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Abstract: This paper proposes an impact time control guidance law based on exact nonlinear kine-
matics equations. To address the impact time control problem of providing enhanced intercept
accuracy, we formulated an error variable whose regulation ensures the fulfillment of the required
tasks without time-to-go estimation. Based on the Lyapunov stability theory, a desired line-of-sight
rate profile that satisfies the convergence of the error variable was constructed, from which the
guidance command was designed using the optimal tracking formulation. The simple structure of
the proposed guidance law enables the prediction of interceptor behavior during homing, thereby
allowing the interceptor to maneuver along feasible trajectories. In addition, although the structure of
the proposed guidance law is simple and similar to that of proportional navigation, it is theoretically
guaranteed to execute the required mission precisely at the end of homing. Numerical simulations
demonstrated that the proposed guidance law achieved effective target interception under various
terminal constraint settings.

Keywords: homing guidance; impact time control guidance; Lyapunov stability theory; closed-loop
analysis

1. Introduction

Proportional navigation (PN) guidance, which is designed to nullify the line-of-sight
(LOS) rate with simple proportional control, has been used extensively due to its satisfac-
tory performance and uncomplicated structure [1]. In particular, pure PN with a navigation
constant of 3 is considered an optimal solution that effectively minimizes the quadratic
summation of the normal acceleration for engagement against a stationary target [2]. How-
ever, with the widespread use of anti-air defense systems in modern warfare, it is becoming
increasingly difficult to achieve accurate interception with PN aimed at minimizing only
the miss distance to the target. For example, it is difficult for a PN-guided missile to cause
significant damage to a warship armed with close-in weapon systems.

A simultaneous attack by synchronizing the arrival time of multiple missiles on a
single target is an effective strategy that can neutralize anti-air defense systems. To satisfy
such requirements, feedback control on the arrival time of each missile should be per-
formed, which is referred to as impact time control guidance (ITCG). Since ITCG was first
introduced [3], a number of studies have investigated various guidance formulations [3–20].

Linearization for engagement kinematics based on small-angle approximation has
been widely utilized, which makes it easier to design guidance laws by replacing the
original nonlinear equation. The guidance laws presented in pioneering ITCG studies [3,4]
were also derived by linearized kinematics based on the small-angle approximation to
the flight path angle to realize the easy application of the optimal control theory. As an
extended version, a subsequent guidance law [5] was structured as a polynomial function,
where coefficients were determined according to the boundary conditions of the impact
angle and time constraints. Here, linearized equations were exploited in the process of
determining the values of the coefficients.
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To exploit the advantage of simplifying equations and reducing the intercept inaccura-
cies caused by the approximation, several previous studies have partially implemented
linearization in the design of guidance laws. The primary representative example of such
partial linearization is the time-to-go estimation [6–11]. In these studies, the time-to-go,
whose exact value cannot be measured in real-world engagement scenarios, was calculated
under the assumption that the missile was guided by PN based on the linearized kinemat-
ics. However, unlike the linear guidance laws provided in the literature [3–5], these laws
were designed based on accurate engagement equations and nonlinear control theories
(except for deriving the time-to-go calculation), i.e., nonlinear optimal theory [6], the Lya-
punov stability theory [7–9], and sliding mode control [10,11]. Thus, more accurate ITCG
performance was expected compared to the linearized-kinematics-based guidance laws.

Recently, ITCG laws derived from exact nonlinear equations without approximation
have been studied to eliminate errors caused by linearization. The main focus of such
studies was determining how to handle the time-to-go factor, which must be estimated
precisely, and recent studies have adopted two main approaches, i.e., accurate time-to-
go estimation [12–14] and the exclusion of time-to-go [15–20]. The studies presented
in [12–14] proposed PN-based guidance structures, where nonlinear closed-loop solutions
were derived to calculate the exact expression of the time-to-go. With these guidance struc-
tures, the exact fulfillment of ITCG was guaranteed due to the exclusion of linearization;
however, the resulting expression of the guidance law included an incomplete beta function,
which is a rather complicated function.

To ensure accurate performance with a simple structure, previous studies [15–20]
excluded the use of the time-to-go in the configuration of the guidance law. For example,
a previous study [15] utilized a tracking method to follow the desired heading error profile
rather than defining the impact time error. Note that successful tracking guarantees the
satisfaction of the impact time constraint; thus, the guidance law achieves ITCG without
estimating the time-to-go. A similar approach that constructs a look angle profile in polyno-
mial form has also been adopted [16]. In addition, in a previous study [17], a virtual heading
error was defined based on the characteristics of the arc trajectory without considering
the time-to-go. Here, as convergence to the virtual heading error guaranteed the impact
time control, the guidance law could avoid using the time-to-go in the implementation.
In another study [18], conditions based on the engagement geometry were proposed to
ensure that the designated impact time could be achieved, and this concept was extended
in a subsequent study [19] that presented the necessary and sufficient conditions to ensure
interception at the required impact time even for moving targets. The two-stage guidance
law provided in [20] achieved the required impact time by adjusting the switching point
between each stage, and the appropriate switching point was determined using the Newton
iteration method.

