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Abstract: In modern business, Artificial Intelligence (AI) and Machine Learning (ML) have affected
strategy and decision-making positively in the form of predictive modeling. This study aims to use
ML and AI to predict arrival flight delays in the United States airport network. Flight delays carry
severe social, environmental, and economic impacts. Deploying ML models during the process of
operational decision-making can help to reduce the impact of these delays. A literature review and
critical appraisal were carried out on previous studies and research relating to flight delay prediction.
In the literature review, the datasets used, selected features, selected algorithms, and evaluation
tools used in previous studies were analyzed and influenced the decisions made in the methodology
for this study. Data for this study comes from two public sets of domestic flight and weather data
from 2017. Data are processed and split into training, validation, and testing data. Subsequently,
these ML models are evaluated and compared based on performance metrics obtained using the
testing data. The predictive model with the best performance (in choosing between logistic regression,
random forest, the gradient boosting machine, and feed-forward neural networks) is the gradient
boosting machine.

Keywords: delay prediction; predictive modeling; flight delays

1. Introduction

Air transport is an important element of the economic system, as it has been an impor-
tant means of long-distance traveling for decades. Consequently, dysfunctionality within
air transport, such as flight delays, can cause large economic losses. A study from 2013 [1]
showed that a decrease of only 10% in flight delays could result in a $17.6 billion increase in
the US net worth, and a decrease of 30% could result in a staggering $38.5 billion increase
in US net worth. Flight delays also have a severe impact on the environment. A study
from 2018 [2] showed that in 2017, the extra emissions due to flight delays were estimated
at 5529 tonnes, while excess fuel usage was estimated at 1,752,937 L. The deployment of
machine learning models predicting flight delays could lead to a significant improvement in
air transport, along with economic benefits and a smaller environmental footprint. Several
approaches have been made to better understand the mechanisms of flight delays. The
availability of flight data allows, for instance, examining how delays propagate along differ-
ent time scales [3–6]. Another approach is to develop machine learning models that allow
predicting arrival or departure delays [7,8]. Most of the proposed models are classification
jobs, where the objective is to determine whether a flight will have a delay larger than a
threshold value. Following the Bureau of Transport Statistics, it is commonplace to consider
a flight delayed if its delay time is longer than or equal to 15 min. Other approaches, such
as numerical prediction models [9] or prediction of the delay distribution [10] are also
present in the literature.

The research on models predicting flight delays has increased significantly in recent
years, and significant progress has been made regarding feature selection and the use of
machine learning algorithms. However, most of these studies have used small sample
datasets along with small-scale models to predict delays. We believe that the potential for
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deploying machine learning models to predict arrival delays for multiple airports has not
yet been fulfilled.

The aim of this study is to test different models that predict arrival flight delays in
the United States airport network. We use flight data from the Bureau of Transportation
Statistics and weather data from the National Oceanic and Atmospheric Administration.
This allows us to define features related to air traffic and weather to predict delays. We
train several machine learning techniques suited to tabular data, such as logistic regression,
random forest, the gradient boosting machine, and the feed-forward neural network model.
The performance of the resulting models is then evaluated on a test set with a set of
classification metrics. The four models are compared and the best-performing model is
proposed as a solution for arrival delay prediction in the United States airport network.

We contribute to the literature on flight delay prediction by testing different machine
learning models with a rich dataset of multiple origin and destination airports, including
features related to air traffic data and weather. We also contribute by introducing mecha-
nisms to tackle imbalanced data in the prediction workflow when doing this comparison.
Flight delay prediction is an imbalanced classification problem, as there are more flights that
are on time than delayed, and this can distort the results of classification models. Finally, we
define explicitly a predictive modeling workflow, including training and testing in different
datasets, and using validation samples and cross-validation for hyperparameter tuning.

2. Literature Review

This section presents a literature review of previous studies that have dealt with
arrival and departure flight delay prediction. The results of previous studies on chosen
data, selected features, algorithms, and evaluation of results are presented.

