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Abstract: This paper considers a construction procedure of a satellite reference angular motion in the
vicinity of an unstable gravitational equilibrium position. The satellite is stabilized on the reference
trajectory by the magnetic coils. The problem is solved in several stages. An optimization problem to
be solved by the particle swarm optimization method is formulated at each stage. Cost functions
are based on the linearized model analysis. The main stage is the construction of a special reference
motion, which provides the minimum control torque projection on the geomagnetic induction vector.
Optimal geomagnetic field dipole approximation for a given time interval is considered to reduce
tracking errors. The paper compares combinations of different cost functions in terms of the terminal
attitude accuracy in the presence of perturbations.

Keywords: attitude control; magnetic control; three-axis stabilization; periodic motion; disturbance;
particle swarm optimization; Floquet theory

1. Introduction

The ability to formulate and formalize correctly is almost half of the solution of
any problem. Formalization of the problem—that is, the translation from the “human”
language into the language of mathematics—can be proposed in several ways. For example,
in the construction and tracking of trajectories for robots, minimization problems utilize
cost functions that describe the modulus of the position difference, integral difference
characteristic, root-mean-square deviation, or more complicated ones, as in [1–5]. These
cost functions characterize the position error in different ways. It is important to establish
which cost function in each specific task provides the best formalization, the best result,
and why.

This paper utilizes an active magnetic attitude control system (MACS) to provide
three-axis spacecraft (SC) stabilization. This problem was proposed in [6,7] and is widely
considered today. The MACS has low power consumption and is easy to manufacture. It
is well suited to reduce the cost of missions and makes SC hardware simpler and more
reliable [8,9]. This is necessary due to the growth in the number of space-related scientific
and applied problems in various industries, as well as educational and new technology
demonstration projects. However, the MACS has a significant drawback: It is impossible
to realize the component of the required control torque directed along the geomagnetic
induction vector B. Many works combine the use of the magnetic control and other
actuators and concepts to bypass this limitation. For example, [10,11] proposed a method
for spacecraft attitude stabilization that simultaneously uses a magnetic attitude control
system and the electrodynamic effect of the influence of the Lorentz forces.

However, as the satellite moves along the orbit, the vector B’s direction changes, so
in general the system is controllable [12,13]. The Lyapunov feedback law is usually used
when constructing a control using only an MACS. The main problem here is the correct
choice of the control gains. The papers [14–18] offer different solutions. However, even the
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most accurate selection of the control gains does not allow a simple feedback law to provide
effective suppression of local disturbances. This results in a low stabilization accuracy,
which is expected and flight-proven [19] to be around 10–20 degrees.

In some papers, certain modes of motion that are fully controlled by the MACS are
considered, and then the corresponding control law is constructed and its performance
is proven. In [20] the possibility of constructing an oscillatory control is studied so that a
satellite with only an MACS can provide complete control along three axes, regardless of the
position of the satellite. For this purpose, Lie-bracket-based controls are being considered.
In [21], a proof of global exponential stability is obtained for the magnetic control, which
stabilizes the satellite in the desired rotation around the main axis of inertia. The paper [22]
presents a spin-stabilization algorithm for an axisymmetric spacecraft using only an MACS.
It is shown that one magnetorquer that is perpendicular to the spin axis is enough to
stabilize the satellite in the inertial space, and that the satellite’s motion remains stable even
with control outages. The paper [23] proposes a modification of the B-dot magnetic control
strategy that allows the satellite to control the rotation rate. A Lyapunov function is used to
prove the asymptotic stability in the spin acquisition phase. Analytical exact solutions of
differential equations of the dual-spin spacecraft angular motion under the action of the
magnetic restoring torque are obtained in [24].

The paper [25] proposes a method to construct a special reference angular trajectory
by minimizing the root-mean-square deviation of the control torque projection onto the
geomagnetic induction vector. When the projection is equal to zero, the trajectory is
completely controllable, which minimizes the reference angular motion tracking errors.
The construction of the trajectory in [25] is performed in a simplified model; in particular,
there are no disturbances, and the direct dipole model is used to describe the geomagnetic
field. This adversely affects the attitude accuracy in the full model.

The paper [26] describes an alternative approach of a reference trajectory construction.
The quadratic programming problem is formulated for the trajectory coefficients under the
condition that the projection of the control torque on the geomagnetic induction vector is
equal to zero. The constraint is linearized assuming that the trajectory angles are small.
In the case of linear systems, the resulting trajectory is the best, since it is completely
controllable. However, its application for the nonlinear model provides worse results.

This paper proposes a number of alternative cost functions based on the analysis
of a linearized model of the angular motion. In [25], the cost functions were chosen
empirically. The innovation of this article is a justification for the choice of cost functions
using the Floquet theory. According to this procedure, new cost functions were derived,
which resulted in better and more reliable results. In addition, the problem of optimal
approximation of the geomagnetic field model for a given time interval is posed. These
problems, similarly to [25], are solved using the particle swarm optimization method
(PSO) [27–29]. This method is based on a decision-making model of particle motion in a
search for the best solution to the optimization problem. Each particle computes the cost
function value for its position in the search space of the problem parameters and receives
the information about possible best solutions from its neighbors. This method effectively
handles cost functions that cannot be represented explicitly and, therefore, cannot be
optimized with gradient methods.

