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Abstract: This paper proposes a new method of detection and reconstruction of the incipient fault of
fixed-wing actuators based on an adaptive sliding-mode observer. First, a mathematical model of a
fixed-wing aircraft is derived under certain assumptions, considering nonlinear terms and system
disturbances. Second, by introducing a nonsingular coordinate transformation, the incipient faults are
separated from the disturbances. For a subsystem with no disturbances, the Luenberger observer can
estimate the incipient fault. For a subsystem with disturbances, the sliding-mode observer is robust
against these disturbances. The Lyapunov stability theory guarantees dynamic error convergence and
system stability. The evaluation function was designed to realize residual evaluation and threshold
judgment. Third, based on the concept of equivalent output injection, an adaptive sliding-mode
observer method is proposed to reconstruct actuator faults precisely under the condition of the
uncertain system structure. The design steps of the proposed reconstruction method are introduced
in the form of a linear matrix inequality problem, which provides an effective method for calculating
the design parameters. Finally, the simulation results of the De Havilland DHC-2 “Beaver” aircraft
demonstrate the correctness and effectiveness of the proposed method.

Keywords: fault reconstruction; fault detection; actuator fault; linear matrix inequality; observer

1. Introduction

Fixed-wing unmanned aerial vehicles (UAVs) are widely used in geological mapping,
resource surveys, environmental monitoring, meteorological observations, and other fields
because of their long flight ranges, large cruising areas, fast flight speeds, and high flight
altitudes [1]. However, most UAVs in daily life do not consider fault diagnosis or fault-
tolerant control, even if simple fault detection and recovery strategies are applied. These
simple strategies cannot effectively ensure the flight safety of UAVs [2]. Fixed-wing UAVs
often perform long-term tasks through remote control in poor working environments [3].
In doing so, they are affected by various types of interference and damage, which lead
to different faults for these vehicles, such as voltage control faults, actuator lock-in-place
physical aging, structural damage, leakage, and fatigue. These faults inevitably affect the
performance of UAVs [4]. Therefore, the reliability, stability, and safety of fixed-wing UAV
flight are extremely important. Consequently, fault detection of actuators for fixed-wing
aircraft has important practical significance and has drawn considerable research attention
in recent years [5,6].

In fault detection, abrupt faults have received extensive attention; however, incipient
faults have often been ignored [7]. In particular, the incipient faults caused by wear and
tear in the mechanical structures of actuators have not been studied thoroughly. If incipient
faults are not detected and warnings are not issued in time, these faults may expand and
lead to catastrophic consequences [7,8]. Actuator jamming, voltage control faults, structural
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damage, and other abrupt faults have obvious effects on system performance. Because
these abrupt faults are clearly different from disturbances, appropriate thresholds can be
selected to detect abrupt faults [9]. Traditional observers, such as unknown input observers,
Luenberger observers, and sliding-mode observers (SMOs), can deal with these faults
effectively. In a previous study, a sliding-mode control assignment scheme with linear
variable parameters was devised for actuator faults. When an actuator fails, the sliding
mode first starts and then redistributes control signals to other actuators [10]. Traditional
Luenberger observers and SMOs have been designed to manage system uncertainties and
abrupt actuator faults [11]. A neural network sliding-mode observer has been designed for
the fault detection and estimation of actuators [12]. In linear time-delay systems, adaptive
observers are used to detect abrupt actuator faults, and this method can be applied to
nonlinear systems [13]. In the case of system interference, extended state observer (ESO)
approaches have been devised to detect actuator faults [14]. In the last decade, almost
all methods have assumed that the original system is linear, and they have mainly dealt
with obvious and serious faults. For the situation in which the system described by the
Takagi–Sugeno fuzzy method has a time delay and external disturbance, a fuzzy description
learning observer was proposed to realize the simultaneous reconstruction of the system
state and an abrupt actuator fault [9–15]. Higher-order sliding-mode unknown input
observers have been proposed to detect abrupt actuator faults and provide the necessary
analytical redundancy [16,17]. SMOs are designed to realize the simultaneous detection of
actuator faults and sensor faults when the hypothesis is established, whereas an adaptive
observer was designed to estimate the sensor faults after the assumptions had been properly
relaxed [18]. However, the various methods mentioned above are aimed at abrupt actuator
faults. Therefore, it is necessary to detect incipient faults to maintain system stability, which
was the inspiration for the present study. In this study, a new adaptive SMO was designed
to detect and reconstruct incipient actuator faults.

An incipient fault is a fault that has little impact on the system in the initial stage and
can hardly be detected [19]. However, it can grow slowly over time and has a serious impact
on the system. Because the effects of faults on the system can be reflected by the symptoms
caused by faults, the symptoms caused by faults are divided into significant symptoms and
minor symptoms [7,8,20,21]. Incipient faults almost develop gradually in the process of
low speed and low frequency, and can hardly be detected in the early stage, which is easy
to be covered by the changes of a time-varying process [19–22]. The term “incipient fault”
has two meanings: one refers to the incipient stages of other faults, and the other refers to
minor or potential faults that have no obvious symptoms. Timely and effective monitoring
of small faults with only minor abnormal signs that may endanger the safe operation of
the system is often called incipient fault diagnosis [22]. Generally speaking, according to
the time performance of faults, they can be divided into three categories: incipient fault,
sudden fault, and intermittent fault [23]. In addition, according to the location of the fault,
it can be divided into actuator fault, process fault, and sensor fault. UAVs are often affected
by noise, airflow interference, and vibration signals. Regardless of the number of faults
or their severity, they start as incipient faults. Because these incipient faults are difficult
to find in the initial stage, there have been not a lot of convincing or effective attempts at
incipient fault diagnosis in academia. However, incipient faults can cause serious problems,
although they develop slowly and are tolerable when they first appear. It seems that it
is necessary to detect incipient faults to maintain system stability [23]. UAVs are often
affected by noise, airflow interference, and vibration signals. Therefore, it is very difficult
to detect and reconstruct incipient faults with disturbances, which was the starting point of
this study.

In the past decade, several studies have been conducted on incipient fault detection.
Because adaptive fault-tolerant control can reduce the effects of initial faults, a scheme for
constructing an unknown input observer was proposed [24]. An incipient fault detection
method based on SMO was also presented, which considers physical structure aging [25].
Further, an incipient fault detection method based on neural networks was proposed for a
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class of nonlinear systems [23]. Inspired by the closed-loop fault diagnosis method [26], an
incipient fault detection and estimation method for high-speed trains was introduced [27].
The designs of an SMO and a Luenberger observer for incipient fault detection were de-
scribed. Under certain conditions, the original system was converted into two subsystems
via decoupling. The Luenberger observer was designed for one subsystem with no dis-
turbance, whereas the SMO was designed for the other subsystem with disturbance to
ensure the sensitivity of the entire system to the incipient fault. In this scheme, the system
residuals were only sensitive to incipient faults; therefore, they could detect faults in a
manipulator system [14].

