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Abstract: Modeling of Unmanned Aerial Vehicles (UAV) propellers in a global, multidisciplinary
aeroacoustic optimization was investigated. The modeling consists of three aspects: geometry,
aerodynamics, and aeroacoustics. Firstly, a parametric geometry model was established using
chord, twist, and sweep distributions along the radius, defined by splines to ensure smoothness.
Additionally, airfoil parameters including maximum camber and its position, as well as the position
of maximum thickness, were added. Secondly, a blade geometry-resolved aerodynamic model based
on steady RANS was established. A two-equation SST turbulence model was used for compressible
flow with periodic boundary conditions. Thirdly, an aeroacoustic model for far-field tonal noise
calculation was defined, based on the Ffowcs Williams and Hawkings analogy and a RANS solution.
A global sensitivity analysis was performed to establish the importance of individual design variables.
Consequently, surrogate modeling-based optimization strategy was devised to efficiently establish
Pareto front of propeller geometries in multi-objective aeroacoustic optimization.
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1. Introduction

Unmanned aerial vehicles (UAVs), especially multirotors with vertical take-off ca-
pabilities, have a number of applications, such as infrastructure inspections, agriculture,
surveillance, delivery, and many others [1,2]. One of the reasons preventing their use,
especially in urban areas, is the excessive, irritating noise [3], which may have a detrimental
impact on health [4]. The main sources of multirotor noise are:

• propeller tonal and broadband noise, resulting from rotating motion, pressure varia-
tions, and turbulence (airfoil self-noise),

• noise from interactions: blade vortex interactions (BVI), interactions of propeller wake
with structure, as well as wake–wake interactions.

System-level noise reduction is a complex, multidisciplinary task, involving not only
purely aerodynamic design, but also novel ideas, such as the use of blade phasing or active
control [3]. The computational cost of a high-fidelity analysis of system-level noise is very
high. On a subsystem level, the most significant noise source is the rotating propeller.
Consequently, the reduction of propeller noise is a sensible way of approaching the UAV
noise problem.

Typical propeller noise mitigation strategies are concentrated on propeller size and
shape optimization, including global parameters such as propeller radius and the number
of blades, and local parameters, such as the chord, twist, and sweep distributions along
the radius. Less conventional noise mitigation strategies are focused on a broadband noise
minimization by the means of leading and trailing edge serrations, boundary layer tripping,
or porous inserts [5]. Additionally, bio-inspired solutions may be considered, such as the
mechanisms of noise reduction developed by owls [6]. These methods are a subject of
ongoing research.
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Traditional cheap, low-fidelity methods, such as methods based on the Blade Element
Theory (BET)—typically coupled with 2D methods, providing local airfoil aerodynamics—
are commonly used for propeller aerodynamic design and optimization [7]. Coupled
with compact monopole/dipole Ffowcs Williams and Hawkings (FWH) formulations for
noise calculation, these approaches provide reasonable tonal noise prediction, and can
be successfully used to design quiet propellers [8–10]. Their limitations are related to the
simplicity of the methods used. Especially in case of the low-Reynolds number propeller
modeling, the broadband noise component should be accounted for, as its magnitude may
be similar to that of the tonal component [11]. Low-fidelity semi-empirical wall-pressure
spectrum models [12] may be used to calculate the broadband noise contribution of the
turbulent boundary layer for a number of sections along the radius. The high-fidelity ap-
proach for Computational Aeroacoustics (CAA) involves a scale-resolving Computational
Fluid Dynamics (CFD) model, such as Large Eddy Simulation (LES), hybrid RANS-LES,
wall-modeled LES [13], or the Lattice–Boltzmann Method [14]. These inherently unsteady
methods, however, cannot be considered in the optimization context due to their prohibitive
computational cost.

While the low-fidelity methods are well-established in propeller design and opti-
mization, the use of higher-fidelity methods becomes an intuitive next step to achieve
more effective results. Adjoint [15] and global Surrogate-Based Optimization (SBO) [16]
frameworks have been utilized in RANS-based optimization. Blade-resolved CFD methods
can resolve the aerodynamics of a generic propeller, taking into account various global
and local geometry features (which are often not captured with low-fidelity methods).
Consequently, the actual, Computer-Aided Design (CAD)-based geometry parametrization
can be used for optimization, without relying on the tip-loss model or other sources of error
of the low-fidelity methods.