An extensive numerical simulation is carried out with various external disturbances
in the full model, taking into account the inaccuracy of knowledge of the spacecraft’s
inertia tensor. The statistical data of the attitude accuracy errors for different cost function
combinations are analyzed in order to understand how external disturbances and inaccurate
information about the parameters of the satellite affect the actuated motion.

2. Problem Statement

The satellite motion in a circular orbit is considered. It is affected by the gravita-
tional, aerodynamic, and disturbing torques, with the latter having a random nature. The
spacecraft should be stabilized in an unstable equilibrium position in the gravitational field.
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2.1. Equations of Motion

The following coordinate systems are used:

1. OX1X2X3 is the inertial frame J2000 (IF), the axis OX3 is co-directed with the axis
of rotation of the Earth, OX1 is directed to the point of the vernal equinox, and the
second axis completes the system to the right triple;

2. OY1Y2Y3 is the orbital frame (OF), the OY3 axis is directed along the SC radius vector,
OY2 coincides with the normal to the satellite orbit, and the third axis OY1 comple-
ments the right-hand frame;

3. Oxyz is the reference frame (RF), which describes the required satellite attitude trajectory;
4. Oξης is the satellite-fixed frame (SF); its axes coincide with the principal central axes

of inertia.

Denote the corresponding direction cosine matrices used in the work as follows:

OF A→ BF, OF C→ RF, RF D→ BF.

The direction of the RF axes relative to the OF (Figure 1) is defined by the attitude
angles α, β, γ (rotation sequence 2-3-1), and matrix C:

C =

 cos α cos β sin β − sin α cos β
− cos α sin β cos γ + sin α sin γ cos β cos γ sin α sin β cos γ + cos α sin γ
sin α cos γ + cos α sin β sin γ − cos β sin γ − sin α sin β sin γ + cos α cos γ

. (1)
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Figure 1. Euler’s angles (2-3-1). OXYZ OY,α→ OX′Y′Z′
OZ′ ,β→ OX′′Y′′ Z′′

OX′′ ,γ→ OX′′′Y′′′ Z′′′ ≡ Oxyz.

This rotation sequence is used because it does not have singularity in the desired
mode: α = 0, β = 0, γ = 0.
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The satellite is a rigid body, and its angular motion is described by Euler’s equation in
the SF and kinematic relations in the form of quaternions, where the quaternion Q = (q0, q)
and the absolute angular velocity of the spacecraft ωabs is

J
.
ωabs +ωabs × Jωabs = Mgrav + Maero + Mctrl + Mdist,

.
q0 = − 1

2 qTωabs,
.
q = 1

2 (q0ωabs + q×ωabs),

(2)

where J is the satellite’s inertia tensor, Mgrav is the gravitational torque, Maero is the aero-
dynamic torque, Mctrl is the control torque, and Mdist is the external disturbing torque. In
accordance with [25], the expression for the absolute angular velocity ωabs is

ωabs = A(ωOF
0 +ωOF

re f ) +ωrel , (3)

whereωOF
0 = (0,ω0,0)T is theorbitalangularvelocity,ωOF

ref =

0
1
0

 .
α+

sinα
0

cosα

 .
β+

 cosαcos β
sin β

−sinαcos β

 .
γ

is the reference angular velocity, ωrel is the angular velocity relative to the RF, and A is the
direction cosine matrix corresponding to the transition from OF to BF.

The derivative of the absolute angular velocity is

.
ωabs =

.
A(ωOF

0 +ωOF
re f ) +

.
ωrel + A

.
ω

OF
re f . (4)

2.2. Models of External Torques
2.2.1. Gravity Gradient Torque

A Newtonian gravitational field is considered. The gravity gradient torque is

Mgrav = 3ω2
0er × Jer (5)

where ω0 =
√

µ/r3 is the value of the orbital angular velocity, µ is the gravitational
parameter, and er is the unit radius vector direction.

2.2.2. Aerodynamic Torque

The specular–diffuse model is used to describe the aerodynamic effect according
to [30]. The shape of the spacecraft is a parallelepiped; that is, the resulting aerodynamic
torque is the sum of the torques acting on the spacecraft sides facing the incoming flow.
The torque acting on one side is

Maero = ρV2
0

(
(1− ε)J1 + 2εJ2 + (1− ε)

ν

V0
J3

)
, (6)

where ρ is the density of the atmosphere, the model parameter ε ≈ 0.1 is the fraction
of molecules that are reflected specularly, and ν/V0 ≈ 0.1, where ν is the parameter
proportional to the most probable thermal velocity of diffusely reflected molecules, V0
is the value of incoming flow velocity, eV0 is its unit direction vector, rc is the radius
vector from the spacecraft’s center of mass to the center of the considered side, σ is its
surface area, and n is its outer normal unit vector (Figure 2). The expressions for quantities

J1 =
(

eT
V0

n
)

rc × eV0 σ, J2 =
(

eT
V0

n
)2

rc × nσ, and J3 =
(

eT
V0

n
)

rc × nσ are calculated only

when the considered side satisfies the following condition: eT
V0

n > 0; σ is the reference area.
It is worth noting that if one calculates the aerodynamic torque for a spherical body using
the specular–diffuse model (6), then a more traditional expression will be obtained [31].

