.399

	
51.607

	
51.397

	
83.112

	
52.207

	
51.549

	
50.649




	
Worst

	
50.377

	
50.457

	
50.406

	
108.738

	
60.7244

	
68.190

	
76.820

	
56.736

	
123.460

	
56.710

	
60.110

	
53.786

	
119.250

	
68.622

	
56.165

	
53.330




	
Std.

	
0.003

	
0.024

	
0.013

	
-

	
-

	
-

	
-

	
2.600

	
-

	
2.370

	
-

	
1.730

	
-

	
2.250

	
1.430

	
1.870




	
Rank

	
1

	
3

	
2

	
14

	
9

	
13

	
12

	
10

	
15

	
6

	
8

	
5

	
16

	
11

	
7

	
4




	
15

	
Mean

	
50.402

	
50.570

	
50.591

	
63.601

	
51.231

	
60.260

	
59.526

	
52.278

	
71.860

	
52.822

	
52.188

	
50.897

	
128.250

	
58.340

	
51.891

	
51.516




	
Best

	
50.378

	
50.424

	
50.425

	
53.075

	
50.609

	
58.530

	
52.557

	
50.611

	
58.255

	
50.617

	
50.871

	
50.612

	
107.223

	
52.097

	
50.807

	
50.452




	
Worst

	
50.438

	
51.219

	
50.789

	
85.745

	
60.192

	
61.000

	
90.370

	
62.580

	
103.860

	
94.276

	
57.447

	
53.832

	
189.200

	
87.320

	
61.800

	
55.460




	
Std.

	
0.022

	
0.193

	
0.100

	
-

	
-

	
-

	
-

	
3.730

	
-

	
4.250

	
-

	
1.340

	
-

	
4.010

	
2.450

	
1.490




	
Rank

	
1

	
2

	
3

	
14

	
5

	
13

	
12

	
9

	
15

	
10

	
8

	
4

	
16

	
11

	
7

	
6




	
20

	
Mean

	
50.457

	
50.925

	
52.181

	
63.630

	
50.760

	
66.220

	
61.88

	
52.722

	
70.190

	
53.733

	
53.090

	
50.700

	
185.430

	
58.248

	
53.167

	
52.398




	
Best

	
50.395

	
50.495

	
50.866

	
52.395

	
50.467

	
60.445

	
54.723

	
50.510

	
60.232

	
50.463

	
50.825

	
50.455

	
130.152

	
52.464

	
50.846

	
50.657




	
Worst

	
50.595

	
51.271

	
54.672

	
83.706

	
53.742

	
67.180

	
78.200

	
64.570

	
81.450

	
78.914

	
59.180

	
52.028

	
337.300

	
78.160

	
68.950

	
59.850




	
Std.

	
0.057

	
0.196

	
0.994

	
-

	
-

	
-

	
-

	
3.710

	
-

	
7.580

	
-

	
1.020

	
-

	
6.950

	
3.990

	
1.560




	
Rank

	
1

	
4

	
5

	
13

	
2

	
14

	
12

	
7

	
15

	
10

	
8

	
2

	
16

	
11

	
9

	
6




	
25

	
Mean

	
51.031

	
51.678

	
54.690

	
64.901

	
50.709

	
61.570

	
64.780

	
54.408

	
72.780

	
53.904

	
53.781

	
50.999

	
257.720

	
60.263

	
54.157

	
54.587




	
Best

	
50.472

	
50.790

	
51.911

	
55.017

	
50.448

	
61.549

	
55.528

	
50.551

	
63.369

	
50.491

	
51.242

	
50.457

	
159.740

	
53.738

	
51.239

	
50.782




	
Worst

	
52.156

	
57.314

	
57.530

	
74.926

	
53.519

	
62.070

	
80.330

	
69.660

	
83.910

	
66.452

	
60.398

	
53.704

	
699.600

	
78.139

	
65.700

	
63.160




	
Std.

	
0.516

	
1.503

	
1.618

	
-

	
-

	
-

	
-

	
4.120

	
-

	
8.660

	
-

	
0.810

	
-

	
7.550

	
4.060

	
2.380




	
Rank

	
3

	
4

	
10

	
14

	
1

	
12

	
13

	
8

	
15

	
6

	
5

	
2

	
16

	
11

	
7

	
9




	
30

	
Mean

	
51.602

	
51.789

	
59.805

	
66.616

	
51.106

	
63.950

	
67.870

	
59.988

	
74.780

	
54.962

	
55.008

	
51.357

	
395.540

	
62.385

	
54.521

	
56.891




	
Best

	
50.673

	
50.997

	
54.527

	
57.247

	
50.467

	
63.230

	
56.607

	
50.898

	
65.725

	
50.683

	
51.921

	
50.516

	
230.150

	
53.299

	
51.617

	
51.019




	
Worst

	
53.083

	
61.565

	
64.940

	
80.084

	
60.285

	
64.710

	
78.580

	
74.120

	
91.300

	
65.976

	
62.718

	
58.336

	
2396

	
93.695

	
64.710

	
75.320




	
Std.