In propeller optimization with a fixed radius and number of blades, the remaining
geometry features consist of chords, twists, and airfoils along the stacking line. A common
choice of geometric parameters consists of chord and twist distributions along the radius.
Sweep and thickness are often added to allow additional design freedom. 15-variable
spline-based parametrization (five parameters for the chord, twist and sweep distributions
each) was successfully used in aeroacoustic optimization [10]. In [17], the parametric model
of the blade was built using variable: chord, twist, sweep and dihedral at three radial
locations along the blade. While the shape of airfoils is typically less influential in terms of
aerodynamic performance than the platform parameters, it can be optimized either in a
single process, or in a separate step—after completing the platform design [7]. The latter
process reduces the dimensionality of the optimization problem.

Sensitivity analysis—commonly divided into local and global—describes relations
between input and output uncertainties [18]. Local sensitivity is described by derivatives
at a point of interest. Global sensitivity requires information in the whole range of input
variables, and allows thorough analysis of a system, including quantification of parameter
influence on the output, as well as identification of interactions between parameters. In the
optimization context, global sensitivity analysis quantifies the importance of variables on
the objective function. Hence, it allows us to remove unimportant variables, tune bounds,
and eventually build efficient parametric models. In surrogate-based optimization, such
information might be available from the surrogate model, e.g., if the surrogate model is
based on an anisotropic kernel. An example of this approach was presented on a wing
design case study [19], where tuned kriging hyperparameters were used to assess the
relative importance of geometric parameters. Where the interactions between parameters
are sought, a global sensitivity study should be performed. A method allowing more
in-depth understanding of global sensitivity is the method of variance decomposition [20],
leading to the Sobol’ indices-based analysis. This approach was used to determine the
relative influence of parameters in aerodynamic propeller optimization [21] and in an airfoil
optimization for improved dynamic stall behavior, and therefore to determine parameters of
the highest importance [22]. Sensitivity analyses—usually not considered for optimization
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problems described in the literature—provide valuable information, which can be used in
future design cases.

In the current work, a comprehensive analysis of propeller modeling was performed,
with emphasis on the setup of the optimization process. Blade geometry-resolved CFD
is considered to allow for accurate modeling of a rotor in hover without assumptions
regarding its geometry and performance. The selection of a parametric model was discussed
based on a global sensitivity analysis. Finally, SBO was performed to validate the approach
and draw final conclusions. The paper is structured as follows. The description of the
methodology for SBO and the global sensitivity analysis is given in Section 2. A geometry
parametric model, as well as the aerodynamic and aeroacoustic computational models, are
described in Section 3. A global sensitivity analysis is outlined in Section 4, whereas the
results of multi-objective optimization are described in Section 5. Finally, the conclusions
are stated in Section 6.

2. Methodology
2.1. Global Optimization Using Surrogate Modeling

An optimization problem is typically formulated as a minimization of an objective
function J:

minimize: J(x)
with respect to : x

subject to: g ≤ 0
h = 0
l ≤ x ≤ u

(1)

where g and h are inequality and equality constraints, and x is bounded between l and u.
The process of finding x for which J(x) is minimum, depends on many factors, including
the cost of computing J, the number of variables, the objective function landscape, etc. In
the current work, global optimization is considered, with continuous design variables. The
objective function output is assumed to be smooth, which is typically the case for subsonic
aerodynamics-related problems. The cost of a single evaluation of J is sufficiently high
to rule out classic global optimization methods, such as direct optimization driven by an
evolutionary algorithm. On the other hand, the potential complexity (multimodality) of
the search space rules out the use of local optimizers, which are likely to get stuck in a
local minimum.

The use of surrogate modeling-driven optimization allows the use of global search
methods, which use cheap surrogate prediction instead of direct calls to J. A general
procedure for SBO, presented schematically in Figure 1, is:

1. Define an initial sample of points (X = [x0, x1, . . . , xk]
T) in the search space. Run

analysis of the initial sample to obtain the required output y. In this work, both
aerodynamic and aeroacoustic metrics are calculated from a CFD/CAA model.

2. Train a surrogate model with the available data (the initial sample and infill points).
Assess surrogate model quality (e.g., by cross validation).

3. Find candidate point(s) for verification. The selection of candidates is typically performed
by exploration and exploitation of the search space using global search methods.

4. Verify candidate(s). Check process convergence/termination criteria—if not reached
go back to step 2.

The initial sample required for a high quality surrogate model requires a uniform
spread of candidate points in the search space. The Latin hypercube approach is often
suggested [23], in which the value of a variable does not repeat in the sample. In the
current work, the Latin hypercube approach was used, along with optimal a space-filling
criterion [24].

The surrogate modeling methods and infill criteria used in the current work are based
on kriging and follow from the efficiency of Efficient Global Optimization (EGO) [25].
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Figure 1. Aeroacoustic (CFD/CAA) surrogate-based optimization framework.