Maero = −
1
2

ρV2
0 σcD

_
V× b, (7)
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where
_
V is the aerodynamic drag acting on the spacecraft’s side, b is the torque arm, and

cD is the coefficient of drag.
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Figure 2. Side of the satellite facing the incoming flow.

The center of mass is shifted relative to the geometric center by 1 cm along the second
axis of the SF. In this situation, the aerodynamic torque acts as a perturbing one in the
required satellite attitude, so corresponding compensation from the MACS is required.

The total aerodynamic torque acting on the spacecraft consists of three (or fewer)
torques acting on three (or fewer) spacecraft sides facing the incoming flow. The velocity of
the incoming flow is the sum of the spacecraft’s velocity and the velocity of the atmosphere,
which occurs due to the Earth’s rotation

V0 = V−ωE × r, (8)

where r, V are the radius vector and the velocity of the spacecraft, respectively; ωE is the
angular velocity of the Earth’s rotation, |ωE| ≈ 7.29 · 10−5 rad/s.

2.2.3. Magnetic Torque and Geomagnetic Field

The magnetic control torque is

Mmagn = m× B (9)

where m is the spacecraft’s dipole moment and B is the geomagnetic induction vector. This
paper considers the direct and inclined dipole models. In the general case, the following
expression is used to describe the dipole model:

B = −B0

(
k− 3

(
kTr

r

)
r
r

)
, (10)

where B0 = µe/r3, k is the unit vector of the dipole axis, and r = |r|.
The dipole unit vector in the direct dipole model in the IF is kdirect = (0, 0,−1)T . The

inclined dipole unit vector kinclined expression is given in [32].
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2.2.4. Additional External Disturbances

The numerical simulation takes into account the torque of an unknown nature Mdist.
It includes both a constant perturbing torque and a random one. The value |Mdist| is about
10% of the gravitational torque value.

2.3. Control Torque

Equation (2) in the unperturbed case (Mdist = 0) is expressed in the form (11). The
dynamical equation is expanded taking into account the expression for the absolute angular
velocity (4). The kinematic equations are presented in terms of the direction cosine matrices: J

.
ωrel = −ωabs × Jωabs − J

( .
A(ω0 +ωre f )

)
− J
(

A
.
ωre f

)
+ Mgrav + Maero + Mctrl ,

.
A = −[ωabs −Aω0]×A.

(11)

where [a]× is the notation of the cross-product matrix, which is composed of the vector
a = (a1, a2, a3)

T components as follows:

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

. (12)

To ensure the asymptotic stability, the following Lyapunov function is used to construct
a control [33]:

V = 1
2ω

T
relJωrel + ka((1− d11) + (1− d22) + (1− d33)),

ka = const > 0.
(13)

In this case, the expression for the derivative of the Lyapunov function has the form

.
V = ωT

relJ
.
ωrel − ka(ω3,rel(d21 − d21) + ω2,rel(d13 − d31) +ω1,rel(d32 − d23))

= ωT
relJ

.
ωrel + kaω

T
relSd = ωT

rel
(
J

.
ωrel + kaSd

)
,

(14)

where dij represents elements of matrix D (RF → BF), Sd = (d23 − d32, d31 − d13, d12 − d21)
T,

ωrel = (ω1,rel, ω2,rel, ω3,rel)
T, and ka is a scalar positive parameter, [ka] = [N ·m].

For the asymptotic stability, by virtue of the Barbashin–Krasovskii–LaSalle theo-
rem [34], it is necessary to ensure the non-positive derivative of the candidate Lyapunov
function due to the equations of motion. So, it suffices to keep the equality

.
V = ωT

rel

(
−ωabs × Jωabs − J

( .
A(ω0 +ωre f )

)
− J
(

A
.
ωre f

)
+ Mgrav + Maero + Mctrl + kaSd

)
≤ 0 (15)

Introducing a positive scalar parameter kω = const > 0, one rewrites this condition in
the form

−ωabs × Jωabs − J
( .

A(ω0 +ωre f )
)
− J
(

A
.
ωre f

)
+ Mgrav + Maero + Mctrl + kaSd = −kωωrel . (16)

Taking into account (11) and (16), the control torque has the form

Mctrl = −kωωrel − kaSd +ωabs × Jωabs + J
.

A(ω0 +ωre f ) + JA
.
ωre f −Mgrav −Maero. (17)

The right side here depends on the reference trajectory parameters and the control
gains kω and ka.