2.1. Data Used

A key element for delay prediction is obtaining flight data. The most cited source of
flight data is the Bureau of Transportation Statistics [11] of the United States Department of
Transportation [7–9,12]. Another common source of flight data is the Civil Aviation Admin-
istration of China [13,14], and in one case through VariFlight [15]. A single study [16] used
a Kaggle dataset on flight data. Official sources of flight data provide reliable information
to train models, and making those data open access can help to enhance the effectiveness
of the covered airspace regions. Other studies rely on information from a single departure
airport. This is the case in [10,17], who obtained data from Guangzhou Baiyun International
Airport (ZGGG), Ref. [12] obtained data from Beijing Capital (ZBAA), and [18] obtained
data from Heathrow Airport (EGLL). Finally, a=ibe study [19] relies on data from the route
from Beijing Capital (ZBAA) to Hangzhou XiaoShan (ZSHC). Sometimes, authors rely on
a subset of available data to build their models. In citeHu2021, flights are filtered based
on the ten most significant arrival airports. In yet another study [20], both the departure
and arrival airports are filtered to include one of the ten most significant airports with the
most flights.

Several researchers [7,20] have used weather data, obtained through the National
Oceanic and Atmospheric Administration [21]. In another study [9], weather data originates
from Weather Underground [22]. Both these data sources seem reliable, the National
Oceanic and Atmospheric Administration being part of the US Department of Commerce,
whereas Weather Underground is a commercial source in the industry. One study [9] used
a private database from the Federal Aviation Administration [23] to obtain GPS trajectory
data on United States domestic air traffic.

To keep sources of data consistent, the current study chooses to pick public sources
of data that originate from the US government, therefore both the Bureau of Transport
Statistics, as well as the National Oceanic and Atmospheric Administration will be selected
as sources of flight and weather data, respectively.
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2.2. Features Chosen

The examined previous studies, except [9,17,19], included date- and date-time-related
features in machine learning models predicting flight delays. In some studies [12,15,18],
authors use congestion in arrival or departure airports as a feature in their predictive
models. As congestion is usually related to dense traffic at peak hours, it can also be
related to adverse meteorological conditions. Features related to weather are frequently
used to predict delays [7,9,15,24,25]. Other features used are seating capacity [18] and
automatic dependent surveillance-broadcast (ADS-B) data obtained from air surveillance
systems [24,25].

2.3. Used Machine Learning Techniques

Most studies tackle delay prediction as a classification problem. The aim of these
models is to determine if a flight is delayed or not. Flights are considered delayed if
departure or arrival delay is above a threshold, typically 15 min. A different approach is
taken in [10], where the objective is predicting delay distribution using neural networks.
The authors of [9] study the numerical prediction problem, which aims to predict the delay
of each flight.

Regarding machine learning techniques, studies can be classified into two broad
groups. In the first group, we can include studies using deep learning techniques, frequently
convolutional neural networks [10,13–15,20,24]. The other group of studies uses other
techniques, most of them based on decision trees or ensemble techniques. Among these,
random forest [8,17,18] and gradient boosting [12,16] have been especially effective in the
classification models of flight delays.

Flight delay prediction is a classification problem with class imbalance, as there
are more on-time flights than delayed flights. The authors of [7] found that applying
undersampling to the training data improves performance and that oversampling does not
improve model performance for the delay prediction problem.

In this study, we will adopt the approach of the second group and we will be using
techniques based on regression and in decision trees and ensembles. We will also apply
undersampling to tackle class imbalance.

2.4. Evaluation Methods Used

In some studies [9,17,20], it is unclear whether a training test data split has been used,
therefore it is difficult to say whether their model configuration contains any form of over-
fitting and if their model is properly trained. In these studies, no testing set is mentioned
and only evaluation metrics based on the training data are given. Some studies [17,20]
only use accuracy as an evaluation metric. It is important to use several different model
evaluation metrics to have a proper insight into the performance of the model. Therefore,
it is important to also use the area under the curve (AUC) of the receiver operating char-
acteristic curve (ROC), as used in [7,18]. One paper [18] uses a more elaborate method of
model evaluation including several important model evaluation metrics, such as precision,
recall, and the F1 score. To have proper insight into model performance, in this study, a
set of classification metrics will be evaluated to choose the best-performing model. These
metrics will include, accuracy, recall, precision, F1 score, and ROC AUC. In addition to
these metrics, the area under the precision-recall curve (PR AUC) will also be used, as this
is an important metric to use in imbalanced datasets, as well as specificity, which gives an
indication of the performance of detecting true negatives. Those metrics will be obtained
from a test set, and hyperparameter tuning and model selection will be performed using
cross-validation or splitting the data into train, validation, and test sets.

3. Methodology

We present, in this section, the following methodological traits of the evaluation of
the competing flight delay prediction models: the description of the datasets used, the
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data preprocessing workflow, the hyperparameter tuning of the different models, and the
model evaluation.