The nonlinear guidance laws presented in [12–20] ensure the accurate fulfillment of
ITCG due to their precise consideration of the exact governing equations. In particular,
the ITCG laws presented in the literature [15–20] ensure that the required tasks can be
achieved even with simple structures by avoiding the estimation of the time-to-go. How-
ever, unlike linear methods [3–5] with simpler structures, such nonlinear guidance laws
exhibit a distinct disadvantage, i.e., the closed loop is difficult to investigate analytically
due to the complicated nonlinearity. In addition, with guidance laws involving a numerical
iterative routine [20], it is particularly difficult to analyze the closed-loop characteristics.
Thus, it is difficult to prevent such nonlinear guidance laws from generating a command
that makes the interceptor perform maneuvers along impractical trajectories.

Thus, in this paper, we propose a guidance law that attempts to satisfy ITCG based on
exact nonlinear governing equations. As the first step to consider the ITCG problem, we
constructed a desired profile of the look angle. Here, the required tasks were guaranteed
to be achieved based on the Lyapunov stability theory. We then utilized an optimal
tracking method to derive an effective guidance law that tracked the desired profile. In all
these processes, the time-to-go estimation was not included. In addition, by using an
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approximation technique that did not degrade the terminal performance of the guidance
law, we could obtain an explicit solution for the closed-loop equations, providing helpful
analysis for practical implementation, e.g., the expected trajectory and maximum value of
the required command input.

Compared to the existing ITCG laws, the proposed guidance law yields the following
contributions. First, from a theoretical perspective, the proposed guidance law fully
guarantees the achievement of ITCG, because the convergence of the defined variable
ensures interception at the designated time without the need to calculate the time-to-go.
Here, the use of nonlinear engagement equations constructed without approximation
supports such theoretical guarantees.

Another contribution of the proposed guidance law is that it provides an explicit
closed-loop solution for the engagement kinematics; thus, it is possible to predict the future
behavior of the interceptor. Although the small-angle approximation of the look angle is
required to derive the closed-loop solution, this does not negatively affect the terminal
accuracy of homing, because the convergence of the look angle to zero is guaranteed.
In addition, this closed-loop solution does not involve highly complex transcendental
functions, e.g., a Gaussian geometric function or incomplete beta function.

In addition, the proposed guidance law does not require an iterative routine, e.g., nu-
merical optimization or the Newton–Raphson method. In other words, the proposed
guidance law is expected to be more suitable for practical implementation than numerical
computation-based guidance laws.

The remainder of this paper is organized as follows. Section 2 describes the nonlinear
formulation of the engagement kinematics as the groundwork to design the ITCG law.
In Section 3, the proposed nonlinear formulation-based guidance law is presented to solve
the ITCG problem. Then, in Sections 4 and 5, the performance of the proposed guidance law
is investigated according to the analytic closed-loop solution and numerical simulations,
respectively. Finally, concluding remarks are presented in Section 6.

2. Problem Statement

Here, we assume the engagement scenario illustrated in Figure 1, where missile M
moving at velocity VM and normal acceleration aM attempts to intercept the stationary
target T. In Figure 1, r and λ represent the relative range and the LOS angle, and γM and
σM denote the flight path angle and look angle of the missile to the target, respectively.
Thus, the relative motion of the missile with respect to the target is governed by the
following equations:

ṙ =−VM cos σM (1)

rλ̇ =−VM sin σM (2)

σ̇M =
aM
VM

+
VM sin σM

r
(3)

The primary objective of an ITCG law is to achieve interception at the designated
impact time td, which is expressed as follows:

r(td) = 0 (4)

The key condition for the ITCG is presented in the form of a boundary condition,
as shown in (4); thus, it is difficult to apply a general control algorithm that regulates a
specified variable in a straightforward manner. Therefore, we introduced error variable et,
whose convergence guarantees target interception at the designated time, as follows:

et = VMtd
go − r (5)

Here, td
go is the desired time-to-go, defined as td

go = td − t. Then, we obtained the
following proposition:
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Figure 1. Two-dimensional engagement geometry for a stationary target.