	
0.781

	
2.275

	
2.366

	
-

	
-

	
-

	
-

	
6.740

	
-

	
9.120

	
-

	
1.230

	
-

	
8.200

	
4.110

	
3.450




	
Rank

	
3

	
4

	
9

	
13

	
1

	
12

	
14

	
10

	
15

	
6

	
7

	
2

	
16

	
11

	
5

	
8




	
35

	
Mean

	
52.446

	
55.889

	
66.187

	
67.703

	
51.461

	
68.310

	
71.560

	
67.900

	
76.520

	
55.996

	
55.960

	
51.601

	
684.660

	
64.135

	
55.826

	
59.744




	
Best

	
51.010

	
51.005

	
57.259

	
57.448

	
50.479

	
66.960

	
63.021

	
52.537

	
66.745

	
51.083

	
52.311

	
50.471

	
270.330

	
55.503

	
51.633

	
54.136




	
Worst

	
55.444

	
96.301

	
74.095

	
82.737

	
58.819

	
68.720

	
93.850

	
84.440

	
88.76

	
83.887

	
74.479

	
55.883

	
6362

	
82.833

	
67.610

	
71.450




	
Std.

	
1.191

	
12.249

	
4.298

	
-

	
-

	
-

	
-

	
9.150

	
-

	
9.550

	
-

	
1.650

	
-

	
8.650

	
4.120

	
4.010




	
Rank

	
3

	
5

	
10

	
11

	
1

	
13

	
14

	
12

	
15

	
7

	
6

	
2

	
16

	
9

	
4

	
8




	
40

	
Mean

	
53.365

	
55.994

	
75.595

	
69.973

	
51.876

	
74.580

	
74.850

	
77.620

	
80.260

	
57.856

	
57.493

	
52.198

	
1169

	
64.885

	
57.110

	
62.420




	
Best

	
50.868

	
51.025

	
63.269

	
58.650

	
50.602

	
69.795

	
63.550

	
54.549

	
68.231

	
51.523

	
52.208

	
50.561

	
390.620

	
55.737

	
52.618

	
55.092




	
Worst

	
55.475

	
116.195

	
86.613

	
83.263

	
58.427

	
77.060

	
90.700

	
93.260

	
96.420

	
86.663

	
72.069

	
57.724

	
7103

	
84.730

	
67.870

	
72.650




	
Std.

	
1.482

	
16.188

	
5.356

	
-

	
-

	
-

	
-

	
10.900

	
-

	
10.430

	
-

	
2.380

	
-

	
9.410

	
4.550

	
4.540




	
Rank

	
3

	
4

	
13

	
10

	
1

	
11

	
12

	
14

	
15

	
7

	
6

	
2

	
16

	
9

	
5

	
8




	
Average Rank

	
2.000

	
3.375

	
6.625

	
13.125

	
3.375

	
12.500

	
12.875

	
9.375

	
15.000

	
7.250

	
7.250

	
3.375

	
15.625

	
10.250

	
6.875

	
6.625




	
Overall Rank

	
1

	
2

	
5

	
14

	
2

	
12

	
13

	
10

	
15

	
8

	
8

	
2

	
16

	
11

	
7

	
5
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Table 9. Statistical comparison between ExtIPA and other planners for the fifth scenario using the mean best objective function values.






Table 9. Statistical comparison between ExtIPA and other planners for the fifth scenario using the mean best objective function values.





	ExtIPA vs.
	IPA
	ABC
	BA
	BAM
	ACO





	Z-val.
	2.417
	2.417
	2.660
	0.197
	2.660



	 ρ -val.
	0.015
	0.015
	0.007
	0.843
	0.007



	   W +  
	0
	0
	0
	16
	0



	   W −  
	28
	28
	36
	20
	36



	Sign.
	ExtIPA
	ExtIPA
	ExtIPA
	-
	ExtIPA



	ExtIPA vs.
	BBO
	DE
	ES
	FA
	GA



	Z-val.
	2.660
	2.660
	2.660
	2.660
	2.660



	 ρ -val.
	0.007
	0.007
	0.007
	0.007
	0.007



	   W +  
	0
	0
	0
	0
	0



	   W −  
	36
	36
	36
	36
	36



	Sign.
	ExtIPA
	ExtIPA
	ExtIPA
	ExtIPA
	ExtIPA



	ExtIPA vs.
	MFA
	PBIL
	PSO
	SGA
	PGSO



	Z-val.
	0.328
	2.660
	2.660
	2.660
	2.660



	 ρ -val.
	0.742
	0.007
	0.007
	0.007
	0.007



	   W +  
	15
	0
	0
	0
	0



	   W −  
	21
	36
	36
	36
	36



	Sign.
	-
	ExtIPA
	ExtIPA
	ExtIPA
	ExtIPA
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Table 10. Statistical comparison between ExtIPA and other planners for the fifth scenario using the best objective function values.
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	ExtIPA vs.
	IPA
	ABC
	BA
	BAM
	ACO