Kriging

The presented kriging description is based on, and available in more detail in [26].
In order to model the statistical relationship between two points xi and xj, the distance
||xi − xj|| is considered. If small, the random variables Y(xi) and Y(xj) will be highly
correlated. In kriging, the correlation function is defined as:

Corr
[
Y(xi), Y(xj)

]
= exp

(
−

d

∑
l=1

θl |xil − xjl |pl

)
. (2)

The use of such basis functions allows for the variance to be controlled in each di-
mension (the rate of correlation decrease) using the hyperparameter θl . Additionally, the
hyperparameter pl allows for the control of the smoothness of interpolation. Setting pl = 2
reduces the cost of model tuning, and can be used if the response surface is smooth. With
initial sample data, the surrogate is trained by searching for hyperparameters, which
maximizes the concentrated likelihood function:

− n
2

ln
(

σ̂2
)
− 1

2
ln(|R|), (3)

where the mean is:

µ̂ =
1TR−1y
1TR−11

, (4)

and the variance:

σ̂2 =
(y− 1µ̂)TR−1(y− 1µ̂)

n
. (5)

The n× n correlation matrix R is calculated using Equation (2) for a set of observations
y. The process of tuning hyperparameters is the expensive part of surrogate model genera-
tion, especially for complex problems with large, multidimensional data sets. Eventually,
the kriging surrogate allows to find the output at any point x*, using the kriging predictor:

ŷ(x*) = µ̂ + r′R−1(y− 1µ̂). (6)
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The kriging prediction error is:

s2(x*) = σ̂2

[
1− r′R−1r +

(1− r′R−1r)2

1′R−11

]
, (7)

which is zero at the sampled locations and grows when moving away. Thus, Equations (6)
and (7) give a powerful tool for driving the optimization by providing cheap prediction of
the output along with the associated error. The error is often used in the infill criterion

EI = yΦ
(

y
s(x)

)
+ sφ

(
y

s(x)

)
(8)

where y = ymin − ŷ(x).
The accuracy of a surrogate model prediction is assessed using Mean Sqaured Error

(MSE) and Mean Average Error (MAE) metrics, calculated for the unseen test sample,
defined by:

MSE =
1

ntest

ntest

∑
i=1

(yi
test − ŷi)2 (9)

MAE =
1

ntest

ntest

∑
i=1
|yi

test − ŷi| (10)

where ntest is the size of a testing set.

2.2. Sensitivity Analysis

The relative influence of parameters on the objective function (or other model output)
was established using global sensitivity analysis. In this work, the method of variance
decomposition was used to calculate Sobol’ indices [27]. The decomposition of the function
Y = f (x) in terms of increasing dimensionality, where x is the set of design variables, is:

f (x) = f0 +
n

∑
i=1

fi(xi) +
n

∑
1≤i≤j≤n

fij(xi, xj) + · · ·+ f12...k(x1, x2, . . ., xn), (11)

where f0 is a constant, and fi, fij, and fij...k are the first, second, and kth-order functions,
respectively, defined as:

f0 = E(Y), (12)

fi = E(Y|xi)−E(Y), (13)

fij = E(Y|xi, xj)− fi − f j −E(Y). (14)

Calculation of the conditional expectation E(Y|xi) was performed by separating xi
from the domain and taking the average of Y|xi. The variation of E(Y|xi) across xi is
therefore a measure of sensitivity—if large, xi is important. The total variance of Y is:

V(Y) =
n

∑
i

Vi +
n

∑
i

n

∑
i<j

Vij + · · ·+ V12...n, (15)

where Vi = V[E(Y|xi)]. The Sobol’ first-order index is:

Si =
Vi

V(Y) , (16)

while the total-effect Sobol’index is:

STi = 1− V(E(Y|x∼i))

V(Y) , (17)

where x∼i is the set of all variables except xi.
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In order to understand and draw conclusions from a Sobol’ indices-based sensitivity
analysis, their key properties are summarized:

1. STi ≥ Si. The difference STi − Si quantifies the level of interactions with other variables.
If STi = Si, the variable xi does not interact with other variables.

2. If STi is close to zero, xi can be assumed to have a negligible influence on the output.
In the optimization context, xi can be fixed or removed from the set of variables.

The procedure of computing Sobol’ indices is performed with a Monte Carlo-based
procedure, as described in [20].