Proposition 1. Suppose that a missile, whose engagement kinematics are governed by (1)∼(3),
is guided by an arbitrary guidance law that maintains et = 0, where et is defined by (5). Then,
the missile is guaranteed to achieve the condition in (4), i.e., the impact time control guidance
is fulfilled.

Proof. Taking the time derivative to et generates the following:

det

dt
= −VM + VM cos σM (6)

which indicates that the maintenance of et = 0 is equivalent to σM = 0. Then, the missile is
guaranteed to move in a straight line toward the target; the time-to-go is entirely determined
as tgo = r/VM without the need to estimate. Therefore, et = 0 implies that the missile
reaches the target at an impact time of t = td, which verifies (4).

Thus, the design of a controller that achieves et = 0 is equivalent to the development
of an ITCG law. Herein, the Lyapunov stability theory and optimal tracking method were
utilized to achieve this design objective, which is described in detail in Section 3.

Remark 1. Generally, the desired impact time td is set to be greater than r(0)/VM, which is the
minimum value of the expected impact time. Thus, it is obvious that the initial value of the error
variable et is always positive.

3. Design of Impact Time Control Guidance Law

As presented in the following, we designed the ITCG law in two steps. First, as the
groundwork to design the guidance law, a desired profile of the look angle was structured
based on the error dynamics of et provided in (6). Subsequently, we employed the optimal
tracking method, which was proposed in a preliminary study [21], to design the ITCG law.

From the error dynamics of the impact time in (6), we defined the desired profile of
the look angle to achieve et = 0 as follows:

σd
M = k

√
et

r
(7)

Here, k is a gain selected as a positive constant. Assume that the error dynamics in (6)
are evolved by the desired look angle in (7). Then, the substitution of σM = σd

M into (6)
yields the following equation:

det

dt
= −VM + VM cos

(
k
√

et

r

)
(8)

In relation to (8), we present the following lemmas.

Lemma 1. et is always non-negative during homing for an initial condition of et(0) > 0.
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Proof. Suppose that et can become negative. Then, et should pass zero because it starts
with a positive value. However, from (8), it is verified that et = 0 is an attractor, because
det/dt

∣∣
et=0 = 0 is achieved. This implies that et can never escape from et = 0 once et

reaches zero, which contradicts the assumption that et can become negative.

Lemma 2. et = 0 is the only attractor for (8).

Proof. We begin with the assumption that (8) has more than one attractor. Note that the
attractor candidates must satisfy cos

(
k
√

et/r
)
= 1, which is equivalent to:

k2et = 4n2π2r (9)

where n can be a non-zero positive integer due to the assumption. By differentiating both
sides with respect to time, we obtain the following:

k2
{
−VM + VM cos

(
k
√

et

r

)}
= −4n2π2VM cos

(
k
√

et

r

)
⇔ 0 = −4n2π2VM (10)

which contradicts the idea that n can be a non-zero positive integer.

Using Lemmas 1 and 2, we could verify that et = 0 is achieved by the desired look
angle in (7) with the following proposition.

Proposition 2. et is guaranteed to converge to zero in (8). In addition, et = 0 is ensured to be
achieved as r approaches zero.

Proof. Here, we define the Lyapunov candidate function of Vt , e2
t /2. Taking the time

derivative to the candidate function provides the following:

V̇t =

{
−VM + VM cos

(
k
√

et

r

)}
et (11)

In (11), et is always non-negative, as proved by Lemma 1. In addition, from Lemma 2,
it can be inferred that we only need to analyze the convergence for the domain of [−π, π]
for the cosine function. Thus, V̇t satisfies the following:

V̇t ≤
{
−VM

2
π2

(
k
√

et

r

)2}
et

=− 2VMk2

π2
e2

t
r
≤ 0 (12)

where the mathematical relationship of cos x ≤ 1−
(
2/π2)x2 ∀x ∈ [−π, π] is utilized. The

result in (12) proves that et converges to zero. In addition, the actual time-to-go, which is
defined as tgo = t f − t, is always greater than or equal to r/VM, i.e., the time taken for a
straight flight. Thus, V̇t in (12) satisfies the following:

V̇t ≤ −
2k2

π2
e2

t
tgo

=
4k2

π2
Vt

t f − t
(13)

which provides

Vt ≤ Vt(0)

(
t f − t

t f

)−4k2/π2

. (14)

The result of (14) proves that et converges to zero as homing is terminated.
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Proposition 2 implies that the ITCG task is satisfied if the actual look angle converges
to the desired profile σd