3.1. Datasets Used

This study uses flight data of the United States from 2017 obtained through the open
database of the United States Bureau of Transport Statistics [11]. The raw dataset has
5.7 million flights and includes attributes in three different categories of attributes: date
and time, scheduling time, and flight. The date and time-related attributes include the
quarter, the month, the day of the month, the day of the week, the hour of the day, and the
minutes of the hour. These attributes, their type, and examples are shown in Table 1.

Table 1. Attributes related to the date and the time.

Attribute Name Type Example

Quarter Integer 1, 2, 3, 4
Month Integer 1, 2, 3, . . . 12

Day of month Integer 1, 2, 3, . . . 31
Day of week Integer 1, 2, 3, . . . 7
Hour of day Integer 1, 2, 3, . . . 23

Minute of the hour Integer 0, 1, 2, 3, . . . 59

The scheduling time-related attributes include the planned departure and arrival
times, the actual departure and arrival times, the planned and actual arrival and departure
at the local time, the wheels on and off time, and the wheels on and off at the local time.
These attributes, their type, and examples are shown in Table 2.

Table 2. Attributes related to the scheduling time.

Attribute Type Example

Planned departure time Date-time 1 January 2017 01:00:00
Planned departure local hour. Integer 0, 1, 2, 3, . . . 23

Planned arrival time Date-time 2 January 2017 02:00:00
Planned arrival local hour Integer 0, 1, 2, 3, . . . 23

Actual departure time Date-time 3 January 2017 03:00:00
Actual departure local hour Integer 0, 1, 2, 3, . . . 23

Actual arrival time Date-time 4 January 2017 04:00:00
Actual arrival local hour Integer 0, 1, 2, 3, . . . 23

Wheels on time Date-time 5 January 2017 05:00:00
Wheels on local hour Integer 0, 1, 2, 3, . . . 23

Wheels off time Date-time 6 January 2017 06:00:00
Wheels off local hour Integer 0, 1, 2, 3, . . . 23

Flight-related attributes include the carrier, the tail number, the flight number, the
origin airport, the destination airport, the flight distance, and the seating capacity. These
attributes, their type, and examples are shown in Table 3.

Table 3. Flight-related attributes.

Attribute Type Example

Carrier String AA, AS, B6, DL, EV
Tail number Categorical N001AA, N104AA, N10575

Flight number Integer 2330, 1590, 1320, 2202
Origin airport Categorical ABE, STX, LAX, ORD

Destination airport Categorical STS, SMF, SUN, RSW
Flight distance Integer 650, 482, 518, 510

Seating capacity Integer 140, 196, 186, 176
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In addition to flight data, the weather data for both the origin and destination airport
from 2017 is obtained through the open database of the United States National Oceanic and
Atmospheric Administration [21]. The data consists of the daily average of the wind speed,
the wind direction, the air temperature, the atmospheric pressure, the visibility, the dew
point, the precipitation, the cloud cover, the wind gust, and the total snow. These attributes,
their type, and examples are shown in Table 4.

Table 4. Weather attributes.

Attribute Type Example

Wind Speed Double 3.58, 4.56, 6.71
Wind direction Double 118.31, 91.77, 209.13

Air temperature Double 8.23, 11.25, 15.33, 10.87
Atmospheric pressure Double 1019.21, 1020.42, 1011.99

Visibility Double 5042.91, 871.25, 10,840.76
Dew point Double 7.54, 11.15, 13.73, 7.20

Precipitation Double 2.82, 3.36, 4.81, 2.89
Cloud cover Integer 100, 85, 66, 74, 12
Wind gust Integer 3, 12, 24, 30
Total snow Double 0.0, 22.6, 7.4, 5.4

3.2. Data Preprocessing

After obtaining the raw flight and weather data, the next step is to preprocess these
data before splitting. A high-level overview of the data processing steps is given in Figure 1.

Figure 1. High-level data processing.

At first, the raw flight data mentioned in Tables 1–3 are processed in a data pipeline.
The processed flight data are then merged with weather data and airport congestion.
Airport congestion is measured as the total number of arriving and departing flights per
day at a specific origin or destination airport. Next, the categorical variables in the obtained
merged dataset are transformed using one-hot encoding. Lastly, any rows with any number
of empty values are removed. The data processing pipeline for the flight data is shown
in Figure 2.

Figure 2. Flight data pipeline.