However, the research on incipient fault detection of actuators for fixed-wing UAVs
is limited at present. The incipient fault characteristics of such actuators are not obvious,
and fixed-wing UAVs are out of the direct control of humans; in addition, their high flight
speeds and complex working environments make it difficult to detect incipient faults.
Inspired by the previous literature [7,14], this report proposes a correlative robust adaptive
SMO to detect and reconstruct incipient actuator faults. By considering the advantages of
the combination of an adaptive observer and SMO, the robust detection of incipient faults
can be realized, which solves the problem that the previous method [14] cannot reconstruct
such actuator faults. This feature represents an innovation of the present study. The main
contributions are as follows: First, a nonsingular transformation matrix was designed
to decouple an original system with incipient faults and disturbances, and a Luenberger
observer and SMO were designed for the decoupled system. The concept of equivalent
output injection was introduced into the SMO to estimate the influence of uncertainty on
the system. Second, a residual evaluation function was derived for residual evaluation
and threshold judgment. Third, based on the uncertainty and unstructured system, an
adaptive rate was designed, and the concept of equivalent output error was incorporated
to realize actuator fault reconstruction. Finally, the design problem of the adaptive SMO
was expressed as a set of linear constraints, which were transformed by the Schur lemma
many times and solved by the linear matrix inequality (LMI) technique.

The remainder of this paper is organized as follows: Section 2 describes the mathe-
matical model of a fixed-wing aircraft. Section 3 introduces the robust fault detection and
fault reconstruction method of the actuator fault for the system model, proves the stability
of the proposed method using Lyapunov analysis, and discusses the accessibility of the
designed sliding surface. Section 4 describes some simulation conditions and presents and
discusses the mature aircraft model simulations performed in this study. Finally, Section 5
summarizes the conclusions and topics for future work.

2. Problem Formulation

When a fixed-wing aircraft flies in the atmosphere at a high speed, aerodynamic forces
and aerodynamic moments are generated owing to the interaction with the air. In addition,
under the action of these aerodynamic forces and aerodynamic moments, the gravity and
thrust of the aircraft cause elastic deformation of the fuselage, leading to changes in the
aerodynamic characteristics of the aircraft. The elastic deformation increases the difficulty
of aircraft space motion and flight control technology research. In addition, the mass of the
aircraft will change during flight, and the inherent properties of the earth itself will affect
the nonlinear and complex relationships among the aircraft aerodynamics, aircraft shape,
and flight parameters [28]. For the convenience of this study, the following reasonable
assumptions were made.

A fixed-wing aircraft is a complex multi-input multioutput system. By using the six-
degree-of-freedom kinematic equation of three centroid motions and three angular motions,
the motion state of the aircraft at any moment can be solved. Based on the definitions of the
relevant parameters and aircraft coordinates, the aircraft motion is defined by the dynamic
equation and motion equation [28]. The equation of state of the aircraft is obtained through
many derivations and calculations, including the force, kinematic, moment, and navigation
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equations presented in (1), (2), (3), and (4), respectively. Figure 1 provides a schematic
diagram of the aircraft parameters, and Table 1 lists the respective parameter definitions.
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Figure 1. Schematic diagram of aircraft parameters.

Table 1. Parameter definitions.

Parameter Meaning

FM Measurement reference frame
FS Stability reference frame
FR Special body-fixed reference frame for the “Beaver”
FW Flight-path reference frame
FV Vehicle-carried vertical reference frame
Fx Total external force along XB
Fy Total external force along YB
Fz Total external force along ZB

Force equations: 
.
u = vr− wq− g sin θ + Fx

m.
v = −ur + wp + g cos θ sin φ +

Fy
m.

w = uq− vp + g cos θ cos φ + Fz
m

(1)

Kinematic equations: 
.
θ = q cos φ− r sin φ
.
φ = p + (r cos φ + q sin φ) tan θ
.
ψ = 1

cos θ (r cos φ + q sin φ)

(2)

Moment equations: 
.
p = (c1r + c2 p)q + c3L + c4N
.
q = c5 pr− c6(p2 − r2) + c7M
.
r = (c8 p− c2r)q + c4L + c9N

(3)

Navigation equations: 
.
xg = V cos µ cos ϕ
.
yg = V cos µ sin ϕ
.
h = V sin µ

(4)

Here, x = [u, v, w, φ, θ, ψ, p, q, r, xg, yg, h]T is the state vector and δ= [δa, δr, δe, δp
]T

is the control vector. Table A1 (see Appendix A) lists the specific meanings of the aircraft pa-
rameters, and Table A2 (see Appendix A) presents the parameter definitions for the dynamic
mathematical model. In Table A2, the dimensional derivative parameters of the aircraft can be
consulted, and the specific values of these parameters are given in the simulation section. For
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an aircraft with an actuator fault, the dynamic mathematical models of the longitudinal and
lateral directions can be described as follows:{ .

xld(l)(t) = Ald(l)xld(l)(t) + Bld(l)uld(l)(t) + Dld(l) fa(t)
yld(l)(t) = Cld(l)x(t)

(5)

In this study, the system satisfied the Lipschitz condition. Under the simultaneous
influence of the nonlinear term and system disturbance, the system differential equation
can be expressed as follows:{ .

x(t) = Ax(t) + Bu(t) + ξ(x, t) + D fa(t) + Eψ(t)
y(t) = Cx(t)

(6)

where {xld, xl} ∈ x ∈ Rn, {uld, ul} ∈ u ∈ Rn, and y ∈ Rn are the system state, input vector,
and output vector, respectively, and {Ald, Al} ∈ A, {Bld, Bl} ∈ B, {Cld, Cl} ∈ C, and
{Dld, Dl} ∈ D are known matrices. The pair (A, C) is observable. C and E are the known
constant matrix with full rank, respectively; ξ(x, t) is the known nonlinear continuous term;
fa = [ f 1

a , f 2
a , · · · , f m

a ]
T is the actuator fault; and ψ(t) represents the lumped uncertainties

and disturbances experienced by the system.

Assumption 1. The known nonlinear term, ξ(x, t), satisfies the Lipschitz condition in x, and γ is
the known Lipschitz constant.

‖ ξ(x, t)− ξ(x̂, t) ‖≤ γ ‖ x− x̂ ‖, ∀x, x̂ ∈ <n (7)

Assumption 2. fa satisfies the following constraints:

‖ fa ‖≤ ρa and ‖ ψ(t) ‖≤ ` (8)

Assumption 3. rank(CE) = rank(E).

Under the previous assumptions, two nonsingular matrices can be found to decouple
the system. After applying transformation matrices, system (6) can be changed into the
following two subsystems:{ .

x1 = A1x1 + A2x2 +Q1ξ1
(
Q−1x, t

)
+ B1(u + fa) + E1ψ

y1 = C1x1
(9)

{ .
x2 = A3x1 + A4x2 +Q2ξ2

(
Q−1x, t

)
+ B2(u + fa)

y2 = C4x2
(10)

where < = [<1<2]
T and Q = [Q1Q2]

T are the nonsingular matrices. A11 ∈ Rr×r,
A2 ∈ Rr×(n−r), A3 ∈ R(n−r)×r, A4 ∈ R(n−r)×(n−r), B1 ∈ Rr×m, B2 ∈ R(n−r)×m, C1 ∈ Rr×r,
C4 ∈ R(p−r)×(n−r), x = [x1x2]

T , x1 ∈ Rr, x2 ∈ Rn−r; ξ1 ∈ Rr, ξ2 ∈ Rn−r; y = [y1 y2],
y1 ∈ Rr, y2 ∈ Rp−r.

The matrix transformations in (9) and (10) are formulated as follows [29]:

QAQ−1 =

[
A1 A2
A3 A4

]
, QB =

[
B1
B2

]
, <CQ−1 =

[
C1 0
0 C4

]
, QE =

[
E1
0

]
.

