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Abstract: To improve the performance of intercepting a target with different maneuvering modes and
changing the mode suddenly during the interception, a new adaptive control algorithm for the IGC
(Integrated Guidance and Control) system is proposed, using the global terminal sliding mode control
method and a DNN (Deep Neural Network). Firstly, the missile-target problem is formulated and a
new strict-feedback nonlinear IGC model with mismatched uncertainties is established. Secondly,
the paper divides the IGC system into four subsystems, including a guidance subsystem, overload
subsystem, attitude subsystem and the deep neural network subsystem. To transform the control
signal between each subsystem and avoid the “differential explosion” problem, the paper defines
the SOF (Second Order Filter). Thirdly, in combination with a deep neural network, a new modified
global terminal sliding mode surface and the adaptive control law are designed. At last, using the
Lyapunov theory, the stability of the IGC system is analyzed. Finally, to illustrate the effectiveness
of the proposed algorithm, several simulation cases are given. The simulation results show the
superiority of the proposed algorithm in adapting different maneuvering modes during the whole
interception, improving the control performance and having a high interception accuracy.

Keywords: adaptive control algorithm; GTSMC-DNN; IGC system; deep neural network; different
maneuvering modes

1. Introduction

Nowadays, with the development of aviation and aerospace technologies and the
better performance of missile guidance and control (G&C) systems, precise strikes have
become easier to achieve in modern military affairs, especially in the Gulf war (1991),
Afghan war (2001), Russia–Ukraine war (2022) [1], etc. As is known to all, when designing a
new guidance and control system for a missile, the traditional process often splits the missile
into a guidance loop (guidance law) and a control loop (autopilot). The traditional method
can intercept a target with little or no maneuvering capability. In terms of intercepting high
speed and great maneuvering targets, the coupling effect between the control subsystem
and the guide subsystem must become stronger. Moreover, the performance of the missile
may degrade, and the closed loop of the missile may even become unstable. Thus, the
IGC system has lately attracted the attention of researchers, due to much consideration
about the coupling between the control subsystem and the guide subsystem. Compared
with the traditional design process, the IGC system can fully consider the coupling effect
between the guidance system and the control system. Thus, the IGC system is better suited
to intercept maneuvering targets. Furthermore, using the IGC system can also reduce the
iterative process, which may speed up the rate of progression of a new missile. Therefore,
many studies have investigated the IGC controller design. In terms of interception with
an impact angle constraint, a novel integrated guidance and control (IGC) law, which
uses the high-order fully actuated system approach and the cascaded linear extended
state observer (LESO), was researched in [2]. To solve the problem of a maneuvering
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target, a new sliding mode control algorithm was proposed in [3]. For this approach,
the researchers used the liner sliding mode surface, which may have been unable to
determine the convergence time. The state-of-the-art integrated guidance and control (IGC)
systems were discussed in [4]. Furthermore, the study envisages that artificial intelligence
(AI) will become the future research direction, especially in the research of intelligent
neuro-fuzzy systems. However, this paper did not describe how to implement the AI
approaches specifically. To address the problem of intercepting a maneuvering target with
a desired terminal impact angle, a new guidance law based on a nonlinear relative virtual
guidance model and the optimal control was proposed in [5]. To solve the problem of
partial measurement information and unmatched uncertainties in strap-down hypersonic
flight vehicles, a new IGC control scheme was proposed in [6] by combining with the
barrier Lyapunov function, backstepping methodology and the finite-time disturbance
observer. Although this method has several highlights, it does not take the dynamics
of the actuator into account. By using the observer to estimate the target maneuver and
disturbance information for the guidance law design, a new IGC law with impact-angle
constraints utilizing DSC and N-ESO was proposed in [7]. Although this method has
several highlights, it does not take the actuator saturation into account. In [8], the RG
(reference and command governors) approach was proposed, which assumes that the inner
loop can track the reference trajectory, with fine disturbance rejection capability in the cases
without constraints. A certain constrained optimization algorithm was then exploited to
generate the reference trajectory so as to prevent constraint conflicts with the receding
horizon strategy. However, the high calculation cost makes them implementable only
with a low sampling rate. In [9], considering the impact time constraint, a new fixed-time
nonlinear circular guidance law was designed for intercepting a stationary target. However,
this method may not be suitable for intercepting a maneuvering target. In [10], a novel
non-singular terminal sliding mode control-based integrated missile guidance and control
system with impact angle constraint was proposed. While this approach divided the
IGC system into a guidance system and a control system, each subsystem was designed
separately. Considering the input saturation and constraints of the attack angle, sideslip
angle and velocity deflection angle in the IGC system, a novel adaptive IGC scheme was
proposed by combing dynamic surface control with a barrier Lyapunov function (BLF)
in [11]. However, the interception performance was not better when the target had a
larger maneuver. Considering the intercept impact angle, an analytical solution for the
interception of a fixed target was proposed in [12] by using the pure PNG law. Using
this approach, the researchers established the relationships between the intercept impact
angle, the initial relative motion state and the PNG coefficient. Based on this, they derived
an analytical expression for the intercept impact angle. In [13], the researchers designed
an impact-angle-constrained suboptimal guidance law using the state-dependent Riccati
equation (SDRE) technique and addressed the terminal acceleration constraint by adjusting
the guidance coefficients. However, these guidance laws often assume that the target is
stationary and, thus, do not perform well when the target is maneuvering. In [14] the
researchers proposed a three-dimensional guidance law for intercepting a maneuvering
target with both impact angle and impact time constraints in which the quadratic LOS
profiles in the pitch and yaw planes were suggested, respectively. Assuming that the LOS
angle could be shaped as a polynomial function of range-to-go, an impact time constrained
guidance law using a range-based line-of-sight shaping strategy was proposed in [15].
Treating the heading angle, LOS angle and flight time as state variables, a new linearized
dynamic model of the missile was proposed in [16]. Based on this, a highly constrained
guidance algorithm was investigated, and a generalized semi-analytical solution for a
guidance command with IAT constraints was derived. In [17–19], the SMC methods
were also employed to control the impact time. Many impact time control guidance laws
based on SMC methods have complicated structures, making it stressful to deal with
the look angle constraint. Moreover, to satisfy impact time constraint, guidance gains
or parameters are often tuned by trial and error, or by using an optimization routine,
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which can make online calculations less efficient. In [20], a novel fixed-time distributed
cooperative guidance law with impact angle constraint is proposed to solve the guidance
problem of multiple missiles attacking a maneuvering target simultaneously in plane. By
using the nonsingular terminal sliding mode control, it designs a cooperative guidance
law on the line-of-sight (LOS) direction, which can guarantee that all missiles hit the
maneuvering target simultaneously. Combining repetitive control (RC) with a sliding mode
control method, a three-dimensional homing guidance law with impact angle constraint
is proposed in [21]. However, this approach did not consider the dynamics of the rudder.
Considering the impact time and the impact angle constraints, a new shaping approach
in proposed to increase the mission effectiveness in [22]. In addition, to the shaping
of the look angle, the guidance law in [23] is derived by shaping the range as a time-
dependent polynomial. The method also solves the impact time problem under the look
angle constraint, showing robustness under lagged response and seeker noise. In terms
of the excessive acceleration change in the terminal control stage by PNG, a new strategy
for acceleration threshold control based on the gravity-compensated PNG law is proposed
in [24]. To attack a stationary target with the desired impact angle and time, a new nonlinear
guidance law is developed in [25]. Using this method can solve the problem indeed.
However, this method is more suitable for intercepting a stationary target. Additionally,
to hit the stationary ground targets in the specified direction, a nonlinear impact angle
control guidance law based on Lyapunov stability theory is proposed in [26]. However,
this method just considers how to intercept stationary ground targets. For maneuvering
targets, this approach has not been investigated. Based on the analysis of the classical
state-dependent Riccati equation scheme, a new three-dimensional guidance law was
designed in [27]. However, this research did not take any constraints into consideration. To
solve the finite-horizon tracking problem for input-affine nonlinear systems with specified
terminal conditions, an impact angle guidance based on finite-horizon robust optimal
control is proposed in [28]. In [29], using reinforcement learning, a new guidance law
that uses observations, consisting solely of seeker line-of-sight angle measurements and
their rate of change, is presented. However, the simulation result is not better when
intercepting great maneuvering targets. In terms of the aerodynamic uncertainty and
strong nonlinearity in the high angle-of-attack (AOA) flight phase, an all-aspect attack
guidance law is proposed in [30]. However, this method has a fatal disadvantage; the
method must have sufficient training data obtained from CFD (Computational Fluid
Dynamics). In addition, the real-time performance is unsatisfactory. Considering the time
and field-of-view (FOV) constraints, a new homing missile guidance law, which uses the
sliding mode control method, is presented in [31]. Relying on model linearization, a FOV
limited-time and angle constraint optimal guidance law was proposed in [32]. However, it
is forced on the stationary target. To guarantee that the LOS angle tracking errors are zero,
a new fast fixed-time nonsingular sliding manifold was designed in [33]. In this approach,
when designing the novel sliding mode reaching law, the sat function is used to weaken
the chattering phenomenon. However, this method was only suitable for targets with little
or no maneuvering capabilities. In [34], considering the impact angle constraint, a new
cooperative guidance law for attacking the ground target was presented. In [35], to improve
the accuracy of interception, a novel continuous adaptive finite time guidance (CAFTG) law
was presented for homing missiles. In this approach, the nonlinear disturbance observer
and sliding mode control theory are used to estimate the acceleration of a target and
guarantee finite time convergence. In [36], considering the impact time constraint, an
ITCG strategy was presented based on the exact time-to-go solution. In this method, the
important parameters in terms of the initial configuration can be found based on the impact
time analysis. In [37], a three-dimensional (3D) robust guidance law was proposed for
bank-to-turn (BTT) missiles against the couplings and target maneuver. In this approach, to
indicate whether they strengthened or weakened the system stability, a new QI (Qualitative
Indicator) was designed based on the Lyapunov stability theory for both coupling and target
maneuvering terms. To fight against maneuvering targets with terminal angle constraints,
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a new three-dimensional guidance law based on the time-varying sliding mode control
methodology was proposed in [38]. This approach used the fractional power-extended state
observer to estimate the unknown target acceleration and reduce the adaptive switching
gain. Then, a newly sliding mode surface was established by introducing a time base
generator function. Considering different seekers’ field-of-view (FOV) constraints, a new
distributed three-dimensional (3D) nonsingular cooperative guidance law was proposed
for multiple missiles in [39]. However, this method may not be suitable for intercepting
maneuvering targets, especially intercepting a target with different maneuvering modes.
To analyze the capture region of the composite guidance law for a missile with a strapdown
seeker, a FOV and angle constraint guidance law was derived in [40]. Considering the
time-varying speed, a new look angle shaping guidance law with an impact angle and
seeker’s field-of-view (FOV) constraints was proposed in [41]. However, the derived law
can only intercept stationary targets. Considering the lateral acceleration limit, the field
of view limit and the sensor measurement noises, a new three-dimensional guidance law
with a multi-constrained interceptor was proposed in [42]. In this method, the extended
Kalman filter was used to estimate parameter uncertainties and to filter out the noises.