M before homing ends. Here, we used the finite-time tracking
method that designs the nonlinear optimal solution for achieving σM = σd

M, which was
previously proposed in a preliminary study in [21]. To apply the tracking method, we
established the LOS rate error, defined as eλ̇ , λ̇− λ̇d, where λ̇d is the desired LOS rate
for the ITCG, defined as λ̇d , −VM sin σd

M/r. Then, to consider the terminal boundary
condition of r = 0 easily in the error equation, we set the error dynamics for eλ̇ with respect
to the relative range r as follows:

deλ̇

dr
=

aM
VMr

− 2
λ̇

r
− dλ̇d

dr
(15)

where (1) is used. Then, by applying the tracking method [21], we constructed the guidance
command as follows:

aM = aeq
M + acont

M (16)

where aeq
M is an equivalent term to compensate for the parts that are relevant to the desired

LOS rate given by:

aeq
M = 2VMλ̇d + VMr

dλ̇d
dr

. (17)

Note that the controller term acont
M in (16) was designed by the optimal theory such

that its quadratic summation was minimized, as shown by the following proposition.

Proposition 3 ([21]). Consider the following quadratic performance index:

J(r0) =
∫ r0

0

1
2r̃m u2(r)dr (18)

where r0, m, and u(r) are the initial values of the relative range, the guidance gain selected as
a positive constant, and the feedback control input defined as u(r) = acont

M (r)/VM, respectively.
Then, the optimal solution to minimize (18) subject to the dynamic constraint of (15) and the desired
boundary condition of eλ̇(0) = 0 is written as follows:

acont
M (r) = (m + 3)VMeλ̇(r0)

(
r
r0

)m+1
(19)

where eλ̇(r0) is the initial value of the LOS rate error. In addition, the real-time feedback command,
in which the current state variables (rather than their initial values) are used as the boundary
conditions, is obtained as follows:

aM = (m + 3)VMλ̇− (m + 1)VMλ̇d + VMr
dλ̇d
dr

. (20)

The proof for Proposition 3 can be found in Proposition 1 and Remark 1 in [21]. As the
convergence of σM = σd

M before the end of homing is proven by Proposition 3, we deduced
that et = 0 is also achieved during homing. As a result, it was theoretically verified that the
guidance law proposed in (7) and (20) achieves target interception at the designated impact
time td.

4. Analysis of Proposed Guidance Law

In this section, we investigate the performance of the proposed guidance law via
closed-loop analysis to determine whether the proposed law produces feasible results in
a realistic context. In Section 4.1, we obtain a closed-loop solution using the small-angle
approximation under the proposed command input. Based on the calculated closed-
loop solution, the future behavior of the engagement variables and guidance commands
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for the given boundary conditions and parameter settings are predicted to evaluate the
applicability of the proposed law, in Sections 4.2 and 4.3, respectively.

4.1. Approximated Closed-Loop Solution

By applying the guidance law proposed in (20) to the engagement equations, we
analyzed the closed-loop behavior according to the following proposition.

Proposition 4. Using the small-angle approximation, the look angle σM, which varies by the
command proposed in (20), can be expressed as a polynomial function for the relative range as follows:

σM = cmrm+2 + cnrn (21)

where n is defined as n =
(
k2 − 2

)
/4, and the constant coefficients cm and cn are determined by

the given boundary condition.

Proof. First, we derived the closed-loop solution for the desired profile of the look angle.
From (8), we obtained the closed-loop dynamics of the error variable et with respect to the
relative range r as follows:

det

dr
= sec

(
k
√

et

r

)
− 1 (22)

both et and det/dr converge to zero before the end of homing, as proven by Lemma 2 and
Proposition 2; thus, the small-angle approximation of sec

(
k
√

et/r
)
≈ 1 +

(
k
√

et/r
)2/2,

which is based on the Taylor approximation, does not deteriorate the terminal accuracy of
the closed-loop analysis. Thus, we obtained the following approximated error dynamics
for et:

det

dr
=

k2

2
et

r
(23)

which provided the solution of

et(r) = et(r0)

(
r
r0

)k2/2
. (24)

By combining (7) and (24), we obtained the closed-loop solution for σd
M as follows:

σd
M = cnrn (25)

where parameter n is defined as n = (k2 − 2)/4, and coefficient cn is determined by the
boundary condition. From the result of (25), we could confirm that the desired look angle
is expressed as a power function of the relative range; however, this did not mean that the
actual look angle has the form of a power function. To investigate the behavior of the actual
look angle, we identified the entire closed-loop according to the following procedure.