3. Computational Modeling

The need for blade-resolved CFD used in this study was dictated by two factors.
Firstly, the hover operating conditions imply strong interaction of the flow around the
blade with the wake of the preceding blade. These three-dimensional phenomena require
appropriate modeling, which rules out the use of cheap blade element-based methods.
While comparisons between low and high-fidelity models can be performed [28] to establish
sources of low-fideity errors, the use of high-fidelity codes remains inevitable. Secondly, the
optimization perspective implies the method must be robust and give accurate results for
different input geometries. As a consequence, the simplified methods—based on the two-
dimensional airfoil data [29]—give correct results only in a limited operating regime. The
modeling approach presented in this section aimed to exploit advantages of blade-resolved
CFD while keeping the computational cost as low as possible.

The modeling consists of three parts: geometry, aerodynamics, and aeroacoustics.
The first describes the parametric model of a blade geometry. Then, a CFD model of
the resulting geometry was built, which includes meshing, analysis, and postprocessing.
Finally, noise emission was calculated at specified observer locations, using input from the
aerodynamic model and the FWH analogy.

3.1. Geometry

A parametric model of a propeller blade is defined by airfoil stacking, based on:

• distributions of chord, twist, and sweep along the radius, and
• local airfoil shape (changing along the radius).

The chord, twist, and sweep distributions along the radius were defined using a spline-
based approach. Parameters define the positions of knots, giving smooth distributions,
with direct control over values at the first and last sections. The number of knots and the
extent of their freedom of movement remain arbitrary decisions, with different choices
documented in the literature, as was discussed in Section 1. Typically, up to five knots
were used, often fixed at selected positions along the radius to reduce the optimization
problem dimensionality.

Local airfoil shape was defined using two baseline airfoils: root and tip airfoils. The
blade was divided into three segments along the radius: the inward segment with the root
airfoil, the outward with the tip airfoil, and the transitional—with an interpolated airfoil.
This is presented in Figure 2, with parameters r0, r1, and r2 defining bounds for successive
segments. The airfoils were stacked with a reference point at 40% chord along the stacking
line, defined by the sweep distribution. The stacking line lies in the xy-plane, i.e., there is no
dihedral. Finally, the airfoils stacking was calculated. The airfoil at a desired radial position
is either the root or tip airfoil, or is found by linear interpolation of the two. The summary
of the parametric model is presented in Figure 2. The dense stacking of airfoils along the
stacking line—defined by the sweep distribution—was used to define a three-dimensional
CAD model of the blade.

Airfoil parametrization aimed to allow major modifications to airfoil properties with
as few parameters as possible. Consequently, the parametric model was built on a baseline
airfoil, with modifications to maximum camber value and chordwise positions of maxi-
mum camber and thickness. The modification of these parameters allowed us to exploit a
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relatively large design space. Figure 3 presents the example effect of the described modi-
fications on the NACA4412 airfoil scaled to 10% thickness. Three perturbation types are
presented: maximum camber change, maximum camber position change, and maximum
thickness position change. The resulting airfoils are presented in the left column, whereas
the corresponding XFOIL predictions, performed at Re = 1.0× 105, are presented in the
right column. The camber modification gives the capability of achieving the desired CL at
a minimum CD. The maximum camber and thickness positions are parameters changing
the behavior of the lift–drag curve. It should be emphasized that not only may the three
presented airfoil modifications occur simultaneously, but also that the chord and twist
distributions are subject to a global optimization. What is more, the rotating motion of the
propeller blade is complex and—especially in the tip region—might result in operating
conditions that cannot be captured with two-dimensional airfoil analysis.

stacking line

root airfoil tip airfoil
interpolated

airfoil

y

x

z

R
r/R

chord

R

twist

R

sweep

r2r0 1r1

distributions

airfoils

airfoils stacking

Figure 2. The parametric model of a blade is a synthesis of chord, twist, and sweep distributions and
airfoil shapes.
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Figure 3. Baseline airfoil (black) and the effect of modifications: camber magnitude (first row),
maximum thickness position (second row), and maximum camber position (third row). Airfoil
shapes are presented in the left column, while the associated XFOIL drag polars are presented in the
right column.
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3.2. Aerodynamics

This section describes the specification of the CFD model used in the current work,
including the mesh independence study. The thrust (CT) and torque (CQ) coefficients of a
propeller are:

CT =
T

ρ∞πΩ2R4 (18)

CQ =
Q

ρ∞πΩ2R5 (19)

where ρ∞ is the freestream density, Ω is the rotational speed in radians per second, and R
is the tip radius. The hover performance is defined by the Figure of Merit (FM):

FM =
Pi
P

=
1√
2

C1.5
T

CQ
(20)

where Pi/P is the ideal power to the actual power ratio, for convenience written in terms
of force coefficients.

Finite volume Reynolds-Averaged Navier–Stokes (RANS) equations with eddy-viscosity
k−ω SST turbulence model were selected for aerodynamics modeling [30].