In summary, all above approaches have been researched to solve the IGC problem.
However, when the target has different maneuvering modes and changes the maneuvering
mode suddenly, the interception performance will become worse. Therefore, to solve this
main problem, the paper proposes a new adaptive control algorithm for IGC system by
introducing a deep neural network to the system. In this paper, the IGC system is divided
into four subsystems, including the guidance subsystem, the overload subsystem, the
attitude subsystem and the deep neural network subsystem. Considering the uncertain
items and the adaptive item, a new fourth order IGC model is established. In this model, to
transform the control signal between each subsystem and avoid a “differential explosion”, a
new second order filter is defined. Finally, using the terminal sliding mode control method,
the second order filter and the deep neural network, the paper designs the adaptive
controller for IGC system. The main advantage of the method is that it cannot only increase
the convergence speed of the system states, but can also improve the adaptive interception
capability of the missile. Thus, the main contributions of this study are as follows:

1. In order to improve the adaptive interception capability of the missile, a new adaptive
IGC nonlinear mathematic dynamic model with deep neural network is established.
In this model, the IGC system is divided into four subsystems including guidance
subsystem, overload subsystem, attitude subsystem and the deep neural subsystem.

2. Aiming to transform the control signal between each subsystem and avoid the “differ-
ential explosion”, the paper defines a new SOF (Second Order Filter). Additionally, to
formulate the uncertain items, the paper defines the corresponding equation.

