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Abstract: Skin corrugation and tandem configuration are two distinct features that characterize
the flow around dragonfly wings. In contrast to the smooth airfoil and single pair of wings of
conventional airplanes, corrugated surfaces and tandem wings influence aerodynamics both locally
and globally. In this article, several kinds of doubly- tandem wing configurations were designed, then
computational investigations based on wind tunnel experiments were conducted to investigate the
aerodynamic characteristics of these models. Computational simulations using in-house codes were
carried out with a freestream velocity of 20 m/s at an angle of attack from −4◦ to 16◦. Based on these
computational results, the effects of airfoil thickness, surface waviness and hindwing decalage on
aerodynamic characteristics were compared and presented quantitatively. Final results demonstrate
that a tandem wing configuration could eliminate separation close to the trailing edge at angles of
attack 8◦~10◦, or delay the trailing edge separation at angles of attack greater than 10◦. Thus, the
aerodynamic efficiency of tandem configurations could provide significant improvement compared
to configurations with a single wing. The greatest percentage of aerodynamic efficiency improvement
for a tandem thick configuration compared to a single thick configuration is 1376% at angle of attack
0◦. Surface waviness will stall at a lower angle of attack, but will gain some aerodynamic benefit
from the standing separated flow. Hindwing decalage has obvious lift enhancement for the tandem
configuration. Therefore, it is concluded that the tandem configuration is attractive and promising
for MAVs with flexible structures in the near future.

Keywords: tandem wing; corrugated airfoil; low-Reynolds number flow; lift enhancement; flow
separation

1. Introduction

Natural flyers have been our source of inspiration in man-made aircraft design since
the successful flight of the Wright Flyer, which is heavier than air and marks the beginning
of practically powered airplanes with sustained and controllable flight. In recent years,
birds, bats, and insects have been investigated extensively because of the advent of micro
air vehicles (MAVs) in military and civilian applications [1–5]. In contrast to conventional
airplanes, these MAVs usually operate at a low Reynolds number regime of 105 or lower,
which presents a number of challenging aerodynamic problems such as massive laminar
flow separation and laminar-to-turbulent transition [6–8]. However, for natural flyers
which operate in the same Reynolds number as MAVs, their aerodynamic performances
seem to be superior to these man-made MAVs [6,9]. Therefore, it is urgent to understand
the outstanding aerodynamic performance to provide useful insights in developing a more
efficient and more stable MAV design.
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Dragonflies (see Figure 1) have excellent flying capacity. They are one of the fastest
and most maneuverable flying insects, so it is an important imitation object in MAV de-
sign [9,10]. The tandem configuration and wing corrugation are two distinct features of
dragonflies compared to traditional man-made aircraft [9]. So in this paper, the possibility
of using tandem wing and corrugation on new concept MAVs to improve their aerody-
namic performance compared to traditional aircraft is checked both experimentally and
computationally.
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For man-made flight vehicles, they generally have one pair of symmetrical wings.
However, for natural flyers, some of them have two pairs of wings, such as dragonflies,
butterflies, or bees, and their flight dynamics are greatly influenced by the wing—wing
interactions. Two pairs of wings could produce a variety of aerodynamic improvements
such as increased lift and thrust, and gust resistance. However, the unsteady flow interac-
tions between two closely situated wings is far more complicated than conventional single
wing [9]. Recently, tandem wing has been extensively studied using experimental [11–14]
and numerical [15–23] methods in order to understand the superior flight performance
of the tandem configuration. Borering et al. [15–17] and Rival et al. [18] investigated the
phase angle and spacing effect on tandem wings numerically. Lian et al. [9] investigated
various phase angles of forewings and hindwings, and the aerodynamic characteristics
of tandem wings under gusty conditions and compared them with isolated wings. They
demonstrated that the gust resistance characteristics of flapping wings in different configu-
rations. Generally, all of these results indicate that tandem configurations could have better
aerodynamic performance with appropriate arrangements.