The computational model of a single blade was used, due to the periodic nature
of isolated propeller analysis. The computational domain extends 24 radii in the blade
direction and 40 radii in the upstream and downstream directions. A single rotating
reference frame approach was used to model the propeller rotation. Hover was modeled
with pressure–outlet boundary conditions on the non-periodic boundaries of the domain.
The setup is presented schematically in Figure 4.

outlet

outlet

periodic

blade
40R

40R

24R
ω

y

z

x

mesh 
refinement

zone

1.3R

y

z

x

Figure 4. Computational domain setup of a blade using periodic boundary conditions (left) and
mesh refinement zone (body of influence) around the blade (right).

A compressible, coupled pressure-based solver was used with the second order pres-
sure interpolation scheme. The second order-upwind scheme was used for spatial dis-
cretization of convection terms. The under-relaxation was controlled by a pseudo-transient
approach. With a solution typically converging after around 2000 iterations, an additional
1000 iterations were added to allow for the averaging of a statistically steady solution.

An unstructured, polyhedral meshing procedure was established to provide case-
independent quality of solutions. The mesh sizing was defined by a combination of local
and global metrics, including maximum angle and minimum size (for surface meshes)
and body-of-influence type refinement regions around the blade (volume meshes). The
near-wall prism thickness was established to ensure y+ in the viscous sub-layer regime,
i.e., y+ ≤ 5, while the number of layers was dictated by the need for smooth transition to
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unstructured polyhedral. The growth ratio was fixed at 1.18. The mesh independence study
included both surface and volume mesh settings. Firstly, an independent surface mesh was
established by varying maximum angle (between neighboring elements) and minimum
size. Then, the volume mesh settings were established, which defined the number of prism
layers and refinement sizing. The resulting area-weighted average of y+ was around a
unity with 24 prism layers. The summary of the mesh independence study is presented
in Figure 5. The left plot presents the surface mesh convergence, while the right figure
presents an example surface mesh on the blade surface, as well as the effect of volume
refinement visible on the periodic surface. In surface mesh sizing, the mesh with around
115 thousand elements was deemed sufficient (the number of elements is case-dependent).
The final volume mesh size was between 3.5 to 4 million elements.

60 80 100 120 140 160

−0.5

0

0.5

surface elements [thousands]

%
di

ff
er

en
ce

CT
CQ

Figure 5. Surfacemesh study summary (left) and mesh sizing on blade, hub, and periodic sur-
faces (right).

Both meshing and CFD were performed using commercial software Ansys Fluent 21.1.
The computational time of a single case (meshing and CFD) was between 5 to 6 h using
24 processes.

3.3. Aeroacoustics

The aeroacoustic performance is characterized by the overall sound pressure level (OASPL):

OASPL = 20 log10
prms

p0
, (21)

where prms is the root-mean-square sound pressure and p0 = 2× 10−5 Pa is the reference
pressure. The OASPL uses acoustic pressure fluctuations to determine the equivalent
sound level. A frequency weighting can be used to adjust the OASPL to account for the
influence of relative loudness perceived by the human ear, which is less sensitive to low
and high frequencies.

The pressure signal required to find the OASPL at a selected observer location was
calculated using the Farassat 1A formulation (F1A) [31] of FWH acoustic analogy [32],
based on the solution of the RANS CFD model. In this approach, the blade is rotated
virtually and the pressure distribution on the blade surface is constant. Only tonal noise is
captured with this approach, as there are no pressure oscillations resulting from turbulence.
Ansys Fluent [33] was used to calculate acoustic signals using the retarded time approach.
To ensure sufficient sampling for the tonal noise calculation, acoustic signal was collected
40 times per revolution for 30 revolutions.
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3.4. Model Validation

A literature-based benchmark of a two-bladed, 30 cm-diameter propeller [34] was used
to validate the computational methods described in this section. The propeller geometry
has a constant NACA4412 airfoil (12% thickness) along the radius. The experiments were
conducted in an anechoic wind tunnel, at several advance ratios, including hover. Table 1
presents a comparison of thrust and torque obtained experimentally and calculated using
CFD. While the thrust prediction is very close to the experiment, torque is significantly
higher, which results in a significantly smaller FM. Similar results were obtained using a
high-fidelity Lattice–Boltzmann Method in the literature benchmark. A major drawback of
the current computational model is the assumption of a fully turbulent flow and boundary
layer. The differences reported in Table 1 can be partly attributed to this simplification.
Nevertheless, in the optimization context of the current work, the predictive capabilities
of the model were deemed sufficient. An example of CFD results is visualized in Figure 6,
including a pressure distribution (nondimensionalized by tip dynamic pressure) and a
q-criterion map depicting the wake path downstream of the propeller. The proximity of
preceding-blade wake and its potential interaction with the blade is shown (the preceding-
blade wake is the red area centered around 0.2R below the blade tip region).