3. Combined with GTSMC, SOF and DNN, the paper designs a new IGC adaptive
controller to intercept the maneuvering target, which has different maneuvering
modes and changes the maneuvering mode suddenly during the interception process.

4. Using Lyapunov’s theory, the closed-loop system was proved to be stable. Finally,
several simulation results demonstrated the superiority of the method proposed in
this paper, compared with the previous approaches.

In short, the paper is organized as follows: the introduction is stated in Section 1.
Then, the target with different maneuvering mode, the missile-target interception problem
and the dynamics model of the missile and IGC dynamic model with uncertain items are
formulated in Section 2. The adaptive controller is designed by combining deep neural
network and the global terminal sliding mode control in Section 3. The stability of the
closed-loop system is proved using Lyapunov’s theory in Section 4. The simulation results
and analysis are presented in Section 5. Finally, the conclusions are summarized in Section 6.
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2. Problem Formulation

In this section, the engagement kinematics of missile-target will be formulated. Then,
the paper will drive the strict-feedback IGC model with deep neural network in the
pitch plane.

Before establishing the engagement kinematics, the paper will introduce the intercep-
tion scenario where the target has different maneuver modes. The interception scenario is
shown in Figure 1.
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Figure 1. The target with different maneuver modes during the interception.

As shown in Figure 1, it is clear that the target maneuver modes consist of two phrases
during interception. In the first phrase, the target adopts the S-type maneuver mode to
avoid the missile. As the missile approaches the target, the target makes a vertical maneuver
suddenly to avoid being intercepted. It is obvious, according to the real-time battlefield,
that the target can adopt various maneuver modes to avoid being intercepted. Thus,
this will become a great test for the interceptor, because the current interceptor’s control
and guidance parameters are fixed. In these conditions, the interceptor’s performance is
comparatively poor, when facing the rapidly changing battlefield. Thus, to improve the
adaptive capability of the missile, the paper introduces the deep neural network to the
control system and derives the corresponding adaptive guidance law.

2.1. Engagement Kinematics

Before establishing the dynamics of the missile-target and the strict-feedback IGC
model with deep neural network, the following assumptions will be considered for analyz-
ing and designing of the control law.

Assumption 1. The speed of a pursuer is constant.

According to the real battlefield shown in Figure 1, we can obtain the relative motion
of the missile–target, and its pursuit is shown in Figure 2. At the same time, the dynamics
of the missile steered by the tail aerodynamic control surfaces in the pitch plane is shown
in Figure 3.

As can be seen in Figure 2, which gives the pursuit geometry of the missile–target in the
pitch plane, R denotes the relative distance between the missile and the target. P̂x̂ŷ denotes
the inertial coordinate system. vT , θT and aT denotes the velocity, the flight path angle, and
the acceleration of the target, respectively. Similarly, vm, θm and am represent the velocity,
the flight path angle, and the acceleration of the missile, respectively. q is the LOS angle.
xm, ym and xT , yT denote the position of the missile and target. Omxb is the missile body
axis, and ϑ is the pitch angle of the missile.

As can be seen in Figure 3, which gives a schematic of the missile in the pitch plane.
Mg denotes gravity. Xaero and Yaero denote the aerodynamic drag and the lift force of the
missile, respectively. In addition, α represents the attack angle.
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According to all the conditions above, when assuming
.
vm = 0,

.
vT = 0, the dynamic

equations of the missile-target can be written as follows:

.
xT = vT cos θT.
yT = vT sin θT.
θT = aT/vT.
xm = vm cos θm.
ym = vm sin θm.
θm = am/vm.
R = vT cos(θT − q)− vm cos(θm − q)

(1)

R
.
q = vT sin(θT − q)− vm sin(θm − q) (2)

Differentiating Equation (2) with respect to t, which can be obtained as:

..
q =
−2

.
R

.
q

R
+

aT cos(φT)

R
− am cos(φm)

R
(3)

where φT and φm are defined as φT = θT − q, φm = θm − q.

2.2. The Missile Dynamics with Uncertain Items

In this subsection, the paper will derive the dynamic equation of the pitch plane
and define the corresponding uncertainties in the IGC model. The planar dynamics is
formulated as follows: 

.
α = 1

mvm
(−L + mg cos θm) + ωz

.
ϑ = ωz
Jz

.
ωz = M

α = ϑ− θm

(4)
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where α denotes the attack angle. m represents the mass. ωz is the pitch angular rate.
g denotes gravitational acceleration. Jz is the moment of inertia. ϑ denotes the pitch angle.
L and M are the aerodynamic lift force and pitch moment, respectively. L and M can be
written as follows: {

L = 57.3qscα
yα

M = 57.3qslmα
z α + qsl2mωz

z
vm

ωz + 57.3qslmδz
z δz

(5)

where q = ρv2
m/2. s and l are the reference area and the reference length, respectively. δz is

the rudder deflection angle. In addition, cα
y denotes the lift force derivative with respect to

α. mα
z , mωz

z and mδz
z denote the pitch moment.

According to Equations (1) and (4), then the missile normal overload can be derived
as follows:

am = vm
.
θm = nyg =

L
m
− g cos θm (6)

then, the normal overload can be written as follows:

.
ny =

57.3qscα
y

mg
ωz +

(
g sin(θm)

vm
−

57.3qscα
y

mvm

)
ny (7)

where dny is determined by aerodynamic parameters.
When designing a new missile, people often use wind tunnel experiments to obtain the

force coefficients and moment coefficients. However, these values are usually inaccurate.
Thus, considering these uncertainties, all these coefficients can be written as follows:

cα
y = cα

y,n + cα
y,d

mα
z = mα

z,n + mα
z,d

mωz
z = mωz

z,n + mωz
z,d

mδz
z = mδz

z,n + mδz
z,d

(8)

where cα
y,d, mα

z,d, mωz
z,d and mδz

z,d represent the uncertain terms which are continuous and
satisfy the following condition:∣∣∣∣∣∣

dj
(

cα
y,d, mα

z,d, mωz
z,d, mδz

z,d

)
dtj

∣∣∣∣∣∣ ≤ µ, (j = 0, 1, 2) (9)

According to Equations (1)–(9), the missile dynamic model with uncertain items can
be written as follows:

am = nyg =
57.3qscα

y,nα

m − g cos θm + dam.
ϑ = ωz

Jz
.