Dragonfly wings are typical 2-dimensional composite materials in micro-scale (see
Figure 1). The special vein-membrane structure makes the surface of the wing corrugated,
while man-made airplanes always have a smooth wing surface. Various investigations
demonstrate that these corrugated structures improve structural performance [9,24–26],
however, there is not an agreement about the aerodynamic effect of the corrugation. Some
results conclude that the corrugation can increase lift [27], aerodynamic efficiency (defined
as the ration of lift to drag) [28,29], or decrease drag [30], however, other explorations
indicate that the corrugation has no aerodynamic effect and could be replaced directly by a
smooth plate [31–33].

The purpose of this paper was to investigate the possibility of tandem configurations
(see Figure 2 for details) for MAV design, to explain the lift enhancement of the new
concept quantitatively, and then to try to ascertain the effect of airfoil thickness and, the
decalage of the hindwing on the overall aerodynamic characteristics. In addition, the effect
of the surface corrugation has been simulated numerically, considering that the surface
of the flexible wing usually could not be as smooth as a rigid wing structure because of
the airproof and rigid requirements for inflatable structures. As a preliminary design for
MAVs, a fixed wing rather than a flapping configuration has been considered to reduce the
unsteady flow complexity caused by the flapping motion of the wings.
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2. Experimental Apparatus and Procedure

In order to demonstrate the effectiveness of tandem wing configurations, seven dif-
ferent kinds of flat wings have been manufactured and tested at a freestream velocity of
20 m/s with a chord-based Reynolds number of approximately 1.2 × 105. Figure 3 shows
an experimental model fixed in the wind tunnel. Figure 4 illustrates some of the experi-
mental wings. All of the models for tandem wing configurations were conducted in the
low turbulence wind tunnel (LTWT) located in the Northwestern Polytechnical University
(NPU) in Xi’an, China. This wind tunnel is an open circuit low speed, low turbulence wind
tunnel with a working section that is 1200 mm wide, 1050 mm high, and approximately
2800 mm long [13,21]. The maximum turbulence intensity of the wind tunnel is 0.02%, and
the available flow speed range of the LTWT is about 5–25m/s [13,21]. The testing range of
the angle of attack is from −4◦ to 16◦ at an interval of 2◦. When mounted in the working
section, the maximum blockage ratio of the full model to the wind tunnel is less than 4.0%
for the airspeed considered in this work [13,21].
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For all the models, a six-component strain gauge balance has been used for force
measurement. The measuring ranges for aerodynamic lift and drag are 196 N and 68.6 N
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respectively, with an accuracy of 0.6% [11,19]. To weaken the strut interference in the wind
tunnel, the model has been rear-sting supported in the wind tunnel.

A three-view drawing of the model studied is presented in Figure 5. As can be seen in
the figure, the same airframe has been used for all the experimental models. From Figure 5,
it is shown that all the wings are attached in an end rectangular plate, then the plate is
fixed rightly in the rectangular groove of the airframe by four bolts in the four corners.
There are two main airfoils for these wings, which are thick airfoil NACA0030 and thin
airfoil NACA0015. Based on these two profiles, seven different kinds of wings are built,
including (1) a single wing configuration with a thin airfoil, (2) a double wing configuration
with a thin airfoil, (3) a single wing configuration with a thick airfoil, (4) a double wing
configuration with a thick airfoil, (5) a single wing configuration with a wavy airfoil based
on NACA0030, (6) a double wing configuration with a wavy airfoil based on NACA0030,
and (7) a double wavy wing configuration with 2◦decalage of hindwing about its quarter
chord. As can be seen from Figure 6, a wavy airfoil is composed of 22 arcs which are
internally tangent to airfoil NACA0030. Detailed information could be found in Hua’s
experimental studies [13]. For all the tandem wing configurations, the hindwing is fixed
0.09 m posterior chordwisely and 0.025 m lower vertically compared to the forewing.
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For all the experimental models, the projected area of its flat wings is selected as
the reference area. Because the chord length is 100 mm, the semi-span is 295 mm, so the
reference area for the lift coefficient and drag coefficient for single wing configurations is
0.059 m2, while it is 0.118 m2 for tandem wing configurations. The wind tunnel experiments
were carried out at a Mach number of 0.0575 at an angle of attack up to 16◦, while the free
stream velocity is 20 m/s, and the pressure and temperature of free stream are 95.19 KPa
and 300.65 K, respectively.