This study explores the possibility of prediction of arrival delays, therefore, the first
step in the data pipeline is to calculate this arrival delay. The arrival delay is calculated
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using the actual arrival time and the planned arrival time. As per the definition of the Bureau
of Transport Statistics, any flight that experiences a delay equal to or greater than 15 min
is considered delayed, and any flight with a delay smaller than 15 min is considered on
time. Therefore, in the second step of the proposed data pipeline, the delay target variable
is labeled using a threshold of 15 min applied to the calculated arrival delay as shown in
Equation (1).

(actual arrival time− planned arrival time) ≥ 15 min −→ delay = “1”

(actual arrival time− planned arrival time) < 15 min −→ delay = “0”
(1)

Once obtained the target variable, two additional features are calculated: the planned
flight time and the planned flight speed. The planned flight time is calculated using the
planned departure time and the planned arrival time and is shown in Equation (2). The planned
flight speed is calculated by dividing the flight distance by the flight time, this is shown in
Equation (3).

Flight time = (planned arrival time− planned departure time) (2)

f light speed =
f light distance

f light time
(3)

After engineering and adding these two features, the data are filtered by the top
10 airports with the most flights. Therefore, we only consider flights happening between
these top 10 airports. A list of the top 10 airports for both the origin and destination is
given in Table 5.

Table 5. Top 10 airports for origin and destination.

Symbol Airport State

ATL Hartsfield-Jackson Atlanta Georgia
DEN Denver International Airport Colorado
DFW Dallas/Fort Worth Texas
LAS Harry Reid International Nevada
LAX Los Angeles International California
MSP Minneapolis-Saint Paul Minnesota
ORD Chicago O’Hare International Illinois
PHX Phoenix Sky Harbor Arizona
SEA Seattle-Tacoma International Washington
SFO San Francisco International California

After processing the data as described above and as shown in Figures 1 and 2, the
resulting dataset consists of 36 variables. These variables consist of the target variable
delay, and the 35 features used to predict this target variable. The resulting data can be
categorized into the following categories: date-time and scheduling-based features, flight
and airport-based features, and weather-based features for both the origin and destination
airports. The date-time and scheduling-based features used to predict arrival delays are
given in Table 6. The flight and airport-based features used to predict arrival delays are
also given in Table 6.

The final selected weather features are shown in Table 7. These weather features are
included for both the origin as well as the destination airport.

After obtaining the final data with the features summarized in Tables 6 and 7, a train-
test and train-validation-test split are performed. The flight data are highly imbalanced,
with the number of delayed flights in the raw data being only 18% of the total, and the
majority of 82% being on-time flights. To improve model performance, the training data
are under-sampled. Two of the four models are trained using the Spark framework and
two of the four models are trained using the H2O framework. For the models trained using
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the Spark framework, the data are split into training and testing data, with 90% of the data
going into the training data and 10% of the data going into the testing data. During the
data split, stratification is applied to ensure a similar ratio of delayed and non-delayed
flights in the data split, and after splitting the data, the majority class in the training data is
undersampled. This process is also shown in the diagram in Figure 3. By undersampling
the majority class in the training dataset, the number of delayed flights is made equal to
the number of non-delayed flights, respectively, by randomly removing rows. The training
data are used to train the machine learning models and the testing data are used to evaluate
the machine learning model performance on unseen data.

Table 6. Flight, airport, and scheduling features used.

Attribute Type Example

Quarter Integer 1, 2, 3, 4
Month Integer 1, 2, 3, . . . 12

Day of month Integer 1, 2, 3, . . . 31
Day of week Integer 1, 2, 3, . . . 7

Planned departure local hour. Integer 0, 1, 2, 3, . . . 23
Planned arrival local hour Integer 0, 1, 2, 3, . . . 23

Flight distance Integer 650, 482, 518, 510
Seating capacity Integer 140, 196, 186, 176
Origin airport String ATL, DEN, LAX, ORD

Destination airport String SFO, SEA, PHX, MSP
Flight time Integer 60, 120, 135, 85

Flight speed Double 3.93, 5092.3
Carrier String AA, AS, B6, DL, EV

Table 7. Weather features used.