Substituting ωrel = (0, 0, 0)T and A = C, D = E, where E is the identity matrix, into
Equation (17) provides

Mctrl = ωabs × Jωabs − J
[
Cωre f

]
×

C + JC
.
ωre f −Mgrav −Maero. (18)



Aerospace 2023, 10, 468 7 of 22

This control ensures the spacecraft’s motion along the reference trajectory in the
unperturbed case.

2.4. Magnetic Control Torque

It is impossible to produce the control torque component along the geomagnetic
induction vector. The torque implemented by the magnetic coils differs from Equation (17)
(Figure 3) and is calculated in the SF as follows:

Mmagn = m×ABmagn =

(
ABmagn ×Mctrl

Bmagn2

)
×ABmagn = Mctrl −

ABmagn

(
ABT

magnMctrl

)
B2

magn
, (19)

where m = ABmagn ×Mctrl/B2
magn is the satellite’s dipole moment, and Bmagn is the geo-

magnetic induction vector given in the OF.
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The second term in (19) in the general case is perturbing. It directly affects the attitude
accuracy, but it is usually ignored when the control is synthesized. In contrast, as shown
in [25], a special reference trajectory in the neighborhood of the required attitude that
minimizes this term is constructed. In other words, minimization of the control torque
projection onto the geomagnetic induction vector is carried out. The subject of this paper
is the reasonable cost function selection for this problem and for the one of the optimal
approximation of the geomagnetic field model on a given time interval.

3. Reference Trajectory Construction

Below, we briefly describe the PSO method and a two-stage approach proposed in [25].
At the first stage, an algorithm for constructing a special angular trajectory is proposed.
The projection of the control torque on the geomagnetic induction vector is minimal on this
trajectory. Then, to ensure the asymptotic stability, the control torque (17) with optimal
control gains in some sense is constructed. Both stages utilize the global optimization
method PSO.

3.1. Particle Swarm Optimization Algorithm

PSO is an evolutionary optimization algorithm [28,29] based on a decision-making
model of particles’ motion in a search for the best solution to the optimization problem.
Each particle computes the cost function value for its position in the search space of
the problem parameters and receives the information about possible best solutions from
its neighbors.
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The optimization problem for the swarm is

Φ
(
xp,i
)
→
U

min, (20)

where xp,i is the position of the particle p at iteration (generation) i, which corresponds to
the potential best value of the cost function, while U is the given search area.

At each iteration, the particles chose their motion direction on the next step based on
their best position and the best position of the entire swarm (or some neighborhood of the
particle)—that is, the best position ever found among all particles (or among the neighbors
of the considered particle).

xp,i = xp,i−1 + vp,i,

vp,i = cinvp,i−1 + ccog

(
xbest,p,i−1 − xp,i−1

)
+ csoc

(
xlocal best,p,i−1 − xp,i−1

)
, (21)

where vp,i is the velocity of the particle p at iteration i.
The first term in (21) is the inertial velocity component. It is responsible for the desire

of the particle to continue moving in the same direction as in the previous step. The second
is the cognitive velocity component, which represents the particle’s tendency to return to
its best position. The last one is the social velocity component. It shows the overall strive
of the swarm or some part of the swarm to move to the best position ever found. The
coefficients cin, ccog, csoc are set randomly in a certain range to vary the contribution of
each component.

When all particles gather in the vicinity of the best position of the swarm, and the
value of the cost function derivative is small for several iterations in a row, we can assume
that the algorithm has found the optimal solution.

3.2. Trajectory Parametrization

The first stage of solving the problem is the construction of a reference trajectory. The
control torque calculated by (18) should have a minimum projection on the geomagnetic
induction vector during the spacecraft’s motion along the trajectory. This projection serves
as the base for the cost function introduction for the optimization problem. The trajectory
is the solution for the problem. However, trajectory parametrization should be established
first. Its parameters serve as the particles’ coordinates in the PSO routine.

The reference trajectory is constructed in a simplified model of satellite motion. The
unknown disturbance torque is zero, the geomagnetic field model is a direct dipole, and
the aerodynamic torque (6) is constant in a small vicinity of the equilibrium position. This
makes all torques on the right side of the first equation of system (2) periodic; consequently,
the reference trajectory is also sought as a periodic function. In [25], the reference trajectory
is constructed in the following form:

α = a1 sin u + a2 cos u + a3 sin 2u + a4 cos 2u,

β = b1 sin u + b2 cos u + b3 sin 2u + b4 cos 2u,

γ = g1 sin u + g2 cos u + g3 sin 2u + g4 cos 2u,

(22)

where u = ω0t is the argument of latitude, while ai, bi, gi (i = 1, 2, 3, 4) are 12 parameters
of the reference angular trajectory. The angles α, β, γ correspond to the direction cosine
matrix C. This parameterization uses two eigenfrequencies as a reasonable compromise
between the accuracy and the computational complexity. The orbital frequency corresponds
to the frequency of the gravitational torque variation. The double orbital frequency is
used, since the geomagnetic induction vector in the direct dipole model is a π-periodic
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function [32,35]. The optimal trajectory coefficients ai, bi, gi (i = 1, 2, 3, 4) are found using
the PSO with the cost function of the form

Φtrajectory
0 =

1
N

√√√√ N

∑
n=0

ϕ2
n → min, ϕn =

(
MT

ctrlABmagn

Mctrl Bmagn

)
n

, (23)

where ϕn is the relative value of the control torque projection on the geomagnetic induction
vector. It is calculated directly at each time step n = 0, 1, . . . , N, where N is the total number
of steps.