By substituting (20) into the error dynamics of (15), we obtained the following:

deλ̇

dr
= (m + 1)

eλ̇

r
(26)

which yielded the following solution for λ̇(r).

λ̇(r) = λ̇d(r) + eλ̇(r0)

(
r
r0

)m+1
(27)

With the small-angle approximation for σM, which is ensured to converge to zero, we
obtained the solution for the actual look angle as follows:

σM(r) = cmrm+2 + cnrn (28)
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To calculate the values of cm and cn, we set the approximated equation for et as follows:

det

dr
= sec σM − 1 ≈ 1

2
σ2

M (29)

where (1) and (6) are involved. Here, by integrating both sides of (29) using (28), we
obtained the following:

et(r) =
c2

m
2(2m + 5)

r2m+5 +
c2

n
2(2n + 1)

r2n+1 +
cmcn

m + n + 3
rm+n+3 (30)

Then, by applying the boundary conditions of σM(r0) and et(r0) to (28) and (30),
respectively, the coefficients were computed as follows:

cm =
(2m + 5)σM(r0) +

√
−(2m + 5)(2n + 1)σ2

M(r0) + 4(2m + 5)(2n + 1)(m + n + 3) et(r0)
r0

2(m− n + 2)rm+2
0

cn =
−(2n + 1)σM(r0)−

√
−(2m + 5)(2n + 1)σ2

M(r0) + 4(2m + 5)(2n + 1)(m + n + 3) et(r0)
r0

2(m− n + 2)rm+2
0

(31)

Note that the coefficients in (31) were selected from two roots of the quadratic equation
to satisfy the condition σM(r) ≥ 0.

Due to the simple polynomial structure of the look angle expressed in (28), the future
behavior of the state variable and command input could be predicted from the given
boundary conditions. In the following sections, we utilized such predictions to estimate
the arrival angle and the maximum magnitude of the command input.

4.2. Trajectory Analysis

The arrival angle at the missile’s target can be an effective measure to determine
whether a proposed law produces a practically feasible trajectory. For example, if the
missile approaches the target with an arrival angle near −90◦, a vertical strike is attainable
to maximize the attack’s lethality; otherwise, if a trajectory is generated with a positive
arrival angle, it would be difficult to reach the target in a real-world implementation.

The arrival angle, which is also referred to as the impact angle, can be calculated as
the final value of the LOS angle for a stationary target. For this calculation, we applied the
polynomial form of the look angle in (28) to the LOS dynamics, formulated as follows:

dλ

dr
≈ σM

r
(32)

where (1) and (2) are used with the small-angle approximation for σM. By solving (32) with
the substitution of (28), we obtained the following expression for the arrival angle λ f :

λ f = λ(r0)−
cm

m + 2
rm+2

0 − cn

n
rn

0 (33)

where λ(r0) denotes the initial value of the LOS angle. The result of (33) allows the user to
identify whether the proposed law generates an implementable trajectory by predicting the
arrival angle before homing. Such results would be useful when applying the proposed
guidance law to an engagement scenario against both terrestrial and naval targets.

4.3. Acceleration Command Analysis

The closed-loop analysis conducted in Section 4.1 could be utilized to predict the max-
imum magnitude of the command input of the proposed guidance law. Here, by replacing
λ̇ and λ̇d in (20) with the obtained closed-loop solution of (25) and (27), respectively, we
obtained the following additional form of the guidance command:
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aM(r) = −V2
M

{
(m + 3)cmrm+1 + (n + 1)cnrn−1

}
(34)

where the approximations of sin σM ≈ σM and sin σd
M ≈ σd

M are used. Note that both σM
and σd

M are guaranteed to converge to zero at the end of homing; thus, such approximations
do not deteriorate the terminal accuracy. The result of (34) provides two useful points. First,
if m and n are selected to satisfy m > −1 and n > 1, the generated command from aM
converges to zero at the end of homing. Thus, it is recommended to select guidance gains
under such conditions to realize the stable terminal performance of the autopilot system.
Next, we could predict the maximum magnitude of aM(r) during homing by obtaining the

critical point r2 that satisfies daM/dr
∣∣∣
r=r2

= 0 as follows:

r2 =

(
− (n + 1)(n− 1)cn

(m + 3)(m + 1)cm

)1/(m−n+2)

(35)

If no real root exists for r2 in (35), it can be inferred that the initial value is the maximum
of |aM| during the entire homing process; otherwise, the maximum magnitude for aM(r)
∀r ∈ [0, r0] was determined as follows:

max
r∈[0,r0]

|aM(r)| = max(|aM(r0)|, |aM(r2)|). (36)

Using the result of (36), it becomes possible to preselect appropriate guidance gains
to achieve the required tasks while considering the maximum maneuverable limit of the
given autopilot system. This is expected to be beneficial for the practical implementation of
the proposed law, as with the analysis of the arrival angle.