3. Computational Method Setup

Due to the limitations of wind tunnel experiments in providing a detailed flow field,
computational simulations have been conducted for the seven configurations mentioned
above. In addition, to demonstrate the high efficiency of lift increase in hindwing decalage,
a double wavy wing configuration with decalage of 4◦ was simulated numerically. It
should be noted that the decalage angle is defined as the angle of the hindwing chord line
compared to the forewing chord line.

3.1. Geometric Models and Computational Grids

In order to validate the accuracy and reliability of the numerical tools employed in
this study, a comparison of SD7003 airfoil surface pressure distribution at angle of attack 4◦
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and Re 6 × 104 was made between our in-house codes and the method in [34], as shown
in Figure 7. It can be seen from the figure that the two lines almost overlap with each
other. Table 1 shows the detailed comparison of lift and drag between different turbulence
models. Considering the small difference between the S—A and reference values, it was
concluded that the Spalart—Allmaras (S—A) one-equation turbulence model would be
adopted in computational calculations of this paper to simulate the flow field in low
Reynolds numbers.
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Table 1. Comparison of lift and drag coefficients by different computational methods.

Method CL (Relative Error) CD (Relative Error)

Ref. [33] 0.561 0.021

inviscid 0.6541 (16.60%) 0.0025 (−88.10%)

S—A 0.5561 (−0.87%) 0.0219 (4.29%)

γ-Reθ transition 0.5654 (0.78%) 0.0223 (6.19%)

In Figure 8, the computational validations show that y+ = 1.0 is accurate enough to
obtain convergent results. Unstructured computational meshes have been generated in the
numerical calculations, as Figure 9 displays. In general, it is a hybrid unstructured grid
that consists of triangular prisms in the boundary layer and tetrahedral cells in the outer
fluid zone for the full grid. Most of the grid points are clustered in the boundary layers.
The total number of boundary layers is 31. The first boundary spacing off the wall has been
selected in order to achieve a y+ value of 1.0.

3.2. Numerical Simulations

All computations were conducted using our in-house Navier-Stokes flow solver F2M
(Solver of Flight-dynamics for Flexible Multi-body) which is described in detail in Hua’s
work [35,36] and Li’s work [37,38]. It is a finite-volume CFD code that solves Navier-Stokes
equations on unstructured grids. Several turbulence models were implemented, including
algebraic, one-equation, two-equation, and five-equation models. All computations were
carried out under a “fully turbulent” assumption, while the Spalart—Allmaras (SA) one-
equation turbulence model was adopted in computational calculations for this paper. For
all the computations, results were believed to have converged when all the residuals were
less than 10−5.
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Figure 9. Computational grid distribution at different positions (a) Farfield; (b) surface of the airframe
(without endplates); (c) surface of the tandem wing (NACA0030); and (d) surface of the tandem
wavy wing.
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For all of the simulations, two kinds of boundary conditions were considered: “no
slip” and “adiabatic” boundary conditions for the wall, including airframe and all the
wings, and “free-stream” conditions for the far-field, while the far field was a sphere with a
diameter of 40 m.

4. Results and Discussions

In this section, the effect of airfoil thickness, the effect of surface waviness, and the
effect of hindwing decalage are investigated and presented in detail based on numerical
solutions of the flow around these configurations with tandem wings.

4.1. Effect of Airfoil Thickness on Aerodynamic Characteristics

For aircraft with inflatable wing structures, there are only internal spars and flexible
outer skin to maintain aerodynamic shape and structural integrity after inflating. The
stiffness and strength of inflatable structures mainly depend on the profile of the wing cross
section and the pressure difference between the internal air and the outer atmosphere, so
in order to meet these structural requirements, thick airfoils are preferred in the design of
the inflatable wings. However, compared to thin airfoils, aerodynamic performance is less
efficient for thick profiles. To improve the aerodynamic efficiency of the inflatable wings
with thick airfoil, tandem configuration is presented in this paper.

In this section, the aerodynamic characteristics of tandem configurations with both
thick and thin airfoils have been compared to describe the advantages of thick tandem
wings, and it should be noted that for both of the thick and thin wings, the relative position
of the hindwing compared to the forewing is fixed, as described in Hua’s work [13].