Remark 1. System (9) has both actuator faults fa and unknown disturbances ξ, whereas (10) only
includes actuator faults fa without unknown disturbances ξ. The system can be decoupled through
such transformations.
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3. Adaptive Robust Fault Detection and Reconstruction Method

This section presents the design of the proposed robust fault reconstruction method
for the actuator faults of fixed-wing aircraft. First, a synthetic observer was designed for the
interference estimation and fault detection of the unknown system. An adaptive SMO was
proposed to address the problems of fault detection and reconstruction. The fault signals
were accurately reconstructed using the concept of equivalent output injection. Second,
considering that the system structure cannot be completely decoupled from a fault, the
reconstruction method of the actuator fault (RAF) was constructed to estimate the state
quantity and faults. The stability of the observer was analyzed using an LMI solution.
Finally, an actuator fault reconstruction approach was developed to reconstruct the actuator
fault and all state quantities. Figure 2 shows the diagnosis block diagram.
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3.1. Actuator Fault Detection

The detection of actuator faults (DAF) is the first step in determining if a fault has
occurred. When a significant change in residuals is observed, it is possible that a fault has
occurred. If the adaptive state estimator is directly designed for the original system, when
the gain of (13) is significantly large, the residual will be within the chattering range or below
the preset threshold. Therefore, incipient actuator fault detection is difficult. By analyzing
the two subsystems after the transformation matrix, a synthetic observer comprising SMOs
and the Luenberger observer was constructed in this section to simultaneously detect faults
and estimate disturbances.

3.1.1. SMO Design

Assumption 4. The minimum phase condition (see [30]).

Lemma 1. In the case of Assumption 4, pair (A4, C4) is detectable, and there exist matrices L0,
such that A4 − L0C4 is stable; furthermore, the following Lyapunov equation is applicable [31]:

(A4 − L0C4)
T P0 + P0(A4 − L0C4) = −Q0 (11)

where P0 and Q0 are symmetric positive definite matrices.
For (9), the proposed SMO is designed as follows:

.
x̂1 = A1 x̂1 + A2 x̂2 + ξ1

(
T−1 x̂, t

)
+ B1u + w1

+
(

A1 − As
1
)
C−1

1 (y1 − ŷ1)
ŷ1 = C1 x̂1

(12)
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where As
1 ∈ Rr×r and w1 can be defined by

w1 =

{
−(‖ E1 ‖ `+ η1)

P1(x1−x̂1)
‖P1(x1−x̂1)‖

if x1 − x̂1 6= 0
0 if x1 − x̂1 = 0

(13)

where η1 is a positive scalar, determined using (28), and P1 is the Lyapunov matrix of As
1.

For (10), the proposed observer is:{ .
x̂2 = A4 x̂2 + A3 x̂1 + ξ2

(
T−1 x̂, t

)
+ B2u + L0(y2 − ŷ2)

ŷ2 = C4 x̂2
(14)

where L0 is the gain of the Luenberger observer.
Based on (12) and (14), the corresponding error dynamic equations can be expressed

as follows:

.
e1 =

.
x1 −

.
x̂1 = As

1e1 + A2e2 + ξ1(T−1x, t)− ξ1(T−1 x̂, t) + E1ψ− w1 (15)

.
e2 =

.
x2 −

.
x̂2 = (A4 − L0C4)e2 + ξ2(T−1x, t)− ξ2(T−1 x̂, t) (16)

3.1.2. Stability Analysis

Proposition 1. If there are matrices As
1 < 0, P0 = PT

0 > 0, P1 = P1
T > 0, and α1 and α2 satisfy

(17), the error dynamics are asymptotically stable:

Λ :=

[
Π1 +

1
α1

P1P1 P1 A2

AT
2 P1 Π2 +

1
α2

P0P0 + aIn−r

]
< 0 (17)

where Π1 = AsT
1 P1 + P1 As

1, α1 > 0, α2 > 0, Π2 = (A4 − L0C4)
T P0 + P0(A4 − L0C4),

a = α1γ2
f1
‖Q−1‖2

+ α2γ2
f2
‖Q−1‖2.

Proof of Proposition 1. From (15), V1 becomes

.
V1 =

.
eT

1 P1e1 + eT
1 P1

.
e1

= eT
1

(
AsT

1 P1 + J1 As
1

)
e1 + 2eT

1 P1
(
ξ1
(
Q−1x, t

)
− ξ1

(
Q−1 x̂, t

))
+ 2eT

1 P1E1ψ + 2eT
1 P1 A2e2 − 2eT

1 P1w1
(18)

Similarly, the derivative of V2 together with (16) can be obtained:

.
V2 =

.
eT

2 P0e2 + eT
2 P0

.
e2

= eT
2

(
P0(A4 − L0C4) + (A4 − L0C4)

T P0

)
e2 + 2eT

2 P0
(
ξ2
(
Q−1x, t

)
− ξ2

(
Q−1 x̂, t

)) (19)

From (13), it is easy to obtain eT
1 J1w1 = (‖E1‖`+ η1)‖J1e1‖.

Therefore, under Assumption 1,

2eT
1 P1E1ψ ≤ 2‖E1‖‖ψ‖‖P1e1‖ ≤ 2‖E1‖`‖P1e1‖ (20)

Thus, (1), (18) and (19) can be respectively simplified as follows:

.
V1 ≤ eT

1 ∏1 e1 +
1
α1

eT
1 P1P1e1 + α1γ2

ξ1
‖Q−1‖2‖e2‖2 + 2eT

1 P1 A2e2 − 2η1‖P1e1‖
≤ eT

1 (∏1 +
1
α1

P1P1)e1 + α1γ2
ξ1
‖Q−1‖2‖e2‖2 + 2eT

1 P1 A2e2
(21)

.
V2 = eT

2 P0
.
e2 +

.
eT

2 P0e2 ≤ eT
2 (∏

2
+

1
α2

P0P0)e2 + α2γ2
ξ2
‖Q−1‖2‖e2‖2 (22)
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Then, combining (21) and (22), we can obtain:

.
V =

.
V1 +

.
V2

≤ eT
1 (∏1 +

1
α1

P1P1)e1 + eT
2 (∏2 +

1
α2

P0P0 + aIn−r)e2 + 2eT
1 P1 A2e2

=

[
e1
e2

]T

Λ
[

e1
e2

] (23)

From Proposition 1, it can be deduced that
[
e1 e2

]T 6= 0 and
.

V < 0; furthermore, the
error dynamics in (15) and (16) are asymptotically stable.