3.3. Control Gains Searching

At this stage, the external disturbances and various model inaccuracies are also not
taken into account. Moreover, it is assumed that at the initial moment the SC is already
on the reference trajectory found in Section 3.2—that is, A = C, D = E, where E is
the identity matrix, and ωrel = (0, 0, 0)T . Thus, the initial conditions of the spacecraft
coincide with the initial parameters of the trajectory—that is, α(0), β(0), γ(0)—and the
initial angular velocity ωabs(0). The trajectory and the velocity are given by the parameters
ai, bi, gi (i = 1, 2, 3, 4) and Expressions (3) and (22), respectively. The search for the optimal
gains kω and ka in the Expression (17) for the control torque calculation is also performed
by the PSO.

Here the control torque (17) depends on the phase variables (the state vector), so it
cannot be calculated directly. The phase variables are obtained by the numerical integration
of the equations of motion (2), while taking into account the control torque (19) implemented
by the magnetic system.

The empirically selected cost function at this stage in [25], which is a derivative of the
cost function used at the first stage (Formula (17)), is

Φgains
0 =

(
N

∑
n=1

((
ωT

relABmagn

)
·
(

MT
ctrlABmagn

))2
+

N

∑
n=1

((
ST

d ABmagn

)
·
(

MT
ctrlABmagn

))2
)
→ min. (24)

Although this cost function gives decent results, there was a lack of theoretical basis.
In this paper, the choice of the cost functions is based on the Floquet theory and supported
by massive numerical simulation.

4. Optimization Problems Statement

The reference trajectory in [25] is constructed in a simplified satellite motion model.
In particular, there are no perturbations, and the direct dipole model is used. In this
paper, the same motion model is used, but a number of alternative cost functions are
proposed to formalize the problem of “minimizing the projection of the control torque
on the geomagnetic induction vector”. In this case, they are based on the analysis of
the linearized model of the angular motion. Additionally, the problem of the optimal
approximation of the geomagnetic field for a given time interval is solved.

The Euler’s dynamics Equation (11), taking into account (17) and (19), is

J
.
ωrel = −kωωrel − kaSd −

Bmagn

(
BT

magnMctrl

)
B2

magn
. (25)

The linearized form of Equation (25) in the vicinity of the constructed reference
motion is

.
y = G(t)y + f (t), (26)

where y = (ωrel , S)T =
(
(ωrel,1, ωrel,2, ωrel,3)

T , (γrel , αrel , βrel)
T
)T

; G(t) is a 6× 6 matrix,
f (t) is a 6× 1 vector, and both are periodic. During the linearization in the vicinity of the
reference motion, it is assumed that there are no unaccounted external disturbing torques,
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the geomagnetic field model is a direct dipole, and the aerodynamic torque is constant in a
small neighborhood of the equilibrium position. This determines the period of G(t) and
f (t), which is T = π/ω0.

The matrix G(t) of System (26) consists of four 3× 3 blocks

G(t) =
(

J−1Gω J−1GS
E3×3 03×3

)
, (27)

where E3×3 is the 3× 3 identity matrix, 03×3 is a zero matrix, and the 3× 3 matrices Gω and
GS are obtained by grouping the corresponding terms at ωrel and S, respectively. Detailed
expressions for them are given in [25].

The expression for f (t) includes terms that contain neither ωrel nor S:

f (t) = −Cb
(

CbTM0
ctrl

)
= −

CBmagn

Bmagn

(
CBT

magnM0
ctrl

Bmagn

)
. (28)

This is the control torque component along the geomagnetic induction vector.
The homogeneous system corresponding to (26) is

.
x = G(t)x. (29)

According to [36], if the eigenvalues of the monodromy matrix (multipliers of System (29))
lie inside the unit circle

(
|λi| < 1, i = 1, 6

)
, then System (29) is asymptotically stable. This

means that all of its solutions are asymptotically stable. It is also stated in [36] that if
a trivial solution x0 ≡ 0 of a linear homogeneous system (29) is asymptotically stable
for t→ ∞, then the corresponding linear inhomogeneous System (26) is asymptotically
stable. In addition, if all multipliers of the monodromy matrix of (29) differ from unity
(λi 6= 1)—which is true for the case of the asymptotically stable systems of differential
equations—then (26) has a unique T-periodic solution in the following form:

y(t) = X(t)[E− X(T)]−1


t∫

0

X−1(τ) f (τ)dτ + X(T)
T∫

t

X−1(τ) f (τ)dτ

, (30)

where X(t) is the fundamental matrix of System (29) normalized at t = 0. In the case when
System (26) is asymptotically stable, all of its solutions are asymptotically stable. Then, the
periodic solution is asymptotically stable too, and all other solutions converge to it. Thus,
all solutions converge to Solution (30), which determines the motion in the steady state.