Figure 10 illustrates the computational comparisons of aerodynamic coefficients for
configurations with thin or thick wings. As shown in the figure, for the fixed positions of the
two wings of a tandem configuration, the lift and aerodynamic efficiency of a thick tandem
configuration improve significantly compared to a thick single configuration at angles of
attack lower than 10

◦
while there are no significant enhancements for thin configurations

(apart from angles of attack between −4◦ and 2◦). These conclusions could revalidate
the fact that improvements of aerodynamic efficiency for tandem thick configurations
compared to single thick configuration are evidently greater than the corresponding values
for thin configurations. The greatest percentage of aerodynamic efficiency improvement
for a tandem thick configuration compared to a single thick configuration is 1376% at
angle of attack 0◦, while it is 52% for a tandem thin configuration compared to a single
thin configuration.

In order to understand the mechanism of lift enhancement for tandem configurations,
lift and drag coefficients for every wing of the tandem configuration are exhibited in
Figure 11. As can be seen in the figure, because the free stream velocity is very low,
wing drag generally increases with its thickness and the angle of attack before stalling.
Furthermore, for the tandem configuration, the drag of the forewing or hindwing is smaller
than the single wing configuration, but their sum shows similar value with single wing
configuration. As for the lift, the forewing of the tandem thin configuration shows an
evident increase only when angle of attack is lower than 4◦, and because the lift of the
hindwing is very limited, the net lift of the tandem thin configuration only shows a little
improvement when the angle of attack is lower than 4◦. However, in the experimental
range, the forewing of the tandem thick configuration always shows a significant increase,
so the overall aerodynamic efficiency improves more evidently compared to the single
thick configuration.
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Figure 12 gives the streamlines and pressure contours of single and tandem thin and
thick configurations at 50% of the semispan at three typical angles of attack, 4◦, 8◦, and
14◦, and it could be employed to explain the reason for the stalling angle decrease for the
tandem thick configuration. At a larger angle of attack 14◦, both the flow fields of the
thin (Figure 12a) and thick(Figure 12c) configurations show apparent separation, and the
separation zone is more obvious for thick configuration. For the tandem thin configuration
in Figure 12b, the visible separation zone appears much larger than the separation zone
in Figure 12a, but for the tandem thick configuration in Figure 12d, the vortices nearly
disappear because of the accelerating effect of the narrow gap between the two wings that
suppresses the separation.
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Figure 13 displays the pressure distributions of the wing surface at 50% of the semispan
of single and tandem configurations at three typical angles of attack. The effectiveness of
tandem thick wing configuration on lift enhancement could be explained explicitly by these
figures. When the angle of attack is 4◦ for the tandem thin configuration, pressure increases
distinctly on the lower surface of the forewing compared to the single configuration,
but pressure on the upper surface shows little decrement, so the lift of the forewing
increases slowly. In addition, the pressure difference between lower and upper surfaces
of hindwing seems a little smaller than the single wing, so the overall lift of the tandem
thin configuration gains a little compared to the single wing configuration because of the
averaged effect of the two wings. However, for the tandem thick configuration, both the
pressure increment on the lower surface and the pressure decrement on the upper surface
are distinct compared to single thick wing, so the overall lift increase is evident. At 8◦,
because the lift of the hindwing decreases significantly due to the blocking effect of the
forewing, the overall lift of both tandem thin and thick configurations drops abruptly. At
14◦, for the tandem thin configuration, large scale separation appears at the upper surface
of the forewing, so the overall lift of the configuration seems much smaller than that of the
single thin wing. For the tandem thick wing, the accelerating effect suppresses the large
scale separation of the forewing, so the lift of the forewing is larger compared to that of the
single wing configuration. However, the lift of the hindwing decreases a great deal due to
the blocking effect of the forewing at a large angle of attack. Thus, the overall lift shows
little improvement for the tandem thick configuration.

4.2. Effect of Surface Waviness on Aerodynamic Characteristics

For inflatable wings, the surface of the structure could not be as smooth as traditional
metallic wings due to structural requirements. Some investigations have shown that
sinusoidal leading edges could help to control the stalling phenomenon at high angles
of attack [39,40]. In order to understand the effect of these corrugated surfaces on the
aerodynamic characteristics, computational simulations were carried out to analyze the
flow fields around these corrugated wings.