Therefore, Proposition 1 shows that the error dynamics system is asymptotically stable.
Because (17) is not easy to solve directly using MATLAB, it can be changed into the LMI
feasibility problem in (24) by using the Schur complement [32]:

X + XT P1 P1 A2 0
P1 −α1 I 0 0

AT
2 P1 0 N P2
0 0 P0 −α2 I

 < 0 (24)

where N = AT
4 P0 + P0 A4 − CT

4 YT −YC4 + aI, X = P1 As
1, and Y = P0L0, and α1 and α2 are

positive scalars. �

3.1.3. Reachability Condition Analysis

In (16), e2(t) can be written as

e2(t) =
∫ t

0 e(A4−L0C4)(t−τ) · (ξ(x, t)− ξ(x̂, t))dτ + e(A4−L0C4)te0(0)
≤ c0γξ2‖Q−1‖

∫ t
0 e−b0(t−τ)‖e2(τ)‖dτ + c0e−b0t‖e2(0)‖

(25)

where b0 and c0 can be obtained using ‖ e(A4−L0C4)t ‖≤ c0e−b0t, Λ = A4 − L0C4. Applying
the Gronwall–Bellman inequality [33] to (25) yields

‖ e2(t) ‖≤ c0 ‖ e2(0) ‖ e(c0γξ2
‖Q−1‖−b0)t (26)

The sliding-mode surface is

ς = {(e1, e2)|e1 = 0} (27)

Proposition 2. If the LMI formulated in (24) is solvable and the gain η1 is expressed as in (28), the
state error dynamics (15) and (16) can be driven to the sliding-mode surface:

η1 ≥
(

A2 + γξ1Q
−1
)

ε + η2 (28)

Proof of Proposition 2. (18)(1) is written as follows under Assumption 2:

.
V1 ≤ 2‖P1e1‖‖A2‖‖e2‖+ 2‖P1e1‖‖E1‖`+ 2‖P1e1‖γξ1‖Q

−1‖‖e2‖ − 2‖P1e1‖(‖E1‖`+ η1)
≤ 2‖P1e1‖((‖A2‖+ γξ1‖Q

−1‖)‖e2‖ − η1) ≤ −2η2‖P1e1‖
≤ −2η2

√
V1λmin(P1)

(29)
Therefore, (29) satisfies the reachability condition [4].
When the fault occurs at time t f ,

.
e2 becomes

.
e2 = (A4 − L0C4)e2 +

(
ξ2

(
Q−1x, t

)
− ξ2

(
Q−1 x̂, t

))
+ B2 fa (30)
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In general, it can be simply determined whether a fault occurs by comparing the
residual characteristics with the threshold value. In this study, we used the following
logical relationships to determine the occurrence of faults:

‖Jr(t)‖ ≥ Jth ⇒ f ault occurs ⇒ alarm (31)

‖Jr(t)‖ < Jth ⇒ no f ault occurs ⇒ no alarm (32)

‖Jr(t)‖ =
[∫ t+T1

t
rT(t)r(t)dt

] 1
2

(33)

where the residual signal r can be expressed as y − ŷ, Jr(t) is the residual evaluation
function, and T1 is the evaluation time window of finite length. �

Proposition 3. For the nonlinear faulty system in (9) and (10), the above evaluation function,
‖Jr(t)‖, and observer (12), when ‖Jr(t)‖ exceeds Jth, the occurrence of a fault can be determined.
The threshold, Jth, can be expressed as follows:

Jth =


∫ t+T1

t


k(η+‖L‖‖D‖ψ1)‖C‖

λ−kγ +(
kε− k(η+‖L‖‖D‖ψ1)

c0−b0γ1

)
‖ C ‖ e−(c0−b0γ)τ

+‖D‖ψ1


2

dτ


1
2

(34)

where b0 and c0 can be obtained from (26) and ε is a constant bound.

Proof of Proposition 3. Under Assumptions 1–3, applying the triangle inequality, the
upper bound on the norm of x can be written as follows:

‖ .
x(t) ‖ ≤ eΛt ‖ .

x(0) ‖ +
∫ t

0 eΛ(t−τ) ‖ ξ(x, t)− ξ(x, t) + Lψ ‖ dτ

≤ eΛt ‖ .
x(0) ‖ +

∫ t
0 eΛ(t−τ)(‖ f (x(τ), u(τ))− f (x̂, t) ‖ + ‖ L ‖‖ ψ ‖)dτ

≤ eΛtε + γ
∫ t

0 eΛ(t−τ) ‖ x(τ)− x̂(τ) ‖ dτ +
(
‖ L ‖ ψ1

) ∫ t
0 eΛ(t−τ)dτ

≤ eΛtε + γ
∫ t

0 eΛ(t−τ) ‖ x(τ)− x̂(τ) ‖ dτ +
(
‖ L ‖ ψ1

) ∫ t
0 eΛ(t−τ)dτ

(35)

Using (26), (35) has the following form:

‖ .
x(t) ‖≤ b0c0e−λt + b0γ

∫ t

0
‖ .

x(τ) ‖ e−λ(t−τ)dτ +
b0 ‖ L ‖ ψ1

λ

(
1− e−λt

)
(36)

Considering (9), the residual signal r can be obtained. Therefore, based on the selected
evaluation function in (31), the evaluation threshold is as follows:

Jth =


∫ t+T1

t


k(η+‖L‖‖D‖ψ1)‖C‖

λ−kγ +(
kε− k(η+‖L‖‖D‖ψ1)

c0−b0γ1

)
‖ C ‖ e−(c0−b0γ)τ

+‖D‖ψ1


2

dτ


1
2

(37)

It should be noted that this is a worst-case estimate of the possible effects of the
estimation error norm in the fault-free case. �

Remark 2. From Lemma 1, Jr(t) is close to zero before an actuator fault occurs. Based on (26)
and (30), Jr(t)is treated as a residual to detect actuator faults. From (26), when (6) is healthy, Jr(t)
tends to be zero. However, when (6) has actuator faults, a threshold, Jth, can be selected. After fault
detection and alarm signals were generated, an adaptive reconstruction strategy was initiated to
reconstruct the unknown fault. Table 2 summarizes the steps of actuator fault diagnosis.
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Table 2. Actuator fault diagnosis steps.

Step Description

Step 1 Set the matching conditions of the system and make relevant
assumptions

Step 2 Establish the system model, and make it meet certain conditions

Step 3 Calculate the nonsingular transformation matrix to decouple the
system model

Step 4 Design the observer according to the transformed form of the system

Step 5
Based on the establishment of the error equation of state estimation, the
evaluation function and threshold are obtained according to the
theoretical knowledge in Chapter 3

Step 6 Calculate relevant parameters according to the LMI algorithm

Step 7 Use the calculated relevant parameters to substitute them into the
observer algorithm for actuator fault diagnosis

3.2. Actuator Fault Reconstruction

This section describes the actuator fault reconstruction performed after DAF. The
difference between the reconstruction actuator method and most fault diagnoses is that
the reconstruction actuator method can detect and isolate actuator faults and provide
detailed information regarding them. Therefore, it is particularly suitable for incipient
fault diagnosis, which is difficult to detect. In this section, when the system uncertainty is
unstructured, a new adaptive SMO-based reconstruction actuator method can be designed.

When the system uncertainty is unstructured, (6) can be expressed as{ .
x(t) = Ax(t) + Bu(t) + ξ(x, t) + D fa(t) + ψ(t)
y(t) = Cx(t)

(38)

Assume that A =

[
A1 A2
A3 A4

]
, D =

[
D1
D2

]
, and if C =

[
0 Ip

]
, it is possible to find a

nonsingular transformation matrix as follows:

Tc =
[

NT
c C

]T
(39)

In doing so, CT−1
c =

[
0 Ip

]
, Nc ∈ Rn×(n−p), and the columns span the null space of C.

Assumption 5. The matrix pair (A, C) is detectable, such that A-LC is stable; thus, for any M > 0,
the Lyapunov equation in (40) has a unique solution S > 0:

(A− LC)T J + J(A− LC) = −M (40)

where J =
[

J1 J2
JT
2 J3

]
and M =

[
M1 M2
MT

2 M3

]
.