5. Simulation Results

Here, we evaluate the performance of the proposed guidance law. In Section 5.1,
the primary characteristics of the proposed law are investigated by conducting engagement
simulations under various settings. Then, in Section 5.2, the performance of the proposed
law is compared to that of existing ITCG laws to validate the contributions of this study.
To consider the time delay effect caused by missile dynamics and autopilot, a first-order sys-
tem with a time constant of 0.1 s is applied in all simulations, and the maximum magnitude
of the normal acceleration is assumed to be saturated as |aM| ≤ 10 g. The corresponding
simulation parameters, boundary conditions, and desired constraints are listed in Table 1.

Table 1. Simulation parameters.

Parameter Value

Initial position of missile, (xM(0), yM(0)) (0, 0) km
Position of stationary target, (xT , yT) (10, 0) km
Missile speed, VM 250 m/s
Desired impact time, td 50 s, 60 s, 70 s
Guidance gains, (m, n) (0, 1), (1, 2), (2, 3)

5.1. Performance Analysis

Figure 2a–c show the results obtained using the proposed guidance law with gains
of (m, n) = (0, 1), (1, 2), and (2, 3), respectively. Here, the gain k to construct σd

M in (7)
was determined to satisfy n =

(
k2 − 2

)
/4, as described in Proposition 4. As shown

in Figure 2a,b, the proposed guidance law under various gain settings achieved target
interception at the designated impact time by regulating both error variables, et and
eλ̇. Specifically, an impact time of t f = 49.99 s was achieved in all cases. In addition,
the trajectory exhibited a larger curvature in the initial stage as m and n increased, which
was due to the fact that the proposed guidance law expresses the look angle as a polynomial
function with m and n as exponents despite being based on the nonlinear Lyapunov stability
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theory, as verified by Proposition 4. Note that the look angle histories shown in Figure 2c
also support this analysis. The lower part of Figure 2c, where the produced command is
plotted, shows that the proposed guidance law generated an acceleration command that
converged to zero when the gains were set to m > 0 and n > 1, because the command
could be approximated as a polynomial with exponents of m + 1 and n− 1, as verified in
Section 4.3. Thus, it is advantageous to select gains that satisfy such conditions so that the
command converges to zero.
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Figure 2. Simulation results under the proposed law with gains of (m, n) = (0, 1), (1, 2), and (2, 3).
(a) Flight trajectories; (b) error variables; (c) state and input variables.

Figure 3a–c show the engagement results obtained using the proposed law for the
designated impact times of td = 50 s, 60 s, and 70 s, respectively, with fixed gains of m = 2
and n = 3. Here, Figure 3a,b show that the proposed guidance law made the error variables
converge to zero before homing ended, as proven by Propositions 2 and 3. In addition,
the specific impact time for each case was t f = 49.99 s, 59.99 s, and 69.99 s, which indicates

that the proposed guidance law satisfied ITCG with an accuracy within
∣∣∣t f − td

∣∣∣ ≤ 1× 10−2 s.
In addition, the predicted arrival angles for the td = 50 s, 60 s, and 70 s cases were calculated
as−51.41◦,−73.89◦, and−91.04◦, which did not deviate considerably from the actual arrival
angles of −50.51◦, −74.34◦, and −95.08◦, respectively. By applying the estimation of (36)
to this scenario, it was predicted that the maximum magnitude of the guidance command
would occur at the initial point in all cases, which was consistent with the actual results
shown in Figure 3c. In addition, due to the gain setting of m = 2 and n = 3, we observed
that the proposed guidance law generated a command that converged to zero in all cases.
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Figure 3. Simulation results under the proposed law for the desired constraint of td = 50 s, 60 s,
and 70 s. (a) Flight trajectories; (b) error variables; (c) state and input variables.
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5.2. Comparative Studies

To facilitate an effective comparative analysis, the performance of the proposed law
was compared to that of existing nonlinear ITCG laws, i.e., the nonlinear optimal guidance
(NOG) law [6] and the range-polynomial guidance (RPG) law [16]. Here, the NOG and
RPG laws were applied to generate the following commands:

NOG : aM = NVMλ̇ + N(N + 1)(2N − 1)
V5

M
NVMλ̇r3

(
td
go − tPNG

go

)
(37)

RPG : aM = κcVM(td − t)2 − 2VMσM
td − t

+ VMλ̇ (38)

Note that detailed discussions regarding the parameter selections can be found in the
respective literature.