Table 1. Thrust, torque, and the resulting FM for the benchmark propeller.

Method CT CQ FM

experiment 0.01505 0.00195 0.669
CFD 0.01524 0.00218 0.611

Figure 6. Nondimensional pressure on the blade surface of the benchmarked propeller blade (left),
and yz-plane vortices visualized by the q-criterion (right).

The noise prediction validation is presented in Figure 7. The experimental setup
consisted of 13 uniformly distributed microphones located in a line 1.2 m (four propeller
diameters) away from the rotation axis. Microphones are numbered from 1 to 13, from
the most downstream microphone 1 located 0.9 m below the plane of rotation, through
the in-plane microphone 7, up to the most upstream microphone 13 located 0.9 m above
the plane of rotation. A very good agreement between experimental and CAA results was
obtained for microphones downstream of the propeller, with increasing discrepancy as
the observation point moves upstream. The trends are correctly captured with the highest
OASPL at microphone 7 and lower values upstream than downstream. Given the simplicity
of the computational method, along with the aforementioned simplification in turbulence
modeling, this result is satisfactory.
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Figure 7. Comparison of CAA and experimental (EXP) results of a benchmarked propeller.

4. Initial Sample and Sensitivity Analysis

In the current work, a propeller of 0.3 m diameter (i.e., R = 0.15 m) with 8 N of hover
thrust was sought. The initial sample was defined using an optimized Latin hypercube
approach, as stated in Section 2. The parameter bounds are stated in Table 2. The radial
locations of knots defining chords and twists are given by r = [0.2, r1, 0.8, 0.93, 1] × R.
The airfoil segments coincide with these locations, i.e., the root airfoil, was kept between
0.2R− r1R, the tip airfoil between 0.93R− 1R, and the interpolated airfoil in the middle
segment. The maximum airfoil thickness was fixed at 10% chord (constant along the
blade). The near-tip region refinement (i.e., the three knots within 20% of the blade tip) was
established to allow more design freedom in the most sensitive part of the blade. Chords (c)
and sweeps (s) are given in meters, twists (β) are given in degrees, the second knot radial
position (r1) is given as a fraction of radius, and camber values (cam_,val) and positions of
maximum camber (cam_,pos) and thickness (t_,pos) are given as a local chord fraction. The
relative values of lower (l) and upper (u) bounds for c4, β2, β4, and sweep parameters were
used to maintain the blade tip geometry for a given set of parameters. Finally, the rotational
speed (ω) was defined in revolutions per minute (rpm). The indices of chords, twists, and
sweeps parameters increase towards the blade tip.

Table 2. The lower (l) and upper (u) bounds of parameters.

ID Parameter l u ID Parameter l u

0 c0 0.03 0.045 10 s2 −0.0025 0.0075
1 c1 0.03 0.06 11 s3 s2 − 0.0025 s2 + 0.01
2 c2 0.02 0.04 12 s4 s3 − 0.0025 s3 + 0.01
3 c3 c4 2.5c4 13 r1 0.3 0.6
4 c4 0.005 0.016 14 camroot,val 0 0.06
5 β0 30 45 15 camroot,pos 0.3 0.6
6 β1 15 35 16 troot,pos 0.2 0.5
7 β2 β3 β3 + 6 17 camtip,val 0 0.06
8 β3 8 18 18 camtip,pos 0.3 0.6
9 β4 β3 − 5 β3 + 1 19 ttip,pos 0.2 0.5

20 ω 4200 5000

The resulting chord and twist distributions of the initial sample are visualized in
Figure 8. It can be observed that a large search space was investigated in this study. The
need for such variation in blade size (i.e., chords) and twist was dictated by the variable
rotational speed, which has a large influence on the resulting forces. Three randomly
selected samples from the initial sample are visualized in Figure 9.
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Figure 8. Initial sample chord (left plot) and twists (right plot) distributions (every fourth shown
for clarity).

Figure 9. Three geometries built using the defined parametrization.

The analysis of data obtained from a initial sample allowed us to verify the correctness
of the computational model and optimization setup. The selection of design variables,
including the definition of bounds, can be assessed with a global sensitivity study.

The initial sample consists of 200 points sampled in the design space of 20 variables.
The current study is focused on finding the aeroacoustic optima which provide 8 N of thrust
in hover. The analysis of Figure 10 ensures that a propeller providing sufficient thrust can
be found for any rotational speed between 4200 and 5000 rpm (for convenience scaled to
0–1 in the plot). The thrust range for any rotational speed within bounds is around 6 N
with a minimum of around 4.5 N and the maximum exceeding 13 N. A gentle trend of
increasing OASPL with increasing rotational speed for a given thrust is noted.