Assumption 6. There is an arbitrary matrix F that satisfies the equation

DT J = FC (41)

Lemma 2. Under Assumptions 5 and 6, the following two equations can be obtained [34]:
(a) D1 + J−1

1 J2D2 = 0 (b) A1 + J−1
1 J2 A3 is stable.
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3.2.1. SMO Design

By introducing a transformation matrix in this form, U =

[
U1
U2

]
=

[
In−p J−1

1 J2
0 Ip

]
, (38)

can be changed into the system:{ .
x(t) = AU x(t) + Uξ

(
U−1x, t

)
+ BUu(t) + Uψ(t) + DU fa(t)

y(t) = CU x(t)
(42)

where

AU =

[
A1 A2
A3 A4

]
=

[
A1 + J−1

1 J2 A3 A2 − A1 J−1
1 J2 + J−1

1 J2

(
A4 − A3 J−1

1 J2

)
A3 A4 − A3 J−1

1 J2

]
(43)

BU =

[
B1
B2

]
=

[
B1 + J−1

1 J2B2
B2

]
(44)

DU =

[
D1
D2

]
=

[
D1 + J−1

1 J2D2
D2

]
=

[
0

D2

]
(45)

CU =
[
0Ip
]

(46)

System (42) can further be expressed as follows:
.
x1 = A1x1 + A2x2 + U1ξ

(
T−1x, t

)
+ B1u(t) + U1ψ(t)

.
x2 = A3z1 + A4z2 + U2ξ

(
T−1x, t

)
+ B2u(t) + D2 fa + U2ψ(t)

y = x2

(47)

For (47), the SMO can be constructed as follows:

.
x̂1 =A1x1 + A2y + U1ξ

(
T−1 x̂, t

)
+ B1u(t)

.
x̂2 =A3z1 + A4z2 + U2ξ

(
T−1 x̂, t

)
+ B2u(t)

+(A4 − A0)(y− ŷ) + w3

ŷ =x̂2

(48)

and

w3 =

{
(‖ D2 ‖ ρa + η1)

J0(y−ŷ)
‖J0(y−ŷ)‖+δ

if y− ŷ 6= 0
0 if y− ŷ = 0

(49)

where δ is a small positive scalar that reduces the effect of chattering. η1 is a positive scalar,
and J0 is a symmetric positive-definite matrix.

By defining the state estimation errors, e1 = x1 − x̂1 and e2 = x2 − x̂2, based on (47)
and (48), the corresponding error dynamic equations can be written:

.
e1 = A1e1 + U1(ξ(U−1x, t)− ξ(U−1 x̂, t)) + U1ψ (50)

.
e2 = A0e2 + A3e1 + U2(ξ(U−1x, t)− ξ(U−1 x̂, t)) + D2 fa + U2ψ− w3 (51)

3.2.2. Stability Analysis

Proposition 4. For (42), under Assumptions 1, 2, 5, and 6, if J0 = JT
0 > 0, J1 = JT

1 > 0, A0, Y,
Z, ν, and positive scalars α1 and α0 satisfy (51) and (52), and the LMI feasibility problem has the
solution in (54). With the prescribed H∞ disturbance attenuation level

√
µ > 0, the error dynamics

is asymptotically stable:
J1D1 + J2D2 = 0 (52)
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
Θ1 + In−p AT

3 J0 J1 J2
J0 A3 Θ2 + Ip 0 J0

J1 0 −µIn−p 0
JT
2 J0 0 −µIp

 < 0 (53)



Θ3 AT
3 J0 ZG1 ZG2 ZG1 ZG2 0

J0 A3 Θ4 0 J0 0 0 J0
GT

1 ZT 0 −µIn−p 0 0 0 0
GT

2 ZT P0 0 −µIp 0 0 0
GT

1 ZT 0 0 0 −α1 In−p 0 0
GT

2 ZT 0 0 0 0 −α1 Ip 0
0 J0 0 0 0 0 −α0 Ip


< 0 (54)

‖ H ‖∞:= sup
‖ψ‖2 6=0

‖ e ‖2

‖ ψ ‖2
≤ √µ (55)

The adaptive fault estimation algorithm is given by

.
f̂ = νFC1e1 (56)

where

Θ1 = AT
1 J1 + J1 A1 + AT

3 JT
2 + J2 A3 +

1
α1

(J1 J1 + J2 JT
2 ) + (α1 + α0)γ

2
ξ In−p (57)

Θ2 = AT
0 J0 + J0 A0 +

1
α0

J0 J0 (58)

Θ3 = AT
1 GT

1 ZT + ZG1 A1 + AT
3 GT

2 ZT + ZG2 A3 + (α1 + α0)γ
2
f In−p + In−p (59)

Θ4 = Y + YT + Ip (60)

G1 = (In − DD+)

[
In−p

0

]
, G2 = (In − DD+)

[
0
Ip

]
, D+ = (DT D)

−1
DT

where D+ is the generalized inverse of D. The linear matrix equality in (52) is difficult to
solve directly, so it becomes a minimization problem [35].

In actuator fault reconstruction, the adaptive method in (54) is proposed to solve the
problem and to obtain an accurate solution.

Proof of Proposition 4. From (52), D1 + J−1
1 J2D2 = 0 is equivalent to (50) and can be

written as follows: [
J1 J2

]
D = 0 (61)

Under rank
[

D
0

]
= rank[D], (62) can be rewritten as

[
J1 J2

]
= Ω(In − D(DT D)

−1
DT) (62)

where Ω denotes the design matrix. Substituting J1 = Ω(In − DD+)

[
In−p

0

]
and

J2 = Ω(In − DD+)

[
0
Ip

]
into (53) and using the Schur complement, (54) can be proven.

For the following function:

V = V1(e1) + V2(e2) = eT
1 J1e1 + eT

2 J0e2 (63)
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where Jx =

[
J1 0
0 J0

]
is a new coordinate and J0 = −JT

2 J−T
1 J2 + J3.

Combined with (50), the time derivative of V1 can be expressed as follows:

.
V1 =

.
eT

1 J1e1 + eT
1 J1

.
e1

= 2eT
1 J1U1

(
ξ
(
U−1x, t

)
− ξ
(
U−1 x̂, t

))
+ eT

1

(
AT

1 J1 + J1 A1

)
e1 + 2eT

1 J1U1ψ
(64)

Similarly, the derivative of V2 together with (51) can be written as

.
V2 =

.
eT

2 J0e2 + eT
2 J0

.
e2

= 2eT
2 J0U2

(
ξ
(
U−1x, t

)
− ξ
(
U−1 x̂, t

))
+ eT

2
(

AT
0 J0 + J0 A0

)
e2 + 2eT

2 J0 A3e1
+2eT

2 J0D2 fa + 2eT
2 J0U2ψ− 2eT

2 J0w3

(65)

As the forms

‖U−1
[

x
y

]
−U−1

[
x̂
y

]
‖ = ‖U−1

[
e
0

]
‖ = ‖e‖ (66)

and
‖ξ(U−1x, t)− ξ(U−1 x̂, t)‖ ≤ γξ‖e‖ (67)

exist, if ε > 0, then

2XTY ≤ 1
ε

XTX + εYTY (68)

Combining (65)–(68), it has

.
V =

.
V1 +

.
V2

= eT
1 ∏1 e1 + eT

2 ∏2 e2 + 2eT
2 J0 A3e1 + 2eT

1 J1U1ψ + 2eT
2 J0U2ψ

(69)

If ψ = 0, then
.

V ≤
[

e1
e2

]T[ Θ1 AT
3 J0

J0 A3 Θ2

][
e1
e2

]
(70)

Under (53), if
[

Θ1 AT
3 J0

J0 A3 Θ2

]
< 0, then

.
V < 0; that is, when t→ 0, e→ 0 .