Figure 4a–c show the results obtained by the three guidance laws for the desired
impact time of td = 50 s. As shown in Figure 4a,b, all three compared laws satisfied
the interception at the required impact time. The specific interception results obtained
by NOG, RPG, and the proposed guidance law were t f = 49.99 s, 49.99 s, and 49.99 s,
respectively. The accurate accomplishment of the required tasks by all three guidance laws
was attributed to the precise consideration of engagement kinematics based on nonlinear
equations. In particular, RPG and the proposed guidance law were designed to satisfy
sufficient conditions for ITCG without estimating the time-to-go; thus, achieving the
required missions was ensured theoretically.

By virtue of such features, both RPG and the proposed guidance law satisfied the
required impact time of td = 70 s with a time of t f = 69.99 s, as shown in Figure 5a–c;
however, we found that NOG failed to intercept the target, as the command oscillated
between each limit. This divergence was caused by the convergence of λ̇ to zero before
td
go converged to tPNG

go , as shown in (37). In contrast, the closed-loop analysis presented in
each study validated that both NOG and the proposed guidance law produced commands
in the form of polynomial functions that did not diverge. Thus, it is expected that RPG
and the proposed guidance law could be applied more reliably in practical implementation
than the NOG law.
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Figure 4. Simulation results under NOG, RPG, and the proposed law for the desired constraint of
td = 50 s. (a) Flight trajectories; (b) state variables; (c) guidance commands.
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Figure 5. Simulation results under NOG, RPG, and the proposed law for the desired constraint of
td = 70 s. (a) Flight trajectories; (b) state variables; (c) guidance commands.

In addition, unlike RPG, which requires a numerical root-finding routine to compute
the guidance gain κc, the proposed guidance law can be implemented with only an analyti-
cal calculation. In other words, no numerical iterative computation is required, even for the
prediction of the future behavior of the proposed guidance law, as described in Section 4.
Thus, we concluded that the proposed guidance law is superior to RPG and NOG in terms
of both performance reliability and the ease of practical implementation.

6. Conclusions

Herein, we have proposed a Lyapunov-based ITCG law that provides performance
prediction by analyzing the closed-loop. In the proposed guidance law, we first formulate
the error variable, which ensures that target interception can realize the designated impact
time despite the lack of time-to-go estimation. Here, error regulation is achieved by con-
structing the desired command of the LOS rate, where performance is validated according
to the Lyapunov stability theory. In addition, the acceleration command is configured as a
nonlinear controller that tracks the presented LOS rate command by applying an optimal
tracking formulation developed in a previous study. The proposed guidance law is proven
to yield a trajectory that takes the form of a polynomial function of the relative range,
which allows us to predict the expected performance, e.g., the arrival angle and maximum
magnitude of the command input. Although the small-angle approximation for the look
angle is utilized to predict the expected behavior of the proposed guidance law, this does
not reduce terminal accuracy because the look angle is guaranteed to converge to zero.
In addition, no approximation is involved in the design of the proposed guidance law,
and the achievement of the required terminal constraints is verified; thus, fulfillment of
ITCG is ensured theoretically. Finally, comparative investigations conducted via numerical
simulations have effectively demonstrated and validated the important contributions of
the proposed guidance law.

Author Contributions: Methodology, H.-G.K.; Investigation, J.S.; Writing—original draft, H.-G.K.;
Writing—review & editing, J.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by Incheon National University Research Grant in 2020.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Aerospace 2023, 10, 308 13 of 13

References
1. Zarchan, P. Tactical and Strategic Missile Guidance, 5th ed.; AIAA, Inc.: Reston, VA, USA, 2007; pp. 11–29.
2. Jeon, I.S.; Lee, J.I. Optimality of proportional navigation based on nonlinear formulation. IEEE Trans. Aerosp. Electron. Syst. 2010,

46, 2051–2055. [CrossRef]
3. Jeon, I.S.; Lee, J.I.; Tahk, M.J. Impact-time-control guidance law for anti-ship missiles. IEEE Trans. Control Syst. Technol. 2006,

14, 260–266. [CrossRef]
4. Lee, J.I.; Jeon, I.S.; Tahk, M.J. Guidance law to control impact time and angle. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 301–310.
5. Kim, T.H.; Lee, C.H.; Jeon, I.S.; Tahk, M.J. Augmented polynomial guidance with impact time and angle constraints. IEEE Trans.