ωz = 57.3qslmα
z,nα +

qsl2mωz
z,n

vm
ωz + 57.3qslmδz

z,nδz + dmα + dmωz + dmδz

α = ϑ− θm
.
ny =

57.3qscα
y,n

mg ωz +
(

g sin(θm)
vm

− 57.3qscα
y,n

mvm

)
ny + dny

(10)

where dam, dmα, dmωz , dmδz , dny are defined as follows.

dam =
57.3qscα

y,dα

m
dmα = 57.3qslmα

z,dα

dmωz =
qsl2mωz

z,d
vm

ωz

dmδz = 57.3qslmδz
z,dδz

dny =
57.3qscα

y,d
mg ωz −

57.3qscα
y,d

mvm
ny

(11)
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2.3. Fourth-Order IGC Model in State Space

Before establishing the IGC model with a strict-feedback state equation, the system
parameters can be defined as follows. κ1 =

57.3qscα
y,n

mvm
, κ2 =

57.3qscδz
y,n

mvm
, κ3 =

57.3qslmα
z,n

Jz
, κ4 =

qsl2mωz
z,n

Jzvm

κ5 =
57.3qslmδz

z,n
Jz

, κ6 = 1
τz

, κ7 = g sin θm
vm

(12)

To solve the problem of satisfying the impact angle constraint, we can define the
desired terminal LOS angle qd, which satisfies

.
qd = 0. Then, the paper defines the flowing

state vector:
X = [x1, x2, x3, x4, u] =

[
∆q, ∆

.
q, ny, ωz, δz

]
(13)

According to Equations (2) and (3) and Equations (10)–(12), the IGC dynamic model
in state space can be written as follows:

.
x1.
x2.
x3.
x4

 =


f1(x1)
f2(x2)
f3(x3)
f4(x4)

+


b1 0 0 0
0 b2 0 0
0 0 b3 0
0 0 0 b4




x2
x3
x4
u

+


d1
d2
d3
d4

 (14)

where the control input u = δz. f1, f2, f3, f4, b1, b2, b3, b4 and d1, d2, d3, d4 are defined as follows:
f1(x1) = 0

f2(x2) =
−2

.
R

R x2
f3(x3) = (κ7 − κ1)x3
f4(x4) = κ4x4 + κ3α

,


b1 = 1
b2 = −g cos(θm−q)

R x2
b3 = κ1vm

g
b4 = κ5

,


d1 = 0
d2 = aT cos(θT−q)

R
d3 = dny
d4 = dmα + dmωz + dmδz

(15)

Now, the paper obtains the IGC dynamic model with uncertain items.

3. Adaptive Controller Design with Deep Neural Network

In this section, the paper will design an adaptive controller by using the DNN (deep
neural network) and the GTSMC algorithm for the uncertain dynamic model formulated
in Equation (14).

3.1. Design Objectives

In this paper, the new adaptive IGC law satisfies the following conditions. Additionally,
the structure of the proposed approach is shown in Figure 4.
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The objective of this paper is as follows:

(1) The LOS angle can be soon converged to the desire angle qd;
(2) The controller has a strong adaptability against maneuvering targets with different

maneuver modes;
(3) When considering the relationship between each control loop, a small miss distance

can be achieved;
(4) The stability of the closed-loop system of the system states should be ensured.

3.2. Deep Neural Network

To improve the adaptability of the missile, a DNN (deep neural network) is introduced
to the system. The typical structure of DNN is shown in Figure 5.
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Figure 5. (a) Structure of deep neural network. (b) The structure of a neuron model.

Like other neural networks, the deep neural network also consists of an input layer,
a hidden layer, and an output layer. In hidden layers, each neuron is fully connected,
meaning any neuron in hidden layers l must be connected with any neuron in hidden
layers l + 1 and l − 1. According to the specific problem, we can construct the appreciate
networks with different hidden layers. As shown in Figure 5a, X = [x1, x2, · · · , xn] denotes
the input vector, and xi is the ith element of X. wl

jk represents the weight from the kth
neuron in the (l − 1)th hidden layer to the jth neuron in the lth layer. Y = [y1, y2, · · · , yn]
denotes the output vector, as can be seen in Figure 5b, which gives the computational
structure of neurons. xl−1

k denotes the kth neuron in the (l − 1)th layer. bl
j denotes the jth

bias in the lth layer. yl is the neuron output. σ(·) denotes the activation function, whose
input is al

j. To improve the convergence speed, σ(·) is defined as follows:

σ(x) =

{
x i f x > 0
ζ(ex − 1) others

(16)

To design the adaptive control law, the paper defines that y∗l is the optimal value of
the deep neural network. Then, we will obtain the following equation.

y∗l = σ

(
m
∑

k=1
w∗ljk xl−1

k + b∗lj

)
yl − y∗l = σ

(
m
∑

k=1
ŵ∗ljk xl−1

k + b̂∗lj

) (17)

Thus, choosing different hidden layers, we will obtain a different deep neural network
adaptive value yl .
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3.3. Second Order Filter Definition

In this paper, the IGC system will be divided into four subsystems: the guidance
subsystem, the normal overload subsystem, the attitude subsystem and the neural network
subsystem. To avoid the “differential explosion” phenomenon caused by the Backstepping
control method, the paper defines a new second-order filter as follows:

τAi
..
xic + τBi

.
xic + τCixic − τDi

..
x∗i − τEi

.
x∗i = τCix∗i

xic
t0 = xi∗

t0
.
xic

t0 =
.
xi∗

t0
..
xic

t0 =
..
xi∗

t0

(18)

In Equation (18), τAi, τBi, τCi, τDi, τEi are the filter parameters, which are all constant.
Then, the filter error e0i is defined as follows:

e0i = xic − x∗i , i = 3, 4, 5 (19)

Differentiating e0i and combining with Equation (17),
.
e0i can be obtained as follows:

.
e0i =

.
xic −

.
x∗i =

−τCie0i + τDi
..
x∗i + τEi

.
x∗i − τAi

..
xic

τBi
− .

x∗i (20)

The system states are continuous and bounded. Thus, those will have the positive
constants ζi, i = 3, 4, 5, which satisfy the following condition:∣∣∣ .

e0i +
τCie0i−τDi

..
x∗i −τEi

.
x∗i +τAi

..
xic

τBi

∣∣∣ ≤∣∣∣ .
e0i +

τCie0i−τDi
..
x∗i +τAi

..
xic

τBi

∣∣∣ ≤ ∣∣ .
e0i
∣∣+ ∣∣∣ ..

e0i
τBi

∣∣∣+ ∣∣∣ τCie0i
τBi

∣∣∣ ≤ ζi, i = 3, 4, 5
(21)

3.4. Adaptive Control Law Design Based on GTSMC-DNN

As we know, the conventional SMC method often chooses a linear sliding mode
surface which has a fatal disadvantage: the tracking errors cannot converge to zero in a
finite time. In addition, the adaptive ability of this approach is very poor. Therefore, in this
paper, we hope that the tracking error of LOS can converge to zero within a designated
time ts and the controller can have a better adaptive ability, when intercepting the target
with various maneuvering modes. Thus, a new modified global terminal sliding mode
surface will be designed, combined with the deep neural network.