If ψ 6= 0, to achieve robustness to disturbance, the performance index can be intro-
duced [36]:

Γ =
∫ ∞

0
(‖e‖2 − µ‖ψ‖2)dt (71)

As V(∞) > 0, V(0) = 0. Then, (72) becomes

Γ =
∫ ∞

0 (‖e‖2 − µ‖ψ‖2 +
.

V)dt−
∫ ∞

0

.
Vdt

≤
∫ ∞

0


 e1

e2
ψ

T 1 0 0
0 1 0
0 0 −µ

 e1
e2
ψ


dt

(72)

Under (53), then Γ < 0; that is, ‖e‖2 ≤
√

µ‖ψ‖2. Therefore, the detection indicator has
been constructed. �

3.2.3. Reachability Condition Analysis

The sliding-mode surface is defined for the error dynamics (50) and (51) as follows:

ς = {(e1, e2)|e2 = 0} (73)
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Proposition 5. For the designed observer (48), if the LMI formulated in (54) and gain η1 from (49)
Error! satisfying (75) are solvable, the state error dynamics in (50) and (51) can be driven to the
sliding-mode surface in finite time and remain on it:

η1 ≥‖ A3 ‖ ε + γξ ε + χ + η2 (74)

where ‖ e ‖≤ ε and η2 is a scalar.

Proof of Proposition 5. For the Lyapunov candidate function as W(e2) = eT
2 J0e2, the

derivative of the Lyapunov function W with respect to time is as follows:

.
W =eT

2 (AT
0 J0 + J0 A0)e2 + 2eT

2 J0 A3e1 + 2eT
2 J0U2(ξ(U−1x, t)− ξ(U−1 x̂, t))

+2eT
2 J0D2 fa + 2eT

2 J0U2ψ− 2eT
2 J0w3

(75)

As AT
0 J0 + J0 A0 < 0, ‖e‖ ≤ ε, can be written as

.
W ≤2eT

2 J0 A3e1 + 2eT
2 J0U2(ξ(U−1x, t)− ξ(U−1 x̂, t))− 2(‖D2‖ρa + η1)‖J0e2‖

+2eT
2 J0D2 fa + 2eT

2 J0U2ψ
≤ 2‖J0e2‖(‖A3‖‖e1‖+ γ f ‖e1‖+ ‖D2‖ρa + χ− ‖D2‖ρa − η1
= 2‖J0e2‖(‖A3‖ε + γ f ε + χ− η1)

(76)

If (75) exists, then
.

W can be expressed as

.
W ≤ −2η2‖J0e2‖ ≤ −2η2

√
Wλmin(J0) (77)

where λmin(J0) is the smallest eigenvalue of J0.
Under Proposition 5, a sliding motion is achieved and e2 =

.
e2 = 0 represents perfect

sliding. The error dynamics in (51) can be rewritten as (79). Because the discontinuous
vector in (49) can only be approximated, the error dynamics cannot slide perfectly on
surface ς [28,37]:

0 = A3e1 + U2(ξ(U−1x, t)− ξ(U−1 x̂, t)) + D2 fa + U2ψ− w3eq (78)

where w3eq is the equivalent output error injection.
Define f̂a = D+

2 w3eq. Then, (79) can be expressed as

fa − f̂a = −D+
2 U2

(
ξ
(

U−1x, t
)
− ξ
(

U−1 x̂, t
))
− D+

2 A3e1 − D+
2 U2ψ (79)

As ‖ e ‖2≤
√

µ ‖ ψ ‖2, computing the norm of (80) yields

‖ fa − f̂a ‖2≤(
√

µσmax(D+
2 A3) +

√
µr f σmax(D+

2 ) + σmax(D+
2 )) ‖ ψ ‖2

=(
√

µβ1 + β2) ‖ ψ ‖2
(80)

where β1 = σmax(D+
2 A3) + r f σmax(D+

2 ) and β2 = σmax(D+
2 ).

If there is a small ∆ =
(√

µβ1 + β2
)
‖ ψ ‖2, then f̂a can be written as

f̂a = kν
D+

2 J0(y− ŷ)
‖ J0(y− ŷ) ‖ +δ

(81)

where ν is the adaptive rate, β1 = σmax(D+
2 A3) + γξ σmax(D+

2 ), and β2 = σmax(D+
2 ). �

From (64), the actuator fault estimation is related to the system uncertainties and
∆. Generally, it is impossible to accurately estimate actuator faults in the presence of
unknown disturbances. However, when µ is sufficiently small, the proposed method can
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effectively maintain the shape of the fault signal. By minimizing µ, the robustness of the
proposed observer to the unknown signal can be enhanced, and the ideal accuracy of the
fault estimation can finally be obtained. Table 3 summarizes the steps of actuator fault
reconstruction.

Table 3. Actuator fault reconstruction steps.

Steps Description

Step 1 Set system matching conditions and make relevant assumptions
based on fault detection

Step 2 Calculate the tensor matrix and transform the output matrix in
the system model

Step 3 Calculate the nonsingular transformation matrix to further
decouple the system model

Step 4 Design the observer algorithm according to the transformed
model

Step 5 The idea of solving the problem is converted into LMI form, and
the observer parameters are calculated by the LMI algorithm

Step 6 Reconstruct actuator faults through adaptive fault reconstruction

In the following section, a simulation is used to verify the performance of the proposed
method. It is worth noting that the simulation in this study uses the longitudinal model of
fixed-wing aircraft, and this method is also applicable to the lateral model of fixed-wing
aircraft, so the method proposed in this paper is universal.

4. Simulation Results

This section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.

As shown in Figure 3, a De Havilland DHC-2 “Beaver” aircraft with Air Canada
number 1244 was used as the simulation object to verify the overall performance of the
proposed adaptive fault detection and fault reconstruction method [38]. Fixed-wing aircraft
have been extensively studied from flight control design to fault reconstruction. Under
certain flight conditions and disturbances, the control response relation of the aircraft
motion equation includes the actuator of the input unit and the sensor of the output unit.
Thus, the importance of actuator fault diagnosis and reconstruction is critical. Figure 4
shows the basic control–response relationship for “Beaver”, and Table 4 lists the relevant
parameter values.
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Table 4. “Beaver” parameter definitions.

Parameter Value

Wing span b 14.63 m
Wing area S 23.23 m2

Mean aerodynamic chord c 1.5875 m
Wing dihedral 1◦

Wing profile NACA 64 A 416
Fuselage length 9.22 m

Max. take-off weight 2280 kg
Empty weight 1497 kg
Max. power 450 Hp at n = 2300 RPM, pz = 26”Hg

The dimensional derivative parameters of the aircraft are as follows: Lp = −5.4022,
Lδα = −7.2976, Mq = −3.0292, Xα = 5.4534 Mδe = −10.6, Xv = −0.0389, XδT = 0.7489,
Nr = −0.552, and Nδr = −2.6058. Using this model, the correlation coefficient matrix was
calculated to be

Al =


−0.0384 5.4145 −0.4084 −9.7766
−0.0085 −1.2882 0.9764 0.0022
0.0124 −6.7753 −3.0292 0

0 0 1 0



Bl =


−0.7271 −1.6888
−0.1104 −0.3645
−10.6009 2.2471

0 0

Cl =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


After selecting the faults to be injected from the failure mode library, the fault injection

experiment is started. The experimental procedure is as shown in Figure 5. To simulate
faults, a flight control simulation model was designed, as shown in Figure 6.