Figure 14 illustrates the computational comparisons of aerodynamic coefficients for
configurations with smooth or wavy wings. As shown in the figure, the lift and aerody-
namic efficiency of smooth and wavy wings show no clear variation at low angles of attack.
Both the tandem configurations of smooth and wavy wings exhibit a better aerodynamic
performance compared to corresponding single configurations at low angles of attack.
However, for the tandem smooth configuration, there is an abrupt drop of lift immediately
after stalling, while the lift remains nearly constant for the wavy configuration. The reason
can be clearly seen in Figures 15–17 later. It shows that the improvement of aerodynamic
efficiency for the tandem wavy configuration compared to the single wavy configuration is
evidently greater than smooth configurations at low angles of attack from 2◦ to 16◦.

These results can be validated by Figure 16 where lift and drag coefficients for every
wing of the tandem smooth and wavy configurations are compared quantitatively. For
single smooth and wavy wing configurations, because the drag of wavy wing is much
bigger due to its bigger surface while the lift is a little smaller due to standing vortices in
the troughs, the aerodynamic efficiency of the wavy wing is much smaller than smooth
wing. For tandem wavy configurations, the forewing lift increment and drag decrement of
the two wings are both evident compared to the single wavy wing, so the aerodynamic
efficiency improves a great deal. For tandem smooth configurations, the aerodynamic
efficiency generally improves due to the significant lift increment of the forewing, but
the increasing percentage is not as significant as that of the tandem wavy configuration
because the aerodynamic efficiency of the single smooth wing is much higher than the
single wavy wing.
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Figure 17 gives the streamlines and pressure contours of single and tandem smooth
and wavy configurations at 50% of the semispan at three typical angles of attack, and
it can be used to explain the reason for the stalling angle decrease for the tandem wavy
configuration. At these three angles of attack, both the flow fields of the single smooth
(Figure 17a) and wavy (Figure 17c) configurations show separation, especially at 12◦. For
the tandem smooth configuration in Figure 17b, the accelerating effect of the gap of the
two wings makes the visible vortices disappear in Figure 17a, but for the tandem wavy
configuration in Figure 17d, the vortices are lessened without disappearing because at
every trough, it is easy to generate vortices. Thus, the wavy configuration will stall at
a lower angle of attack than the smooth configuration will because of lift losses caused
by vortices.

Figure 17 displays the pressure distributions of the wing surface at 50% of the semispan
of single and tandem configurations at three typical angles of attack. The difference in lift
enhancement of the tandem smooth and wavy configuration can be explained explicitly by
these figures. At these three angles of attack, it can be seen that the curves for the wavy
wing oscillate steeply due to the waviness on the surface. Large scale separation is lessened
because of the advancement of the transition from laminar to turbulent, thus delaying the
serious separation in larger angles of attack and weakening the flow separation, which
causes most of lift to be lost.

4.3. Effect of the Decalage Angle of the Hindwing on Lift Enhancement

It is validated that tandem configurations could increase the lift, especially for the
forewing, significantly at low angles of attack when both of the two wings are fixed
parallel to the axis of the airframe. To investigate the effect of hindwing decalage on the
aerodynamic characteristics of tandem configuration, the hindwing was deflected by 2◦

and 4◦ about its quarter chord for the tandem thick configuration to quantitatively simulate
the flow field.

Figure 18 illustrates the computational comparisons of aerodynamic coefficients for
configurations with hindwing decalage. As shown in the figure, the lift of configurations
with hindwing decalage increase linearly with the increase in the angle of attack before
stalling, but aerodynamic efficiency shows substantial increments only at angles of attack
smaller than 4◦.

In order to understand the effect of hindwing decalage on the overall characteristics of
tandem configurations, lift and drag coefficients for every wing of the tandem configuration
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with 2◦ or 4◦decalage are exhibited in Figure 19. It shows that the lift increment increases
with the increment of decalage, but it is more evident for the hindwing. In the meantime,
the drag also increases with the increment of decalage. Figures 20 and 21 present the
streamlines and the pressure distributions of the wing surface at 50% of the semispan at
three typical angles of attack. At angle of attack 0◦, the decalage will make the accelerating
effect stronger, so there will be a clear decrement of pressure on the upper surface of the
forewing. The lift at the upstream part of the hindwing will have a small decrease because
of the blocking effect of the forewing, so the net lift will have an evident increment. At 10◦