It can be seen that the oscillation amplitude in (30) depends on the inhomogeneous
term f (t), the fundamental matrix and, consequently, on the system matrix G(t). The matrix
G(t) depends on both the reference motion and the control gains, while the inhomogeneous
term f (t) depends only on the reference motion. Thus, it is possible to set and solve two
independent optimization problems: the first is the minimization of f (t) by selecting the
optimal reference motion, and the second is the search for optimal control gains, taking
into account the found reference angular trajectory.

4.1. Reference Trajectory Optimization Problem

It is necessary to reduce the oscillation amplitude of the resulting periodic solution (30)
in order to minimize the tracking errors. So, the first task is the minimization of the
value (28). This is the stage of the reference trajectory construction.

Table 1 shows three expressions for the cost functions that formalize this problem,

where ‖x‖2 :=
√

x2
1 + . . . + x2

n is the Euclidian norm, and ‖x‖∞ := max
i
|xi| is the infin-

ity norm.
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Table 1. Expressions for the cost functions in the problem of the reference trajectory construction.

φ1 φ2 φ3

‖CBmagn
Bmagn

(
CBT

magnM0
ctrl

Bmagn

)
‖

2

CBT
magnM0

ctrl ‖CBmagn
Bmagn

(
CBT

magnM0
ctrl

Bmagn

)
‖

∞

The optimization problems for this stage are

Φtrajectory
k = max

n
|φk|n → min, k = 1, 2, 3, (31)

where n = 0, 1, 2, . . . , N, N = T/∆t is the number of integration steps, T is a period, and ∆t
is a time step. Using the PSO with the cost functions given in Table 1, we can find the optimal
coefficients of the reference trajectory in the form (22). Recall that when constructing the
trajectory, the direct dipole model is used and there are no external perturbations.

4.2. Control Gains Optimization Problem

Ensuring the asymptotic stability is the goal of the Lyapunov control (17). It is achieved
by the proper selection of the control gains ka, kω. In order to find the optimal coefficients,
we also use the PSO and formulate an optimization problem with the following cost function:

Φgains = max
i

(|λi|)→ min, (32)

where λi, i = 1, 6 are the eigenvalues of the monodromy matrix of System (29). However,
only those pairs of control gains ka, kω that lead to the condition |λi| < 1 are suitable. In
this case, the trivial Solution (30) will be asymptotically stable.

4.3. Ideal Case Numerical Simulation

Reference trajectories are found with each of the cost functions proposed in Table 1 for
two heights h = 550 km and h = 650 km. The density of the atmosphere at these altitudes
differs by an order of magnitude. To evaluate the final attitude accuracy in steady state
in the OF, which is determined by the amplitude of the periodic Solution (30), the initial
conditions of the periodic solution are calculated by the following formula [36]:

y(0) = [E− X(T)]−1X(T)
T∫

0

X−1(τ) f (τ)dτ. (33)

Thus, the spacecraft is “placed” directly on the trajectory, brushing aside the process
of convergence onto it.

Figure 4 shows three found angular trajectories relative to the OF for each height. The
final attitude accuracy in the case of an altitude of h = 550 km for all three cost functions
is approximately the same and is about ±2◦, and in the case of an altitude of h = 650 km
the best accuracy is obtained by optimizing with the third cost function Φtrajectory

3 and
equals ±0.4◦. Thus, the tracking accuracy of the reference trajectory is worse at higher
atmospheric densities.

At this stage, it is impossible to establish which cost function is better for each height,
since they all show similar final accuracy. However, their behavior can differ significantly
when adding perturbations. The final accuracy is affected by unaccounted perturbations,
such as inaccurate information about the satellite’s inertia tensor or uncertainty about the
density of the Earth’s atmosphere. Therefore, before choosing one of the cost functions, it is
necessary to analyze the sensitivity of the found reference trajectories to the unaccounted
perturbations in each specific case.
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5. The Influence of Disturbances

The Lyapunov-based control (17) constructed at the second stage provides the asymp-
totic stability only for the solutions of the unperturbed Equation (26). Therefore, an accuracy
degradation in the full model is expected. This can be estimated using the linearized equa-
tions, which in this case have the form

.
y = (G(t) + δG(t))y + ( f (t) + δ f (t)), (34)
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where matrix δG(t) and vector δ f (t) appear due to the disturbances. These disturbances
include the inaccuracy of knowledge of the Earth’s atmosphere’s density and the space-
craft’s inertia tensor, geomagnetic field model δB perturbation, and various other random
disturbing torques Mdist. It is not possible to take these perturbations into account at the
trajectory construction and gains selection stages. Unfortunately, the reference trajectory
tracking accuracy usually degrades due to δ f (t), and in some cases, instability occurs due
to δG(t). The second negative effect can be removed by shifting the obtained control gains
“deeper” into the stability region. This means choosing the coefficients that are far away
from the boundary of the stability region. Trajectory tracking error reduction is possible
by choosing a description of the geomagnetic field that is closer to the inclined dipole and
using it at the trajectory construction stage. The inclined dipole model, which is used in the
numerical simulation, is considered to be the “real” field. The direct dipole model is used
during the control construction process. It is considered to be the approximate simplified
field representation. The difference between them affects the control performance. How-
ever, this effect can be minimized by adjusting the simplified dipole model and using it
during the control construction. The deviation of the geomagnetic induction vector in the
inclined dipole model Binclined

magn from the model used in the construction steps Bmagn is

δB = Binclined
magn − Bmagn. (35)