Attribute Type Example

Wind Speed Double 3.58, 4.56, 6.71
Wind direction Double 118.31, 91.77, 209.13

Air temperature Double 8.23, 11.25, 15.33, 10.87
Atmospheric pressure Double 1019.21, 1020.42, 1011.99

Visibility Double 5042.91, 871.25, 10,840.76
Dew point Double 7.54, 11.15, 13.73, 7.20

Precipitation Double 2.82, 3.36, 4.81, 2.89
Cloud cover Integer 100, 85, 66, 74, 12
Wind gust Integer 3, 12, 24, 30
Total snow Double 0.0, 22.6, 7.4, 5.4

Figure 3. Training and testing data split.
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For the models trained using the H2O framework, the data are split into training,
validation, and testing data, with 80% of the data going into the training data set, 10% into
the validation data set, and 10% in the training data set. The training data is undersampled
similar to the training-testing data split mentioned above. This process of splitting the
data into training, validation, and testing data is shown in Figure 4. The training data is
used to train the machine learning models, the validation data is used for performance
evaluation and the testing data is used to evaluate the machine learning model performance
on unseen data.

Figure 4. Training, validation, and testing data split.

3.3. Hyperparameter Tuning

Each model will be tuned to find the optimal parameters. The parameters used in
the hyperparameter tuning and their corresponding values can be seen in the overview
in Table 8. In addition to the hyperparameter tuning, each model will be cross-validated
four-fold.

Table 8. Hyper parameter tuning values.

Algorithm Parameter Symbol Values

Logistic Regression Elastic Net Regularization λ 0, 0.25, 0.5, 0.75, 1
Regularization α 0, 0.25, 0.5, 0.75, 1

Random Forest Maximum depth max_depth 1, 3, 5, 7, 10
Number of trees num_trees 1, 3, 5, 7, 10, 25, 50

Gradient Boosting machine

Maximum depth max_depth 1, 3, 5, 7, 9, 11, 13, 15 . . . 29
Row sampling rate sample_rate 0.20, 0.21, 0.22, 0.23, . . . 1.00

Column sampling rate col_sample_rate 0.20, 0.21, 0.22, 0.23, . . . 1.00
Column sample rate per tree col_sample_rate_change_per_level 0.90, 0.91 0.92, 0.93, . . . 1.10

Minimum observations per leaf min_rows 1, 2, 4, 8, 16, 32, 64, . . . 2048
Bins for continuous features nbins 16, 32, 64, 128, 256, . . . 1024
Bins for categorical features nbins 16, 32, 64, 128 . . . 4096

Minimum error improvement min_split_improvement 0, 10−8, 10−6, 10−4

Feed-forward Neural Network

Hidden layers and nodes hidden
32→32→32

64→64
100→100→100

Input dropout ratio input_dropout_ratio 0, 0.05
Learning rate rate 0.01, 0.02

Learning rate annealing rate_annealing 10−8, 10−7, 10−6
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3.4. Model Evaluation

To evaluate the classification models, we use the testing data obtained through the
data split shown in Figures 3 and 4. For each model, a confusion matrix will be constructed
as shown in Table 9 from predictions made on the unseen data in the testing dataset.

Table 9. Confusion matrix.

Predicted

Delay No Delay

Actual
Delay True Positive (TP) False Negative (FN)

No delay False Positive (FP) True Negative (TN)

The first model metric used is accuracy. Accuracy is defined as the fraction or per-
centage at which the model predicted correctly in all of the predictions [26]. The equation
for accuracy is shown in Equation (4) [26]. Accuracy can be a deceiving evaluation met-
ric in imbalanced datasets [26]. A poorly performing model can have moderate or even
high accuracy, and a properly performing model can have low accuracy [26]. This is the
reason to combine multiple model evaluation metrics to have a better understanding of
model performance.

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
· 100% (4)

Misclassification rate is directly linked with accuracy, as it is the difference between
100% and the accuracy. As accuracy is defined as the percentage at which the model pre-
dicted correctly, the misclassification rate is defined as the percentage at which
the model predicted incorrectly [26]. The formula for misclassification can be found in
Equation (5) [26].

Misclassi f ication =
(FP + FN)

(TP + TN + FP + FN)
· 100% = 1− Accuracy (5)

Recall is defined as the percentage of actual positives or actual delays that were
predicted correctly. Recall says something about the model’s ability to identify actual
positives correctly [26]. The formula for recall is given in Equation (6). In the flight delay
study, a high recall means the model is capable of predicting actual flight delays properly,
so in this study a high recall is desirable. Precision on the other hand is defined as the
percentage of positive predictions that were actually correct [26]. The formula for precision
is given in Equation (7) [26].