Remark 1. In this paper, the purpose of missile control is that the LOS angle is equal to desire
angle q = qd and

.
q = 0.

Step 1: guidance subsystem with DNN

In this subsystem, this paper will use a two layer deep neural network. The input
layer includes five neurons. The output layer has a signal neuron, which will output the
adaptive normal overload command ndnn

y . The structure is shown in Figure 6.
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As can be seen in Figure 6, the input vector X is defined as X =
[
q,

.
q, d2, x− xt, y− yt

]T

and the weight vector is defined as W2 =
[
w2

11, w2
12, w2

13, w2
14, w2

15
]
. Thus, the output of the

neural network can be written as follows. f =
5
∑

k=1
w2

1kxk + b2
1

yny = σ( f )
(22)

According to Equation (14), x1, x2 are related to the q,
.
q. To ensure the desired LOS

angle q and realize
.
q = 0. The new sliding mode surface is designed as follows:

s1 = c1x1 + c2x1
ς/µ + c3x2 (23)

where x1, x2 are the state variable. c1, c2 and c3 are positive constants. ς and µ are positive
odd integers which satisfy 1 < ς/µ < 2.

Then, the corresponding reaching law is defined as follows:

.
s1 = σ

(
Ŵ
∗2

X + b̂∗21

)
− kls1 − kssλ/η

1 (24)

where λ and η are all positive odd constants. kl > 0, ks > 0 determines the reaching speed.
Ŵ
∗l

denotes the optimal weight coefficient matrix. b̂∗lj denotes the optimal bias.
According to the control structure in Figure 4, when introducing the DNN into

guidance subsystem,
.
x2 can be written as

.
x2 = f2x2 + b2x3 + d2 + yny. Combining

Equations (14), (15), (17) and (24) and differentiating Equation (23), we can design the
virtual command of the guidance subsystem with the deep neural network:

x∗3 = −(c3b2)
−1
(

c1x2 +
ςc2

µ
x2x

ς−µ
µ

1 + c3 f2(x2) + c3d2 + c3y∗ny + kls1 + kss
λ
η

1

)
(25)

As x∗3 is continuous and has not switched items, according to SOF, x∗3 is made to passes
through the SOF to obtain x3c,

.
x3c.

τA3
..
x3c + τB3

.
x3c + τC3x3c − τD3

..
x∗3 − τE3

.
x∗3 = τC3x∗3

x3c
t0 = x3∗

t0.
x3c

t0 =
.
x3∗

t0
..
x3c

t0 =
..
x3∗

t0

(26)

Step 2: overload subsystem with DNN

In this subsystem, the paper will use a two layer deep neural network with a signal
input layer and a signal output layer. The input layer includes four neurons. The output
layer also has a signal neuron, which will output the adaptive pitch angular rate command
ywz. The structure is shown in Figure 7.
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As can be seen in Figure 7, the input vector X is defined as Xwz =
[
ny, wz,

.
wz, d3

]T

and the W2
wz =

[
w2

wz11, w2
wz12, w2

wz13, w2
wz14

]
. Then, the output of the neural network can be

written as follows.  fwz =
4
∑

k=1
w2

wz1kxk + b2
wz1

yny = σ( fwz)
(27)

Similarly, when introducing the DNN to the overload subsystem,
.
x3 can be defined

as
.
x3 = f3x3 + b3x4 + d3 + ywz. When combining Equation (17) and defining

.
x3 =

.
x3c by

substituting Equation (26) into Equation (14), x∗4 can be obtained as follows.

x∗4 = b−1
3
( .
x3c − f3(x3)− d3 − y∗wz

)
(28)

Using the same method, x∗4 can also be made to passes through the filter to obtain
x4c,

.
x4c. 

τA4
..
x4c + τB4

.
x4c + τC4x4c − τD4

..
x∗4 − τE4

.
x∗4 = τC4x∗4

x4c
t0 = x4∗

t0
.
x4c

t0 =
.
x4∗

t0
..
x4c

t0 =
..
x4∗

t0

(29)

Step 3: attitude subsystem with DNN

In this subsystem, the paper will also use a two layer deep neural network. The input
layer includes four neurons. The output layer has only one neuron, which will output the
adaptive deflection angle command x∗5 . The structure is shown in Figure 8.
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As can be seen in Figure 8, the input layer X is defined as Xδz =
[
wzd, δz,

.
δz, d4

]T
and

W2
δz =

[
w2

δz11, w2
δz12, w2

δz13, w2
δz14
]
. Then, the output of the neural network can be written

as follows.  fδz =
4
∑

k=1
w2

δz1kxk + b2
δz1

yδz = σ( fδz)
(30)

Similarly, we can obtain u∗5 as follows:

u∗5 = b−1
4
( .
x4c − f4(x4)− d4 − y∗δz

)
(31)

According to Equations (25), (28) and (31), all these adaptive virtual commands and
the adaptive control law can be written as follows:

x∗3 = − 1
c3b2

(
c1x2 +

ςc2
µ x2x

ς−µ
µ

1 + c3 f2(x2) + c3d2 + c3y∗ny + kls1 + kss
λ
η

1

)
x∗4 = 1

b3

( .
x3c − f3(x3)− d3 − y∗wz

)
u∗5 = 1

b4

( .
x4c − f4(x4)− d4 − y∗δz

) (32)
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The reaching law designed in this paper has not switched items. In order to ensure
that the switching phenomenon does not appear, we use the saturation function when
writing the program code in this paper.

Remark 2. To reduce the chattering phenomenon further when writing the code to implement the
model, we use the saturation function sat(s1).