Consider the expression for the right side of Equation (34), taking into account pertur-
bations only from the inaccuracy of the magnetic field. By analogy with (27), the matrix
G(t) + δG(t) of the perturbed System (34) has a block form and includes terms for the

corresponding components of the state vector
(
ωT

rel , ST
)T

. The non-homogeneous part
f (t) + δ f (t) does not contain these quantities; its first term coincides with (28), and the
second one is

δ f (t) ≈ −2
CBmagn(CBT

magnM0
ctrl)

B2
magn

(
BT

magnδB
)

−CδB(CBT
magnM0

ctrl)
B2

magn
− CBmagn(CδBT

magnM0
ctrl)

B2
magn

.
(36)

It depends only on the geomagnetic field model’s inaccuracy at the trajectory construc-
tion and search for control gains stages. In [25], the direct dipole model is used at these
stages—that is, Bmagn = Bdirect

magn in (35).
It is not possible to ensure δB = 0. The inclined dipole model Binclined

magn (t) cannot be
used for the reference trajectory construction, since it is necessary to use only periodic field
models. The direct dipole model is a natural choice for this purpose. However, we can
minimize δ f (t) (36) if a new description of the magnetic field Bmagn = Boblique

magn is used. It
must simultaneously satisfy two requirements:

1. Boblique
magn (t) is a periodic function, with the same period as the direct dipole model;

2. The difference between Boblique
magn (t) and Binclined

magn (t) in a given time interval is in some
sense less than the difference between Bdirect

magn(t) and Binclined
magn (t).

The index “oblique” means the new (desired) dipole model. Essentially, the oblique
dipole is tilted relative to the Earth’s rotational axis but, in contrast to the inclined dipole,
its attitude is fixed in the inertial space. This dipole may provide better approximation
than the direct one by being closer to the “real” inclined dipole (Figure 5). To describe the
geomagnetic induction vector in the general dipole model, Expression (10) is used, which
for the oblique dipole model takes the following form:

Boblique
magn = −B0

koblique − 3


(

koblique
)T

r

r

 r
r

, (37)
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where koblique = (cos ϕ sin θ, sin ϕ sin θ, − cos θ)T is the unit vector of the oblique dipole
axis, specified using its attitude angles (ϕ, θ) relative to the IF.
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The optimal values of these angles are found using the PSO with a cost function of the
following form:

Φdipole
k = max

n
(δβk)n → min, k = 1, 2, 3, 4, (38)

where the expressions for δβk are given in Table 2, n = 0, 1, . . . , NB, and NB is the averaging
interval expressed in the number of iterations of the numerical simulation of the equations
of motion.

Table 2. Expressions for the cost functions in the problem of approximating the magnetic field.

δβ1 δβ2 δβ3 δβ4

‖Binclined
magn −Boblique

magn ‖2
‖Binclined

magn ‖2

‖Binclined
magn −Boblique

magn ‖∞
‖Binclined

magn ‖∞

‖Binclined
magn − Boblique

magn ‖2
‖Binclined

magn −Boblique
magn ‖∞

‖Binclined
magn ‖2

A correctly chosen interval NB improves the approximation of the magnetic field
compared to the direct dipole. The reference trajectory is constructed for one orbital
revolution. Therefore, the minimum possible interval for the optimal approximation of the
geomagnetic field is also equal to one revolution. That is, it is best to approximate the field
for each consecutive orbit. This requires the trajectory coefficients (with a new field) and
control gains (with a new trajectory) to be recalculated for each orbit (Figure 6). This comes
at significant computational costs of optimization problems, since all three optimization
problems must be solved at each time interval to improve the final attitude accuracy. In
addition, frequent changing of the reference trajectory leads to the inevitable transient
processes. Moreover, the settling time allocated for each reference trajectory may not even
be enough to achieve it before switching to the new reference trajectory. Therefore, the
averaging interval should be more than one orbit and less than a 24 h interval, because the
direct dipole model is an averaging of the inclined dipole over 24 h.
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This paper considers the averaging intervals equal to six orbital revolutions NB = 6N.
The trajectories are constructed using the PSO for different sets of cost functions given in
Table 3. The cost function set № 1.2, for example, means that the cost function Φtrajectory

1 is

chosen to construct the reference trajectory and the cost function Φdipole
2 is chosen for the

approximation of the geomagnetic field dipole model. The cost function for the control
gains optimization problem in all sets is the same Φgains (32).