Aerospace 2023, 10, 422 17 of 28 
 

 

 
Figure 3. The model of De Havilland DHC-2 “Beaver” aircraft. 

 
Figure 4. Basic control–response relationships for “Beaver”. 

 
Figure 5. Fault injection flow chart. 

 
Figure 6. Flight control simulation model. 

The simulation module consists of four parts: a longitudinal linearization model of 
an aircraft, an altitude control unit with a stability enhancement algorithm, a speed control 
unit, and a fault simulation module. The microvariation of the control input on the eleva-
tor drive motor involved in simulation case 1 is shown in Figure 7. In the simulation per-
formed in this study, the time of fault was consistent; however, to improve the readability 
of this article, the timeline is slightly adjusted in the displayed graphs. The linearized lon-
gitudinal state matrix of the “Beaver” aircraft was input into the flight control simulation 
model to collect the vertical velocity (Figure 8) and flight track of the aircraft under fault-
free conditions (Figure 9) and the vertical velocity, altitude, and flight track of the aircraft 

Figure 5. Fault injection flow chart.



Aerospace 2023, 10, 422 17 of 27

Aerospace 2023, 10, 422 17 of 28 
 

 

 
Figure 3. The model of De Havilland DHC-2 “Beaver” aircraft. 

 
Figure 4. Basic control–response relationships for “Beaver”. 

 
Figure 5. Fault injection flow chart. 

 
Figure 6. Flight control simulation model. 

The simulation module consists of four parts: a longitudinal linearization model of 
an aircraft, an altitude control unit with a stability enhancement algorithm, a speed control 
unit, and a fault simulation module. The microvariation of the control input on the eleva-
tor drive motor involved in simulation case 1 is shown in Figure 7. In the simulation per-
formed in this study, the time of fault was consistent; however, to improve the readability 
of this article, the timeline is slightly adjusted in the displayed graphs. The linearized lon-
gitudinal state matrix of the “Beaver” aircraft was input into the flight control simulation 
model to collect the vertical velocity (Figure 8) and flight track of the aircraft under fault-
free conditions (Figure 9) and the vertical velocity, altitude, and flight track of the aircraft 

Figure 6. Flight control simulation model.

The simulation module consists of four parts: a longitudinal linearization model of an
aircraft, an altitude control unit with a stability enhancement algorithm, a speed control
unit, and a fault simulation module. The microvariation of the control input on the elevator
drive motor involved in simulation case 1 is shown in Figure 7. In the simulation performed
in this study, the time of fault was consistent; however, to improve the readability of this
article, the timeline is slightly adjusted in the displayed graphs. The linearized longitudinal
state matrix of the “Beaver” aircraft was input into the flight control simulation model
to collect the vertical velocity (Figure 8) and flight track of the aircraft under fault-free
conditions (Figure 9) and the vertical velocity, altitude, and flight track of the aircraft under
the fault condition (Figures 10–12, respectively). In comparison, when the fault signal is
added at 50 s, there will be slight fluctuations in the vertical velocity and altitude control
of the aircraft. It can be seen from the flight track chart that the pitch angle of the aircraft
increases slightly, and the altitude also increases.
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0.7071 0.7071 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

− 
 
 
 ℜ =
 
 
  

 ,

0.7071  0.7071 0 0 0
0.7071 0.7071 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 
 − 
 =
 
 
  

  . Then,

1

0.8345 4.7076 1.9559 0.1513 0
0.5162 4.7460 0.5847 0.1513 0
0.7804 0.4508 0.5519 0 0
0.7071 0.7071 0.1369 0 0

0 0 1.0093 0 0

A −

− − 
 − 
 = − −
 − 
  

   

5.1616 0.2495
5.1713 0.3134
0.1993 2.605

0 0
0 0

B

− 
 − 
 = − −
 
 
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Here, the detection and estimation of actuator element and gain faults are discussed to
verify the proposed method. In addition, the robustness of the method to model uncertain-
ties and disturbances is confirmed. We compare the performance of the proposed method
with those of previously reported methods to verify its effectiveness.

The performance of the proposed method is evaluated via the simulation of actuator
process and gain failures.

In the following simulation, we utilized E = [1 1 0 0]T , x(0) = [0, 0, 0, 0]T , and

ξ(x, t) =
[
sin(x2) 0 sin(x2) 0

]T . To transform the original model, the nonsingular
transformation matrices < and Q were calculated as follows:

< =


0.7071 −0.7071 0 0 0
0.7071 0.7071 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, Q =


0.7071 0.7071 0 0 0
0.7071 −0.7071 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

. Then,

QAQ−1 =


−0.8345 4.7076 −1.9559 0.1513 0
0.5162 −4.7460 0.5847 0.1513 0
0.7804 −0.4508 −0.5519 0 0
−0.7071 0.7071 0.1369 0 0

0 0 1.0093 0 0

 QB =


5.1616 −0.2495
−5.1713 0.3134
−0.1993 −2.605

0 0
0 0

. In

the simulation, the system disturbance is assumed to be bounded as ‖ ψ ‖ ≤ ` with ` = 1.5
and γ = 1. By solving the LMI feasibility problems with the YALMIP toolbox, the following
parameters were obtained:

α1 = 1.6022, µ = 0.0025, P1 = 0.0038, P2 =
[
0.0106 −0.0483 0

]

P0 =

19.454 813.02 0
813.02 3.6131 0

0 0 3.6131

, F =

[
−2620.7 1086.7 −0.1082 0.0088
1542.5 −21695 −0.0064 0.0095

]

L0 =


42.0899 −1.4076 15.8202 1.4011
2.4884 1.7884 1.1792 1.3974
0.3604 0.0645 0.9257 0

0 0.5047 0 0.9255


Case 1: Actuator aging fatigue may cause incipient faults. The trend of incipient faults

is slow. To simulate an incipient fault, it is preferable to choose the microvariation of the
control input on the elevator drive motor as the simulation object. The system disturbance
was selected as ψ(t) = 0.02× sin(300t), corresponding to high-frequency interference. The
incipient faults occurring in the input channel of the system Bl = Dl were considered.
Figures 11–13 show the detection of the fault fa1 = 0.03× e0.0667t with t > 10 s via the
proposed method with ν = 60, k = 5 and δ= 0.01.
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If there is no actuator fault in the system according to Remark 2, the evaluation
function Jr approaches zero. Jr is close to zero before 10 s. When an actuator fault occurs,
the evaluation function Jr deviates from zero, as shown in Figures 13–15 demonstrate that
Jr exceeds the threshold function Jth at approximately 10.15 s, which is the time at which
the actuator fault occurs. Therefore, an actuator fault is detected and an alarm signal is
generated. The convergence of the evaluation function shows that the proposed method is
accurate for fault estimation of the actuator and that the adaptive reconstruction method is
accurate for actual fault estimation.

Aerospace 2023, 10, 422 21 of 28 
 

 

method is accurate for fault estimation of the actuator and that the adaptive reconstruction 
method is accurate for actual fault estimation. 

Figures 16–19 present the trajectories of the state variables and their estimated values. 
These results demonstrate that the proposed method can accurately estimate the states. 
Further, the proposed method can avoid the influence of system interference and accu-
rately reconstruct actuator faults. Minimizing the coefficient value of the proposed 
method improves the robustness of unknown signals and achieves the desired actuator 
fault reconstruction and state variable accuracy. 

 
Figure 13. Flight track under fault conditions. 