0 0.2 0.4 0.6 0.8 1
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Figure 10. Initialsample results: relation between rotational speed, thrust, and SPL at microphone 0.
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The linear correlation between thrust and the OASPL is presented in Figure 11. The
correlation is even stronger if only individuals with a high FM are considered, i.e., the blue
points are discarded. The task of concurrent OASPL minimization and FM maximization
for a given thrust does not imply a clear trade-off—individuals with lower OASPL tend to
have a higher FM. Consequently, the multi-objective optimization results are expected to
form a relatively narrow Pareto front.

4 6 8 10 12 14

60

65

70

75

T (N)

O
A

SP
L

(d
B)

0.5

0.55

0.6

FM (−)

Figure 11. Initial sample results: relation between thrust, SPL at microphone 0, and figure of merit.

The analysis of global sensitivity of selected outputs was performed to reveal the
importance of individual parameters. These results may be used in the infill-based iterative
optimization process to build an efficient infill strategy. If unsatisfactory results are obtained,
e.g., domination of one or few parameters, another optimization setup (parametric model)
can be considered.

Figures 12–15 present Sobol’ indices calculated with predictions of surrogate models
for the following model outputs: thrust, torque, FM, and OASPL. Values of Sobol’ indices
Si and ST were plotted for each design variable, according to the labeling defined in Table 2.
Tags relating parameters IDs to their scope in the resulting geometry were added for clarity.
Foil subscripts r and t stand for root and tip airfoils, respectively.
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Figure 12. Thrust sensitivity.

The sensitivity of thrust is the highest for rotational speed (parameter 20). Then, the
highest importance was observed for knot positions defining twist (parameters 6 and 8),
airfoil camber (parameters 14 and 17), and radial position of root airfoil (parameter 13). The
remaining parameters defining the chord and twist distributions, as well as the sweep and
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remaining airfoil parameters, have a negligible effect on thrust. Similar trends are observed
for torque sensitivity, with the two aforementioned twist parameters having the highest
influence. The effect of sweep and maximum chord and camber position parameters is
negligible, similar to thrust sensitivity. Sound pressure level is most sensitive to rotational
speed and twist distribution. While both Sobol’ indices are very similar for all parameters of
thrust, torque, and SPL sensitivities, some significant differences were noted in the case of
FM model sensitivity. The differences in the values of Si and ST of the parameters defining
airfoil camber and twist distributions, and to some extent of the remaining parameters,
indicate interactions between them. This is an expected behavior, as these interactions are
important in defining a blade geometry to ensure that the blade operates at the optimal
effective angle of attack. In the physical sense, whether stall—which drastically decreases
FM—occurs locally, is a combination of several factors, such as airfoil shape, local twist,
and incoming flow. An important observation in the FM sensitivity is the lack of rotational
speed influence. Consequently, it is expected that any rotational speed—within the defined
bounds—allows for the achievement of the optimal FM.
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Figure 13. Torque sensitivity.
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Figure 14. FM sensitivity.
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Figure 15. SPL sensitivity.

Summarizing the global sensitivity analysis, the following conclusions regarding
parametric definition can be drawn:

1. Rotational speed dominates thrust and SPL output, but becomes negligible for the FM.
2. Outputs from all presented models are more sensitive to twist than chord distributions.

The bounds for twist might be unnecessarily wide or the bounds for chord parameters
too narrow.

3. The relative importance of parameter 8, defining the absolute twist at the tip, is
dominating local twist perturbations (parameters 7 and 9) at the tip.

4. Parameters 0, 9–12, 15, and 18, i.e., root chord, local tip twist, sweeps, and airfoil
maximum camber position, are negligible in terms of all presented outputs.

5. Apart from the FM model, the interactions between the parameters are very small.

5. Optimization

The multi-objective aeroacoustic optimization was performed with respect to 20 geo-
metric parameters and rotational speed defined in x. The target thrust of 8 N was defined
as an inequality constraint (introducing tolerance) in order to improve optimization con-
vergence. OASPL was calculated at the microphone located in the rotation plane, four
diameters (1.2 m) from the rotational axis (the same position as microphone 7 in the bench-
mark described in Section 3). The optimization problem is defined as follows:

minimize: OASPL,−FM
with respect to : x

subject to: |T − 8| − 0.05 ≤ 0
l ≤ x ≤ u

(22)

The expected solution is in the form of a set of non-dominated points forming
Pareto front.