Recall =
(TP)

(TP + FN)
· 100% (6)

Precision =
(TP)

(TP + FP)
· 100% (7)

The following considered metric is the F1 score. This metric combines both precision
and recall in a single metric using the harmonic mean between the two metrics [26]. As
mentioned previously, accuracy can be a deceiving model evaluation metric in imbalanced
datasets. This is where the F1 score comes in useful as it gives a better insight into model
performance. The formula to calculate the F1 score is given in Equation (8) [26].

F1 score =
(2 · precision · recall)
(precision + recall)

· 100% (8)
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Specificity, which is also known as the true negative rate, says something about the
models’ ability to predict true negatives [26]. In the context of flight delay prediction, this
translates into the ability of the model to predict if a given flight has no delay. The formula
to calculate specificity is given in Equation (9).

Speci f icity =
TN

(TN + FP)
· 100% (9)

The next model metric is the area under the receiver operating characteristic (ROC)
curve. Figure 5 shows an example of a ROC curve [26]. The ROC curve is an evaluation
metric used in binary classification problems, it is a probability curve that plots the true
positive rate against the false positive rate [26]. The area under the ROC curve (ROC AUC)
gives the performance of the model when distinguishing between positive and negative
classes, therefore the higher this metric the better performing the model. In Figure 5, the
blue-shaded area is the AUC of ROC curve B. ROC curve A has better performance than B,
thus having a higher AUC.

Figure 5. ROC AUC curve example [26].

The final model metric is the area under the precision-recall curve, better known as PR
AUC. Figure 6 shows an example of a PR curve [26]. The PR curve is an evaluation metric
used in binary classification problems, it is a probability curve that plots the precision
against the recall [26]. The area under the PR curve gives the performance of the model
and an area closer to 1 indicates a better-performing model. In Figure 6, PR A has better
performance than PR B, thus having a higher AUC.

Figure 6. PR AUC curve example [26].
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4. Results

This section presents the results obtained with the process explained in the method-
ology section. This includes the results obtained after data processing, and the results
obtained for each final, tuned, and cross-validated model. The results for the evaluation
metrics obtained for each model are then compared and the best-performing model is
proposed for flight arrival delay prediction.

4.1. Data Processing

The raw flight data for 2017 includes over 5.6 million flights. When applying the
definition of the Bureau of Transport Statistics to this raw data, which is that any flight
with a delay greater or equal to 15 min is considered delayed, a great imbalance in the
target variable is observed. Of the raw flight data, a large majority of 82% are non-delayed,
and only 18% are delayed, which is also shown in Figure 7. With such an imbalance in the
target variable, it is important to look at the class imbalance after preprocessing the data
and applying undersampling during the majority class after the data split, as shown in
Figures 3 and 4.

Figure 7. Imbalance of arrival delays in raw flights.

After processing the data in the pipeline and joining the weather data and the airport
congestion data, there are only 542,421 rows left, which comes down to only 9.57% of the
raw data. As shown previously in Figure 7, the arrival delays in the raw data were highly
imbalanced. When taking a look at the imbalance in the processed data, it is clear that it is
still highly imbalanced. The imbalance in the arrival flight delays of the processed data is
shown in Figure 8. After processing the data, the imbalance stays in a similar ratio, with
79% of the flights being non-delayed flights and 21% of the flights being delayed flights.
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Figure 8. Imbalance of arrival delays in processed data.

4.2. Logistic Regression Results

The optimal model parameters for logistic regression are given in Table 10. The
optimal parameter value for the elastic net regularization and the regularization is 0. These
parameters are used to train the final logistic regression model, which is cross-validated
four-fold.

Table 10. Logistic regression parameter values.

Parameter Symbol Value

Elastic net regularization λ 0
Regularization α 0

To evaluate the performance of the logistic regression model, predictions are made
based on testing data. The confusion matrix constructed with these results is shown in
Table 11. The true positives are 7137, the false negatives are 4143, the false positives are
15,040, and the true negatives are 28,025. The evaluation metrics for the logistic regression
model are given in Table 12 together with the other models. The accuracy, precision, recall,
F1-score, and specificity are calculated using the equations given in the methodology. The
PR AUC and ROC AUC are obtained using the calculator of Spark.

Table 11. Confusion matrix for logistic regression.

Predicted

Delay No Delay

Actual
Delay 7137 4143

No delay 15,040 28,025

Table 12. Model evaluation metrics on the test data.