 
Figure 14. Evaluation function and threshold. 

 
Figure 15. Actual fault and its estimation with DAF. 

Figure 14. Evaluation function and threshold.

Aerospace 2023, 10, 422 21 of 28 
 

 

method is accurate for fault estimation of the actuator and that the adaptive reconstruction 
method is accurate for actual fault estimation. 

Figures 16–19 present the trajectories of the state variables and their estimated values. 
These results demonstrate that the proposed method can accurately estimate the states. 
Further, the proposed method can avoid the influence of system interference and accu-
rately reconstruct actuator faults. Minimizing the coefficient value of the proposed 
method improves the robustness of unknown signals and achieves the desired actuator 
fault reconstruction and state variable accuracy. 

 
Figure 13. Flight track under fault conditions. 

 
Figure 14. Evaluation function and threshold. 

 
Figure 15. Actual fault and its estimation with DAF. Figure 15. Actual fault and its estimation with DAF.

Figures 16–19 present the trajectories of the state variables and their estimated val-
ues. These results demonstrate that the proposed method can accurately estimate the
states. Further, the proposed method can avoid the influence of system interference and
accurately reconstruct actuator faults. Minimizing the coefficient value of the proposed
method improves the robustness of unknown signals and achieves the desired actuator
fault reconstruction and state variable accuracy.
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According to the second part of the theory, if there is no fault, the evaluation function 
rJ  approaches zero. In this case, rJ  is close to zero before 8 s. When an actuator fault 

occurs, the evaluation function rJ  deviates from zero, as shown in Figure 20. Figures 20 
and 21 demonstrate that rJ  exceeds the threshold function, thJ , at 8.2 s. The convergence 
of the evaluation function shows that the proposed method can accurately estimate actu-
ator faults, while the adaptive reconstruction method can accurately estimate actual faults. 

The proposed method is verified using two fault examples, and the simulation results 
are compared with those obtained using the existing methods. For the incipient fault de-
tection of closed-loop control systems, the total measurable fault information residual 
(ToMFIR) was proposed for the first time [39], which can collect comprehensive fault in-
formation in a closed-loop system. The ToMFIR consists of two parts: output residuals 
collected at the system output and controller residuals collected at the controller output. 
The output residuals represent the fault information for which the controller cannot com-
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Case 2: In this case, an actuator gain fault (partial fault of the actuator control input)
occurs. When the aircraft flight control system is unloaded, it is easily disturbed by the
external airflow during flight, and the driving voltage cannot be accurately located on
the reference voltage, which leads to small jumps and faults in the control input. This
type of fault is minor, causing a very small number of faults, and is not easily detected.
Partial faults and weak jumps of the control inputs were simulated in Simulation 2. The
disturbance was selected as ψ(t) = 0.02× sin(300t), corresponding to high-frequency
interference. Consider the incipient faults occurring in the input channel of the system.
Figures 20 and 21 show the detection of the fault fa1 = −0.3ε(t− 8) with t ≥ 8 s via the
proposed method, with ν = 42, k = 1.5 and δ= 0.02.
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According to the second part of the theory, if there is no fault, the evaluation function
Jr approaches zero. In this case, Jr is close to zero before 8 s. When an actuator fault occurs,
the evaluation function Jr deviates from zero, as shown in Figure 20. Figures 20 and 21
demonstrate that Jr exceeds the threshold function, Jth, at 8.2 s. The convergence of the
evaluation function shows that the proposed method can accurately estimate actuator
faults, while the adaptive reconstruction method can accurately estimate actual faults.

The proposed method is verified using two fault examples, and the simulation results
are compared with those obtained using the existing methods. For the incipient fault
detection of closed-loop control systems, the total measurable fault information residual
(ToMFIR) was proposed for the first time [39], which can collect comprehensive fault in-
formation in a closed-loop system. The ToMFIR consists of two parts: output residuals
collected at the system output and controller residuals collected at the controller output.
The output residuals represent the fault information for which the controller cannot com-
pensate, and the compensated fault information exists in the controller residuals. In [39],
an improved ToMFIR-based incipient fault detection and estimation method was proposed
and applied to a high-speed railway vehicle suspension system. Although the improved
ToMFIR method considered the system disturbance and utilized a more general frame-
work, the incipient fault estimation method developed in this study removes the fault
type limitation in [39]. The incipient fault estimation methods were used to estimate the
faults of typical fixed-wing aircraft actuators, as shown in Figures 15 and 22. The detection
time, mean square error (MSE), and robustness of the methods to uncertainty were inves-
tigated. Table 5 summarizes the results of comparing the effectiveness of adaptive fault
detection and fault reconstruction with that of the method reported in [39]. Comparisons
of Figure 14 with Figures 15 and 22 with Figure 23 reveal that the proposed method can
match the actual actuator values more closely than the previous approach and thus has
better estimation performance.
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5. Conclusions

A robust fault detection and reconstruction method is proposed for a fixed-wing
UAV model, which is represented by a nonlinear system with modeling and measurement
uncertainties. Many previous studies have assumed that the state of the system can be
measured and that the fault function is an additional term, which is different from the
current approach. The method developed in this study focuses on fault detection and
reconstruction of multiplicative actuator faults. Most component and actuator faults can be
represented as multiplication faults, which the proposed method can detect and reconstruct.
The developed method utilizes a Luenberger SMO and a robust adaptive strategy, which
can simultaneously estimate the system state, generate residual signals, evaluate residual
and reconstruct faults, and realize incipient fault detection and reconstruction. Finally, a De
Havilland DHC-2 “Beaver” aircraft with Air Canada number 1244 was taken as an example
to verify the effectiveness and robustness of the proposed method.

In the future, we will consider applying this method to more types of aircraft models
and extend the fault detection and reconstruction method to the sensor.
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Table A1. Aircraft parameter definitions.

Parameter Meaning Units

β Sideslip angle rad
p Roll rate rad s−1

γ Yaw rate rad s−1
.
φ Back angle rad
.
ψ Yaw angle rad
θ Pitch angle rad
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Table A1. Cont.

Parameter Meaning Units

v True airspeed m s−1

α Attack angle rad
q Pitch rate rad s−1

δa Deflection of ailerons rad
δr Deflection of rudder rad
δe Deflection of elevator rad
δ f Deflection of flaps rad
fa Actuator fault of aircraft

Dld, Dl
Known distribution matrix of

actuator faults

Table A2. Model parameter definitions.

Variable Definition

xld [β, ρ, γ, φ, ψ]T

xl [V, α, q, θ]T

µld [δa, δγ]
µl [δe, δ f ]

Ald


Yβ αφ + Yρ Yγ − 1 g cos θφ/Vφ 0
Lβ Lρ Lγ 0 0
Nβ Nρ Nγ 0 0
0 1 tan θφ 0 0
0 1 1/ cos θφ 0 0


Bld

[
0 Lδα Nδα 0 0

Yδγ Lδγ Lδγ 0 0

]T

Cld 5D identity matrix

Al


XV Xα + g cos γφ 0 −g cos γφ

−ZV −Zα + g sin γφ/Vφ 1 −g sin γφ/V
MV −MαZV Mα −Mα(Zα − g sin γφ/Vφ) Mq + Mα −Mα sin γφ/V

0 0 1 0


Bl

[
Xδd −Zδd Mδd −MαZδd 0
Xδγ −Zδρ Mδρ −MαZδρ 0

]T

Cl 4D identity matrix
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