and 12◦, the forewing pressure will have little variation with the change of the decalage
bacause the flow is about to stall. The net lift will drop, although the hindwing will have a
little lift increase.
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5. Concluding Remarks 
In the present work, a detailed study of several tandem wing configurations was car-

ried out numerically by our in-house coded F2M to investigate the aerodynamic charac-
teristics of the novel configuration at low subsonic regime based on our experimental 
work in LTWT of NPU. After thorough analysis of these experimental and computational 
results, the following conclusions could be obtained: 
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configuration with a single wing, the greatest percentage of aerodynamic efficiency im-
provement for a tandem thick configuration was as high as 1376% at angle of attack 0°. 
Even if the hindwing is deflected by a small angle about its quarter chord, the lift enhance-
ment of the whole configuration is significant. It is generally attributed to the accelerating 
effect of the narrow gap between the two wings that blows the separated flow away. In 
addition, the high pressure at the standing area of the leading edge of the hindwing is an 
important origin of the lift enhancement of the forewing. 

(2) For tandem wings with a corrugated surface, the stall characteristics could be im-
proved because the waviness of the upper surface could lead the transition from laminar 
to turbulent further upstream than smooth surface, thus delaying the serious separation 
to a larger angle of attack and weakening the flow separation, which causes most of the 
loss of lift. 

(3) For aerodynamic configurations with tandem wings, the lift will not drop as pre-
cipitously as conventional aircraft after stalling due to the compensatory effect of the 
hindwing, so they generally have a better stalling performance at large angles of attack. 

(4) For MAVs, airships, or other flight platforms with inflatable structures, a tandem 
wing configuration is attractive and promising in the near future, after integrating opti-
mization designs of efficient structural and aerodynamic efficiency. 

Although the aerodynamic characteristics of several kinds of tandem wings were 
compared and the advantages were presented at very low subsonic speeds in our work, 
the effectiveness, efficiency and inherent control and stability of the configurations at 
lower density air and higher subsonic speeds remains to be demonstrated before tandem 
configuration could be applied extensively in the design of real MAVs. 
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Figure 21. Comparisons of the wall pressure coefficient of mid-semispan at different angle of attack.

5. Concluding Remarks

In the present work, a detailed study of several tandem wing configurations was
carried out numerically by our in-house coded F2M to investigate the aerodynamic charac-
teristics of the novel configuration at low subsonic regime based on our experimental work
in LTWT of NPU. After thorough analysis of these experimental and computational results,
the following conclusions could be obtained:

(1) For the tandem configuration, the improvement of aerodynamic efficiency is more
significant for wings with a thick airfoil than for wings with a thin profile. Compared
to configuration with a single wing, the greatest percentage of aerodynamic efficiency
improvement for a tandem thick configuration was as high as 1376% at angle of attack
0◦. Even if the hindwing is deflected by a small angle about its quarter chord, the lift
enhancement of the whole configuration is significant. It is generally attributed to the
accelerating effect of the narrow gap between the two wings that blows the separated
flow away. In addition, the high pressure at the standing area of the leading edge of the
hindwing is an important origin of the lift enhancement of the forewing.

(2) For tandem wings with a corrugated surface, the stall characteristics could be
improved because the waviness of the upper surface could lead the transition from laminar
to turbulent further upstream than smooth surface, thus delaying the serious separation to
a larger angle of attack and weakening the flow separation, which causes most of the loss
of lift.

(3) For aerodynamic configurations with tandem wings, the lift will not drop as
precipitously as conventional aircraft after stalling due to the compensatory effect of the
hindwing, so they generally have a better stalling performance at large angles of attack.
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(4) For MAVs, airships, or other flight platforms with inflatable structures, a tan-
dem wing configuration is attractive and promising in the near future, after integrating
optimization designs of efficient structural and aerodynamic efficiency.

Although the aerodynamic characteristics of several kinds of tandem wings were
compared and the advantages were presented at very low subsonic speeds in our work,
the effectiveness, efficiency and inherent control and stability of the configurations at
lower density air and higher subsonic speeds remains to be demonstrated before tandem
configuration could be applied extensively in the design of real MAVs.
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