4. Stability Analysis

In this section, the manuscript will give proof of the stability of the system. Before
doing this, we will provide the following assumption:

Assumption 2. Due to the use of a two layer neural network with one input layer and one output
layer, the neural network can be simplified as a continuous function.

Theorem 1. According to the controller designed in Section 3.4 for the uncertain IGC dynamic
model, by adjusting the parameters of the SOF, controller parameters, and the optimal weight matrix
and bias, the closed-loop system will be stable. The optimal weight matrix for different subsystems is
defined as follows.

.
Ŵ
∗2

=
c3s1X

γs1
,

.
Ŵ
∗2
wz =

ex3Xwz

γwz
,

.
Ŵ
∗2
δz =

ex4Xδz
γδz

(33)

Proof. Firstly, the paper defines the tracking error matrices as follows:

e = [es, ex3, ex4] = [s1, x3 − x∗3 , x4 − x∗4 ] (34)

Then, constructs the Lyapunov function as follows:

Ve = Ves + Vex3 + Vex4

= 1
2 s2

1 +
1
2 γs1Ŵ∗2TŴ∗2 + 1

2 e2
x3 +

1
2 γwzŴ∗2T

wz Ŵ∗2wz+
1
2 e2

x4 +
1
2 γδzŴ∗2T

δz Ŵ∗2δz

(35)

Differentiating each item of Equation (35), yields:

.
Ves = s1

.
s1 + γs1Ŵ∗2T

.
Ŵ
∗2

= s1

 c1x2 +
c2ς
µ x1

(ς−µ)/µx2 + c3 f2(x2) + c3b2ex3

−
(

c1x2 +
ςc2
µ x2x

ς−µ
µ

1 + c3 f2(x2) + c3d2 + c3y∗ny + kls1 + kss
λ
η

1

)
+ c3d2 + c3yny


+γs1Ŵ∗2T

.
Ŵ
∗2

= s1

(
c3b2ex3 + c3yny − c3y∗ny − kls1 − kss

λ
η

1

)
+ γs1Ŵ∗2T

.
Ŵ
∗2

= s1

(
c3b2ex3 + c3

(
Ŵ∗2TX + b̂∗21

)
− kls1 − kss

λ
η

1

)
+ γs1Ŵ∗2T

.
Ŵ
∗2

= c3b2ex3 s1 + c3

(
Ŵ∗2TX + b̂∗21

)
s1 − kls2

1 − kss
λ+1

η

1 + γs1Ŵ∗2T
.

Ŵ
∗2

≤ −kls2
1 + |c3b2|

(
s2

1 +
e2

x3
4

)
+

(
s2

1 +
c2

3
4

)
b̂∗21 + Ŵ∗2T

(
c3s1X + γs1

.
Ŵ
∗2)

(36)
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Using the same method,
.

Vex3 ,
.

Vex4 are derived as follows:

.
Vex3 = ex3

.
ex3 = ex3

( .
x3 −

.
x∗3
)
+ γwzŴ∗2T

wz

.
Ŵ
∗2
wz

= ex3

(
f3(x3) + b3x4 + d3 −

.
x∗3
)
+ γwzŴ∗2T

wz

.
Ŵ
∗2
wz

= ex3

(
f3(x3) + b3

(
ex4 + x∗4

)
+ d3 + ywz −

.
x∗3
)
+ γwzŴ∗2T

wz

.
Ŵ
∗2
wz

= ex3
(
b3ex4 + Ŵ∗2T

wz Xwz +
.
e03
)
+ γwzŴ∗2T

wz

.
Ŵ
∗2
wz

= ex3b3ex4 + ex3
(
Ŵ∗2T

wz Xwz
)
+ ex3

.
e03 + γwzŴ∗2T

wz

.
Ŵ
∗2
wz

≤ |b3|
(

e2
x3
4 + e2

x4

)
+

(
e2

x3
4 +

.
e2

03

)
+ Ŵ∗2T

wz

(
ex3Xwz + γwz

.
Ŵ
∗2
wz

)
= |b3|e2

x4 + |b3|
e2

x3
4 +

e2
x3
4 +

.
e2

03 + Ŵ∗2T
wz

(
ex3Xwz + γwz

.
Ŵ
∗2
wz

)

(37)

.
Vex4 = ex4

.
ex4 = ex4

( .
x4 −

.
x∗4
)
+ γδzŴ∗2T

δz

.
Ŵ
∗2
δz

= ex4

(
f4(x4) + b4x5 + d4 −

.
x∗4
)
+ γδzŴ∗2T

δz

.
Ŵ
∗2
δz

= ex4

(
f4(x4) + b4(ex5 + x∗5) + d4 + yδz −

.
x∗4
)
+ γδzŴ∗2T

δz

.
Ŵ
∗2
δz

= ex4

(
b4ex5 +

.
x4c − y∗δz + yδz −

.
x∗4
)
+ γδzŴ∗2T

δz

.
Ŵ
∗2
δz

= ex4b4ex5 + ex4Ŵ∗2T
δz Xδz + ex4

.
e04 + γδzŴ∗2T

δz

.
Ŵ
∗2
δz

≤ |b4|
(

e2
x4
4 + e2

x5

)
+

(
e2

x4
4 +

.
e2

04

)
+ ex4Ŵ∗2T

δz Xδz + γδzŴ∗2T
δz

.
Ŵ
∗2
δz

= |b4|e2
x5 + |b4|

e2
x4
4 +

e2
x4
4 +

.
e2

04 + Ŵ∗2T
δz

(
ex4Xδz + γδz

.
Ŵ
∗2
δz

)

(38)

Thus, the
.