Metric Logistic Regression Random Forest Gradient Boosting Machine Feed-Forward Neural Network

Accuracy 0.65 0.70 0.75 0.47
Precision 0.32 0.37 0.45 0.26

Recall 0.63 0.66 0.88 0.87
F1-Score 0.42 0.47 0.60 0.40

Specificity 0.65 0.71 0.72 0.37
PR AUC 0.38 0.48 0.68 0.43

ROC AUC 0.69 0.75 0.89 0.73
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4.3. Random Forest

The optimal model parameters for random forest are given in Table 13. The optimal
parameter value for the maximum depth of each tree is 10 and the number of trees is 50.
These parameters are used to train the final random forest model, which is cross-validated
four-fold.

Table 13. Random forest parameter values.

Parameter Symbol Value

Maximum depth max_depth 10
Number of trees num_trees 50

To evaluate the performance of the logistic regression model predictions are made
based on testing data. The confusion matrix constructed with these results is shown in
Table 14. The true positives are 7428, the false negatives are 3852, the false positives are
12,626, and the true negatives are 30,439. The evaluation metrics for the random forest
model are given in Table 12 together with the other models. The accuracy, precision, recall,
F1-score, and specificity are calculated using the equations given in the methodology. The
PR AUC and ROC AUC are obtained using the calculator of Spark.

Table 14. Confusion matrix for random forest.

Predicted

Delay No Delay

Actual
Delay 7428 3852

No delay 12,626 30,439

4.4. Gradient Boosting Machine

The optimal model parameters for the gradient boosting machine are given in Table 15.
The optimal parameter value for the maximum depth of each tree is 17, the row sampling
rate is to be found at 0.91, the column sampling rate is found at 0.33, the column sampling
rate per tree at 0.95, the minimum observations per leaf at 16, the number of bins for
continuous features at 512, the number of bins for categorical features at 64, and the
minimum error improvement at 0. These parameters are used to train the final gradient
boosting machine model, which is cross-validated with 4-folds.

Table 15. Gradient boosting machine parameter values.

Parameter Symbol Value

Maximum depth max_depth 17
Row sampling rate sample_rate 0.91

Column sampling rate col_sample_rate 0.33
Column sample rate per tree col_sample_rate_change_per_level 0.95

Minimum observations per leaf min_rows 16
Bins for continuous features nbins 512
Bins for categorical features nbins 64

Minimum error improvement min_split_improvement 0

To evaluate the performance of the gradient boosting machine, model predictions are
made based on testing data. The confusion matrix constructed with these results is shown
in Table 16. The true positives are 9901, the false negatives are 1350, the false positives
are 12,152, and the true negatives are 31,019. The evaluation metrics for the gradient
boosting machine model are given in Table 12 together with the other models. The accuracy,
precision, recall, F1-score, and specificity are calculated using the equations given in the
methodology. The PR AUC and ROC AUC are obtained using the calculator of H2O.
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Table 16. Confusion matrix for gradient boosting machine.

Predicted

Delay No Delay

Actual
Delay 9901 1350

No delay 12,152 31,019

4.5. Feed-Forward Neural Network

The optimal model parameters for the feed-forward neural network are given in
Table 17. The optimal parameter value for the number of hidden layers is found to be 2,
with 64 nodes in each layer, the input dropout ratio is found at 0.05, the learning rate is
found at 0.02, and the learning rate annealing is found at 10−6. These parameters are used
to train the feed-forward neural network model, which is cross-validated four-fold. The
confusion matrix for the feed-forward neural network is presented in Table 18.

Table 17. Feed-forward neural network parameter values.

Parameter Symbol Value

Hidden layers and nodes hidden 64→64
Input dropout ratio input_dropout_ratio 0.05

Learning rate rate 0.02
Learning rate annealing rate_annealing 10−6

Table 18. Confusion matrix for feed-forward neural network.

Predicted

Delay No Delay

Actual
Delay 9842 1409

No delay 27,407 15,764

4.6. Model Comparison

Now that all the evaluation metrics have been obtained from the final tuned models
using predictions on the test data, the next step is to compare each model and pick the
best-performing model as the final solution to the flight delay prediction problem. Table 12
shows the comparison of the accuracy, F1 score, specificity, area under the ROC curve, and
the area under the PR curve. When comparing the models using the evaluation metrics in
Table 12, it is clear that the gradient boosting machine has the best performance among the
four examined models. The gradient boosting machine wins when looking at accuracy, the
F1 score, PR AUC, and ROC AUC, and beats random forest slightly in terms of specificity.