	Z-val.
	2.153
	2.417
	2.660
	0.328
	2.660



	 ρ -val.
	0.031
	0.015
	0.007
	0.742
	0.007



	   W +  
	1
	0
	0
	15
	0



	   W −  
	27
	28
	36
	21
	36



	Sign.
	ExtIPA
	ExtIPA
	ExtIPA
	-
	ExtIPA



	ExtIPA vs.
	BBO
	DE
	ES
	FA
	GA



	Z-val.
	2.660
	2.660
	2.660
	2.660
	2.660



	 ρ -val.
	0.007
	0.007
	0.007
	0.007
	0.007



	   W +  
	0
	0
	0
	0
	0



	   W −  
	36
	36
	36
	36
	36



	Sign.
	ExtIPA
	ExtIPA
	ExtIPA
	ExtIPA
	ExtIPA



	ExtIPA vs.
	MFA
	PBIL
	PSO
	SGA
	PGSO



	Z-val.
	0.328
	2.660
	2.660
	2.660
	2.660



	 ρ -val.
	0.742
	0.007
	0.007
	0.007
	0.007



	   W +  
	15
	0
	0
	0
	0



	   W −  
	21
	36
	36
	36
	36



	Sign.
	-
	ExtIPA
	ExtIPA
	ExtIPA
	ExtIPA
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Table 11. Statistical comparison between ExtIPA and other planners for the fifth scenario using the worst objective function values.
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	ExtIPA vs.
	IPA
	ABC
	BA
	BAM
	ACO





	Z-val.
	2.153
	2.417
	2.660
	0.328
	2.660



	 ρ -val.
	0.031
	0.015
	0.007
	0.742
	0.007



	   W +  
	1
	0
	0
	15
	0



	   W −  
	27
	28
	36
	21
	36



	Sign.
	ExtIPA
	ExtIPA
	ExtIPA
	-
	ExtIPA



	ExtIPA vs.
	BBO
	DE
	ES
	FA
	GA



	Z-val.
	2.660
	2.660
	2.660
	2.660
	2.660



	 ρ -val.
	0.007
	0.007
	0.007
	0.007
	0.007



	   W +  
	0
	0
	0
	0
	0



	   W −  
	36
	36
	36
	36
	36



	Sign.
	ExtIPA
	ExtIPA
	ExtIPA
	ExtIPA
	ExtIPA



	ExtIPA vs.
	MFA
	PBIL
	PSO
	SGA
	PGSO



	Z-val.
	0.328
	2.660
	2.660
	2.660
	2.660



	p-val.
	0.742
	0.007
	0.007
	0.007
	0.007



	   W +  
	15
	0
	0
	0
	0



	   W −  
	21
	36
	36
	36
	36



	Sign.
	-
	ExtIPA
	ExtIPA
	ExtIPA
	ExtIPA
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Table 12.   S r   and   M e   values of ExtIPA, IPA, and ABC for the fifth scenario.






Table 12.   S r   and   M e   values of ExtIPA, IPA, and ABC for the fifth scenario.





	
D

	
ExtIPA

	
IPA

	
ABC






	
5

	
   S r  

	
100.000

	
100.000

	
100.000




	
   M e  

	
103.920

	
217.454

	
210.474




	
10

	
   S r  

	
100.000

	
100.000

	
100.000




	
   M e  

	
308.170

	
1324.990

	
850.474




	
15

	
   S r  

	
100.000

	
100.000

	
100.000




	
   M e  

	
782.190

	
2049.330

	
2037.113




	
20

	
   S r  

	
100.000

	
100.000

	
100.000




	
   M e  

	
1244.450

	
2609.247

	
3946.557




	
25

	
   S r  

	
100.000

	
98.990

	
61.856




	
   M e  

	
1885.310

	
3889.194

	
5435.733




	
30

	
   S r  

	
100.000

	
98.990

	
5.155




	
   M e  

	
2887.850

	
3904.888

	
5923.000




	
35

	
   S r  

	
95.000

	
86.000

	
0.000




	
   M e  

	
3465.211

	
4305.440

	
-




	
40

	
   S r  

	
90.000

	
90.000

	
0.000




	
   M e  

	
4147.200

	
4380.840

	
-
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