Ve can be obtained as follows:

.
Ve =

.
Ves +

.
Vex3 +

.
Vex4

= s1
.
s1 + ex3

.
ex3 + ex4

.
ex4

≤ −kls2
1 + |c3b2|

(
s2

1 +
e2

x3
4

)
+

(
s2

1 +
c2

3
4

)
b̂∗21 + Ŵ∗2T

(
c3s1X + γs1

.
Ŵ
∗2)

+

|b3|e2
x4 + |b3|

e2
x3
4 +

e2
x3
4 +

.
e2

03 + Ŵ∗2T
wz

(
ex3Xwz + γwz

.
Ŵ
∗2
wz

)
+

|b4|e2
x5 + |b4|

e2
x4
4 +

e2
x4
4 +

.
e2

04 + Ŵ∗2T
δz

(
ex4Xδz + γδz

.
Ŵ
∗2
δz

)
= −

(
kl − |c3b2| − b̂∗21

)
s2

1 −
(
− |c3b2|

4 − |b3|
4

)
e2

x3

−
(
−|b3| − |b4|

4

)
e2

x4 + c3s1b̂∗21 + Ŵ∗2T
(

c3s1X + γs1

.
Ŵ
∗2)

+
.
e2

03 + Ŵ∗3T
wz

(
ex3X + γwz

.
Ŵ
∗2
wz

)
+

.
e2

04 + Ŵ∗3T
δz

(
ex4X + γδz

.
Ŵ
∗2
δz

)
≤ −

(
kl − |c3b2| − b̂∗21

)
s2

1 −
(
− |c3b2|

4 − |b3|
4

)
e2

x3 −
(
−|b3| − |b4|

4

)
e2

x4 +
c2

3
4 b̂∗21 +

Ŵ∗2T
(

c3s1X + γs1

.
Ŵ
∗2)

+ Ŵ∗3T
wz

(
ex3Xwz + γwz

.
Ŵ
∗3
wz

)
+ Ŵ∗2T

δz

(
ex4Xδz + γδz

.
Ŵ
∗2
δz

)
+ ζ

(39)

where ζ is an infinitesimal value. Q is a positive definite matrix and designs the adaptive
control law as follows:
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Q =

 kl − |c3b2| − b̂∗21 0 0
0 − |c3b2|

4 − |b3|
4 0

0 0 −|b3| − |b4|
4


.

Ŵ
∗2

= c3s1X
γs1

,
.

Ŵ
∗2
wz =

ex3Xwz
γwz

,
.

Ŵ
∗2
δz = ex4Xδz

γδz

(40)

Substituting equation (40) into (39),
.

Ve yields:

.
Ve ≤ −‖E0‖2‖Q‖+

c2
3

4
b̂∗31 + ζ (41)

When selecting b̂∗31 < 0 and appropriate parameters to ensure ‖Q‖ > 0. Therefore, the
system is stable. �

Accord to Remark 1, when s1 → 0 , then c1x1 + c2x1
ς/µ + c3x2 → 0 , the convergence

time ts at x1 → 0 can be obtained as follows:

ts =
µ

c1(µ− ζ)
ln

(
c1x1(0)

(µ−ζ)/µ + c2

c2

)
(42)

The convergence speed of the states can be adjusted by changing the relative parameters.

5. Simulation Cases and Analysis

To verify the effectiveness of the proposed method under different scenarios, several
simulations will be discussed in this section. Additionally, the aerodynamic parameters for
the missile are defined as follows:

κ1 = 3.1166, κ2 = 0.2337, κ3 = −82.6918, κ4 = −0.9749, κ5 = −128.6316, κ6 = 10 (43)

Considering the real properties of the missile, the control constraint is set as |δmax
zc | ≤ 20◦.

All those simulation step sizes are 0.01 s. To highlight the superiority of the method proposed
in this paper, the BS-SMC (Backstepping Sliding Mode Control) method will be used as a
comparison. The parameters for the proposed method based on GTSMC-DNN are shown in
Table 1. In addition, we all use the Microsoft Visual Studio 2017 software and C/C++ language
to implement the model. When plotting the figures, we used Origin 2017 and MATLAB 2017.

Table 1. Parameters of GTSMC-DNN.

kl C3 C2

0.1 1 1

ks γs1 c1

0.1 50 1

γwz γδz ς/µ

300 160 5/3

5.1. Case I

In this case, the missile will intercept a stronger maneuvering target. The initial
parameters are shown in Table 2. The velocity satisfies vT = 350 + 50 ∗ sin(0.5 ∗ t) and aT
is assumed to be aT = Vt ∗ (30 ∗ cos(1 ∗ t)/57.3), which is shown in Figure 9a. In addition,

the paper will add external uncertain disturbances
^
d 3,

^
d 4. Different from the other related

literatures, uncertain items are the interference noise within (0,1), which can better reflect
the characteristics of uncertainty. Simulation results are shown in Figures 9–12. The miss
distance and the terminal LOS angle are shown in Table 3.
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Table 2. Initial parameters of the missile and target.

Item Initial Value Unit

(xm, ym) (0, 0) m
(xT , yT) (6928, 4000) m

θm 70 deg
θT 175 deg
vm 450 m/s
vT 350 m/s
ϑ 60 deg
qd 25 deg

Table 3. The miss distance and terminal LOS angle.

Item GTSMC-DNN BS-SMC Unit

Miss distance of M-T 0.257 2.207 m
Terminal LOS 25.126 25.754 deg
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As can be seen in Table 3, it is obvious that even with a target with great maneuver-
ability, the performance of miss distance and the terminal LOS are better when using the
GTSMC-DNN method proposed in this paper when comparing the desired qd. Thus, this
verifies Remark 1 and the first design objective mentioned in Section 3.1.

As shown in Figure 9, which presents the maneuverability of the target and the
trajectory of the missiles and the target with different approaches. It is obvious that even if
the target has great maneuverability, the missile can also intercept the target. To be more
specific, using GTSMC-DNN method can intercept the target earlier and the interception
performance is better. This verifies the design objective mentioned in Section 3.1.

Figure 10a,b gives the variation of LOS angle and the sliding mode surface. It is clear
that the LOS angle can be converged to the desired angle qd earlier by using GTSMC-
DNN method. This also verifies Remark 1 and the first design objective mentioned in
Section 3.1. Additionally, although the LOS angle can also be converged to the desired
angle by using the BS-SMC method, the LOS angle becomes divergent gradually, especially
when approaching the target.

As shown in Figure 10b, it is clear that the sliding mode surface can converge to
zero earlier and the amplitude is relatively small when using GTSMC-DNN. This design
objective is mentioned in Section 3.1. By extension, the reason why the surface has a small
error nearing zero may be because the target is in a consistent state of maneuvering.

Figure 11 gives the variation of the adaptive weight parameters of DNN and the
trajectory inclination angle. It is obvious that the amplitude of θm is relatively smaller
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when using GTSMC-DNN. Additionally, the system state θm curves change more violently
when using the BS-SMC method, which verifies the second design objective mentioned
in Section 3.1. As shown in Figure 11a, it is clearly that the adaptive weight parameters
of DNN gradually converge to a fixed value. Thus, all these phenomena show that using
the GTSMC-DNN method proposed in this paper can have a better control performance,
which can also verify the design objectives mentioned in Section 3.1.