Table 3. Sets of optimization problems for the reference trajectory construction.

Φtrajectory
1 Φtrajectory

2 Φtrajectory
3

Direct dipole № 1.0 № 2.0 № 3.0
Φdipole

1
№ 1.1 № 2.1 № 3.1

Φdipole
2

№ 1.2 № 2.2 № 3.2

Φdipole
3

№ 1.3 № 2.3 № 3.3

Φdipole
4

№ 1.4 № 2.4 № 3.4

Figure 7 shows the resulting reference trajectories for each pair of optimization prob-
lems for an altitude of 650 km. Each curve shows the change in the worst tracking angle of
the reference trajectory over a six-orbit interval for each optimization case. The perturbation
in these examples is only the geomagnetic field model perturbation at the stage of the
trajectory construction.

Figure 7 shows that it is not obvious which set of cost functions is the best, especially
when numerically simulated in the full model. It is necessary to analyze the system behavior
under various perturbations.
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Figure 7. Angular trajectories (in the OF) in the inclined dipole models for various cost functions at
an altitude of 650 km, 6-orbit magnetic field approximation: (a) set of optimization problems for the
reference trajectory construction with Φtrajectory

1 and different dipole models; (b) set of optimization

problems for the reference trajectory construction with Φtrajectory
2 and different dipole models; (c) set

of optimization problems for the reference trajectory construction with Φtrajectory
3 and different

dipole models.

The inaccurate knowledge of the inertia tensor has the most significant role in the
tracking errors of the reference trajectory and can even lead to instability. To compare the
tracking accuracy of the reference trajectories in the steady state in numerical simulation,
we consider different perturbations of the inertia tensor:

δJ = diag(δJ1, δJ2, δJ3), (39)

where δJi ∈ [0.95, 1.05], i = 1, 3. Thus, the perturbed inertia tensor is

Jdist = JδJ, (40)

where J = diag(J1, J2, J3) is the unperturbed spacecraft inertia tensor.
Almost 10,000 simulation runs were performed. Figure 8 shows the distribution of the

worst values of the reference trajectory tracking accuracy—that is, the maximum relative
attitude deviation in all angles αrel , βrel , γrel for each Jdist for the orbit height 650 km. The
inaccurate knowledge of the inertia tensor greatly degrades the attitude accuracy fairly
often. However, the sets of cost functions № 1.2 and № 1.4 demonstrate acceptable results.
The final attitude accuracy remains about 3–5 degrees for any perturbations of the inertia
tensor within 5% of the nominal values of the inertia moments.
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6. Full Model Numerical Simulation

As the numerical example, a reference trajectory for three intervals of six orbital
revolutions each is constructed, so the total simulation time is T = 18T0 ≈ 30 h. Each
interval has its own oblique dipole axis koblique. The cost function set № 1.4 is used. Figure 9
shows the result obtained using the described three-stage approach (Figure 6). The attitude
accuracy in this case is 1.5 degrees.
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The numerical simulation was carried out with the following initial conditions and
disturbances (Table 4) and is shown in Figure 10. The final attitude accuracy in a steady
state is about ±2◦. Figure 11 shows the relative angular velocity ωrel . Figure 12 shows the
satellite dipole moment m. Thus, the correct selection of the cost functions makes it possible
to achieve good accuracy both in the presence of external unaccounted disturbances, and
with inaccurate knowledge of the motion models.
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Table 4. Parameters for the numerical simulation.

Name Value

Simulation time T = 18T0 ≈ 30 h,
SC initial angular velocity ωabs = (1, 2, 3)T · 10−3 rad/s

SC initial attitude
αrel = 55◦

βrel = 55◦

γrel = 55◦

Magnetic field model IGRF
Inaccuracy of knowledge of the density of
the atmosphere 20%

Inaccuracy of knowledge of the SC inertia tensor 5%
External random disturbances |Mdist| = 10−9 N ·m

7. Conclusions

The paper analyzes the factors that affect the attitude accuracy when solving the
problem of a three-axis magnetically controlled motion of a spacecraft. In addition to the
obvious impact of external unaccounted perturbations on the final accuracy, it is shown
that in some cases the “unconscious” choice of the cost functions can lead to a strong
deterioration in accuracy. Correct problem statement and formalization is an important
part of any problem’s solution, and this can greatly affect the result. Numerical analysis of
the selected cost functions, together with the analytical prerequisites for its selection, should
help to improve the result. In this work, two sets of cost functions are identified, which
provide good accuracy in the steady state (about 2 degrees), despite all of the perturbations
and inaccuracies in the knowledge of the models and the parameters of the SC.

Author Contributions: Conceptualization, D.R. and S.T.; investigation, S.T. and A.O.; methodology,
S.T. and A.O.; verification, S.T.; results analysis, S.T. and A.O.; formal analysis, D.R.; software
implementation, A.O.; writing—original draft preparation, A.O.; writing—review and editing, D.R.
and S.T. All authors have read and agreed to the published version of the manuscript.
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