Furthermore, when looking at a comparison of the ROC curves of each model in
Figure 9, the gradient boosting machine clearly has a higher ROC AUC curve. This
indicates a better performance as a binary classification model. Considering ROC AUC
performance, the gradient boosting machine is followed by the random forest model, the
feed-forward neural network, and lastly the logistic regression model.

A comparison of the precision-recall curves of all models is given in Figure 10. It
is clearly visible that the gradient boosting machine has the best performance among all
models in terms of PR AUC. When evaluating models with PR AUC, the gradient boosting
machine is again followed by the random forest model, the feed-forward neural network,
and lastly the logistic regression model.
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Figure 9. Comparison of the ROC curves between the different models: Logistic regression (LR),
Random Forest (RF), Gradient Boosting Machine (GBM), Feed-Forward Neural Network (NN).

Figure 10. Comparison of the PR curves between the different models: Logistic regression (LR),
Random Forest (RF), Gradient Boosting Machine (GBM), Feed-Forward Neural Network (NN).

5. Discussion

The raw flight and weather data have been processed and merged together with
the data on airport congestion. After processing this data and selecting the features, the
data were split into training and testing data, and training, validation, and testing data,
respectively. After splitting this data, hyperparameter tuning was performed for each
model. Each of the four models was tuned to find the optimal performance and was cross-
validated four-fold when training the final model using the optimal performance. When
comparing the performance of the four models using Table 12, it is clear that the gradient
boosting machine model has the best performance. The gradient boosting machine beats
the other models in accuracy, precision, recall, f1-score, specificity, and the areas under the
PR and ROC curves. When observing the visual model comparison in the PR curves in
Figure 10 and the ROC curves in Figure 9, the gradient boosting machine clearly has the
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best performance among the four models. Specifically, the random forest model performs
similarly to the gradient boosting machine, but in all other metrics, the gradient boosting
machine has the best performance. Random forest is the second-best predictive model
among the four. The logistic regression model is a very close third among the models,
outperforming the feed-forward neural network in accuracy, ROC AUC, and specificity. Of
the four models, the feed-forward neural network has the poorest performance. Besides
having a lower accuracy, the model especially performs very poorly in specificity compared
to the other models, where the other models have slightly more balanced metrics. It is
interesting, however, to note that the feed-forward neural network has a much higher
recall, which is shown in Table 12, compared to the other three models. The outliers in
the specificity and recall indicate that this type of machine learning model is not suitable
for tabular data such as the flight and weather data used in this study. Furthermore, it
is important to note that all models perform poorly in precision. This poor performance
in precision is also reflected in the values for the F1 score since the F1 score is directly
derived from precision and recall as well. This poor performance likely comes from the
highly imbalanced nature of the dataset as well as its size, with only a minority of the
dataset being delayed and a large majority being on-time flights. Out of all four models,
the gradient boosting machine is the best model with the best performance in all categories
and, therefore, the model most suitable to perform flight delay predictions. This model
seems to beat the lightGBM model, which has a similar architecture to [18], on the following
evaluation metrics: F1 score with an 8% improvement, recall with a 36% improvement, and
ROC AUC with a 10% improvement.

6. Conclusions

The article presents a machine learning approach to the prediction of arrival flight
delays in the United States airport network. Several different models are tuned, trained, and
compared using model performance which is based on predictions made on the test data.
Based on this comprehensive comparison the solution for arrival delay prediction is chosen
to be a gradient boosting machine model, which has higher performance in every evaluation
metric applied in this study. The study allows us to draw the following conclusions:

1. For arrival flight delay prediction in the United States airport network, the usage
of publicly available flight and weather allows for the design of usable machine
learning models.

2. Between the four machine learning models chosen in this study: logistic regression,
random forest, gradient boosting machine, and feed-forward neural network, the
gradient boosting machine has the best performance. The gradient boosting machine
beats the other three models by far across all model evaluation metrics.

The prediction of delayed flights in our model depends on features based on weather
forecasts. Therefore, the available time of the prediction is the one when accurate weather
forecasts are available. To that respect, our study takes a different approach compared
to models performing strategic flight delay prediction, such as in [10], which only uses
features available months in advance.
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Abbreviations
The following abbreviations are used in this manuscript:

US United States
ML Machine Learning
AI Artificial Intelligence
LR Logistic Regression
RF Random Forest
GBM Gradient Boosting Machine
NN Feed-Forward Neural Network
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