Figure 12 shows the variation of the rudder deflection angle and the pitch angular
rate. It is clear that the rudder deflection angle is relatively smoother, and the amplitude
is smaller when using the GTSMC-DNN approach. This demonstrates that using the
GTSMC-DNN approach can have a better control performance. In addition, Figure 11b
shows the variation of the pitch angular rate. Compared with the BS-SMC method, the
amplitude of the pitch angular rate is relatively smaller and smoother. Furthermore, the
convergence speed of the rudder deflection angle and the pitch angular rate is relatively
faster by using GTSMC-DNN.

Thus, using GTSMC-DNN can have a better control performance under case I condi-
tion, which also verify the design objectives mentioned in Section 3.1.

5.2. Case II

In this case, the missile will intercept a target with two maneuvering modes. During the first
phase, the maneuvering target satisfies θm = 170◦, vT = 400 + 50 ∗ sin(0. 5 ∗ t), and, after 2 s,
the maneuvering target satisfies vT = 400+ 50∗ sin(0.5 ∗ t), aT = vT ∗ (30 ∗ cos(0.5 ∗ t)/57.3).
The simulation results are shown in Figures 13–16.

Figure 13 presents the maneuverability of the target and the trajectory of the missiles
and the target. In Figure 13a, it is clear that the target adopts variable maneuvering speeds
before 2 s, while the target suddenly takes a large-angle maneuver at 2 s. Even so, the
missile can still intercept the target. In terms of interception time, the missile can intercept
the target earlier by using the GTSMC-DNN method, which can also verify the design
objectives mentioned in Section 3.1.

Figure 14a,b shows the system states of LOS angle and the variation of the sliding
mode surface. It is obvious that the LOS angle can also be converged to the desired angle
qd = 25◦ earlier, using the GTSMC-DNN method. This also verifies Remark 1, and the first
design objective mentioned in Section 3.1.

Figure 15 shows the variation of the system state for the trajectory inclination angle
and the adaptive weight parameters of DNN. It is clear that the amplitude of θm is relatively
smaller and the variation is more advanced. This also reflects that the method proposed in
this paper has a strong predictability and adaptability. In Figure 15a, we can also perceive
that with the target changing the maneuvering mode suddenly at 2 s, the adaptive weight
parameters of DNN exhibit a slight fluctuation. However, it can also be soon converged.
Therefore, all this illustrates the second and third design objective mentioned in Section 3.1.

Figure 16 shows the variation of the rudder deflection angle and the pitch angular
rate by using these two methods. It is clear that using the GTSMC-DNN approach, the
amplitude of the rudder deflection angle is smaller. In addition, Figure 16b shows the
variation of the pitch angular rate. Compared with the BS-SMC method, the amplitude of
the pitch angular rate is relatively smaller and smoother.

Thus, under case II conditions, using the GTSMC-DNN method proposed in this
paper can show a better control performance, which can also illustrate the design objectives
mentioned in Section 3.1.
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5.3. Case III (Monte Carlo Simulations)

In this section, the paper will demonstrate the robustness of the IGC system and

introduce the Monte Carlo simulation. The uncertain disturbances
^
d 3,

^
d 4 will also be

added into the system. In addition, the other conditions are listed in Table 4.

Table 4. The Monte Carlo parameters under case III.

Symbol Quantity Values

θm flight path angle of missile 60 ∼ 80 (deg)
q LOS 28 ∼ 32 (deg)

vm velocity of the missile 470 ∼ 530 (m/s)
ωz the rate of pitch angle −3 ∼ 3 (deg/s)
xm Initial position in x 0 ∼ 100 (m)
ym Initial position in y 0 ∼ 100 (m)
ϑm pitch angle 65 ∼ 75 (deg)
xT Initial position in x 6828 ∼ 7028 (m)
yT Initial position in y 3900 ∼ 4100 (m)
vT velocity of the T 350 ∼ 450 + 50 sin(0.5t) (m/s)
θT flight path angle of T 180 ∼ 170 (deg)
aT acceleration of T (65◦ ∼ 75◦) sin(0.25t) (deg)
δz rudder deflection −3 ∼ 3 (deg)

The simulation result is presented in Figure 17.
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As shown in Figure 17a, it is obvious that compared with the BS-SMC method, the
missile impacting points are relatively concentrated. By extension, most impacting points
of the GTSMC-DNN method are relatively smaller and the impacting radius is about 0.1 m.

Figure 17b provides the miss distance for each time. It is obvious that all these
impacting points are less than 0.2 m, using the GTSMC-DNN method. This also reflects
that the method has a higher interception accuracy.

Thus, according to all the simulation results under different conditions, using the
GTSMC-DNN method proposed in this paper can have a better interception performance,
which also verifies all design objectives mentioned in Section 3.1.

6. Conclusions

To improve the performance in intercepting the target with different maneuvering
modes and changing the mode suddenly during the interception, a new control algorithm
for the IGC system is proposed by combining the GTSMC (Global Terminal Sliding Mode
Control) method, the SOF (Second Order Filter) and the DNN (Deep Neural Network).
After formulating the missile–target problem, the paper establishes the fourth-order IGC
dynamic model with uncertain items. To truly reflect the characteristics of uncertainty,
the paper establishes the uncertain equations. Then, the IGC system is divided into four
subsystems, including the guidance subsystem, the overload subsystem, the attitude
subsystem and the deep neural network subsystem. To transform the virtual control signal
between each subsystem, the paper defines the SOF. Then, combined with the DNN, SOF
and the GTSMC method, a new modified sliding mode surface and the reaching law
are designed to obtain the adaptive control law. Then, the paper proves the stability of
the system by using Lyapunov’s theory. Finally, several simulation cases are provided to
demonstrate the superiority of the proposed method in improving the adaptive interception
capability, increasing the control performance and having a high interception accuracy. In
the future, several directions can be researched, such as researching the control performance
with different layers and more neurons in 6DoF, verifying the control performance by using
DNN only and others. In addition, another direction that uses the DNN to accomplish the
autonomous target replacement can also be a research point. In conclusion, there are many
other more interesting research directions.
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