Aerosp. Electron. Syst. 2013, 49, 2806–2817. [CrossRef]
6. Jeon, I.S.; Lee, J.I.; Tahk, M.J. Impact-time-control guidance with generalized proportional navigation based on nonlinear

formulation. J. Guid. Control Dyn. 2016, 39, 1885–1890. [CrossRef]
7. Zhang, Y.; Wang, X.; Wu, H. Impact time control guidance law with field of view constraint. Aerosp. Sci. Technol. 2014, 39, 361–369.

[CrossRef]
8. Kim, M.; Jung, B.; Han, B.; Lee, S.; Kim, Y. Lyapunov-based impact time control guidance laws against stationary targets.

IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1111–1122. [CrossRef]
9. Zhang, Y.; Wang, X.; Wu, H. Impact time control guidance with field-of-view constraint accounting for uncertain system lag.

Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 515–529. [CrossRef]
10. Kumar, S.R.; Ghose, D. Impact time guidance for large heading errors using sliding mode control. IEEE Trans. Aerosp. Electron.

Syst. 2015, 51, 3123–3138. [CrossRef]
11. Cho, D.; Kim, H.J.; Tahk, M.J. Nonsingular sliding mode guidance for impact time control. J. Guid. Control Dyn. 2016, 39, 61–68.

[CrossRef]
12. Cho, N.; Kim, Y. Modified pure proportional navigation guidance law for impact time control. J. Guid. Control Dyn. 2016,

39, 852–872. [CrossRef]
13. Lee, S.; Cho, N.; Kim, Y. Impact-Time-Control Guidance Strategy with a Composite Structure Considering the Seeker’s Field-of-

View Constraint. J. Guid. Control Dyn. 2020, 43, 1566–1574. [CrossRef]
14. Kim, H.G.; Lee, H. Composite Guidance for Impact Time Control Under Physical Constraints. IEEE Trans. Aerosp. Electron. Syst.

2022, 58, 1096–1108. [CrossRef]
15. Tekin, R.; Erer, K.S.; Holzapfel, F. Control of impact time with increased robustness via feedback linearization. J. Guid. Control

Dyn. 2016, 39, 1682–1689. [CrossRef]
16. Tekin, R.; Erer, K.S.; Holzapfel, F. Polynomial shaping of the look angle for impact-time control. J. Guid. Control Dyn. 2017,

40, 2668–2673. [CrossRef]
17. Chen, X.; Wang, J. Nonsingular sliding-mode control for field-of-view constrained impact time guidance. J. Guid. Control Dyn.

2018, 41, 1214–1222. [CrossRef]
18. Kim, H.G.; Kim, H.J. Backstepping-based Impact Time Control Guidance Law for Missiles with Reduced Seeker Field-of-View.

IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 82–94. [CrossRef]
19. Kim, H.G.; Cho, D.; Kim, H.J. Sliding mode guidance law for impact time control without explicit time-to-go estimation.

IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 236–250. [CrossRef]
20. Wang, C.; Yu, H.; Dong, W.; Wang, J. Three-Dimensional Impact Angle and Time Control Guidance Law Based on Two-Stage

Strategy. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 5361–5372. [CrossRef]
21. Kim, H.G.; Lee, J.Y. Generalized Guidance Formulation for Impact Angle Interception with Physical Constraints. Aerospace 2021,

8, 307. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TAES.2010.5595614
http://dx.doi.org/10.1109/TCST.2005.863655
http://dx.doi.org/10.1109/TAES.2013.6621856
http://dx.doi.org/10.2514/1.G001681
http://dx.doi.org/10.1016/j.ast.2014.10.002
http://dx.doi.org/10.1109/TAES.2014.130717
http://dx.doi.org/10.1177/0954410015594401
http://dx.doi.org/10.1109/TAES.2015.140137
http://dx.doi.org/10.2514/1.G001167
http://dx.doi.org/10.2514/1.G001618
http://dx.doi.org/10.2514/1.G005063
http://dx.doi.org/10.1109/TAES.2021.3119759
http://dx.doi.org/10.2514/1.G001719
http://dx.doi.org/10.2514/1.G002751
http://dx.doi.org/10.2514/1.G003146
http://dx.doi.org/10.1109/TAES.2018.2848319
http://dx.doi.org/10.1109/TAES.2018.2850208
http://dx.doi.org/10.1109/TAES.2022.3169124
http://dx.doi.org/10.3390/aerospace8100307

	Introduction
	Problem Statement
	Design of Impact Time Control Guidance Law
	Analysis of Proposed Guidance Law
	Approximated Closed-Loop Solution
	Trajectory Analysis
	Acceleration Command Analysis

	Simulation Results
	Performance Analysis
	Comparative Studies

	Conclusions
	References