The SBO procedure defined in Section 2 and Figure 1 was followed to establish
an aeroacoustic Pareto front. Three surrogate models were calculated for each interation:
thrust, FM and OASPL, which were used to provide cheap approximations for the objectives
and constraint. The Scipy [35] differential evolution (DE) algorithm was used to search for
infill points. DE is a stochastic optimization method, used for finding the global optimum
of a multivariate function with constraint handling capabilities. The following infill criteria
were used at each iteration to obtain a set of infill points and to take advantage of parallel
case execution:

• minimization of OASPL,
• minimization of −FM,
• maximization of EI of OASPL,
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• maximization of EI of −FM, and
• minimization of a weighted OASPL and −FM (used to establish the Pareto set).

Additional infill points were achieved by searching in limited rotational speed regimes,
i.e., the bounds for the search were tightened in the consecutive ranges: (0–0.25), (0.25–0.5),
(0.5–0.75), and (0.75–1) of the original 0–1 range of ω.

5.1. Surrogate Model Prediction

Surrogate models of thrust, and OASPL were assessed with MSE and MAE perfor-
mance metrics. An approach similar to the one described in [28] was used: for each
surrogate model, a set of 30 evaluations of MSE and MAE were performed, based on ran-
dom selection of test samples. Average values of error metrics and standard deviations for
each model were summarized in Table 3. The quality of prediction was deemed sufficient
for optimization.

Table 3. Sumary of MSE and MAE for surrogate models used in the optimization.

Model MSE (std) MAE (std)

thrust (N) 0.0158 (0.0205) 0.2575 (0.0818)
FM (−) 1.13× 10−4 (6.31× 10−5) 0.0254 (0.0073)

OASPL (dB) 0.0344 (0.0114) 0.4774 (0.0716)

High prediction accuracy of surrogate models built from a relatively sparse sample in
a multi-dimensional space was attributed to the relatively simple model output landscape.
Figure 16 presents predictions along with the prediction error of the two most active
variables in the model—ω and β3. The values of remaining parameters are fixed to the
mean value (between the lower and upper bounds). The total thrust difference within the
rotational speed exceeds 3 N, which is expected from the analysis of the initial sample in
Figure 10. Changing β3 from the minimum to the maximum results in a thrust change of
approximately 2.5 N. These predictions are consistent with the global sensitivity analysis
presented in the previous section.
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Figure 16. Surrogate model predictions of thrust for the two most active parameters: rotational speed
ω (left plot) and twist of the tip region β3 (right plot), along with error bounds.

5.2. Optimization Flow

The iterative optimization procedure defined in the previous section was run for three
infill iterations. The infill points from the first infill were selected from a region with a
relatively small surrogate model confidence, which resulted in a significant prediction
error. After the first three infills, the congestion of infill points in a limited area caused
problems in fitting the surrogate model. The subsequent iterations used limited infill points
to address this issue. As the data sample was filled with additional data from infill points,
the surrogate prediction of thrust improved. The problem of a slightly underestimated
thrust (typically by up to 0.3 N) remained throughout the whole process. It was observed
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that the thrust error was very low (less than 0.02 N) if the surrogate model is built with data
for the geometry of interest, i.e., the surrogate model predicts changes in thrust for a given
geometry very well. Hence, the results obtained from the CFD verification of infill points
were valuable in setting the target ω to achieve the desired thrust. The determination of
the final result (Pareto front) was based on the CFD model, i.e., the desired thrust of 8 N
was verified.

The optimization process was terminated after 12 iterations, as no new point was
added to the Pareto front for two consecutive iterations. The lack of improvement was at-
tributed to the surrogate prediction error and a very tight margin for potential improvement.
The aeroacoustic Pareto front, presented in Figure 17, turned out to be very narrow—the
difference between OASPL-optimal and FM-optimal designs was approximately 1.5 dB
and just above 0.01 FM counts. The point minimizing OASPL with a FM approximately
0.59, theoretically being Pareto optimal, extends the FM range. However, it offers very little
improvement in OASPL compared to the second-best. Consequently, it is unlikely to be
considered as a practical solution.

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64
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Figure 17. Optimization results presented on axes of the objective functions. Aerodynamic efficiency
is maximized with increasing FM, whereas noise is minimized with decreasing OASPL. The Pareto
front is therefore located in the bottom-right corner of the plot.

In a summary, the observed optimization flow can be divided into three stages:

1. The first three infill iterations—high prediction error of the infill points resulted in
designs providing insufficient thrust. This stage was important in improving the
surrogate model prediction in the promising areas.

2. Infill iterations 4–8—reasonable surrogate model prediction allowed to find a number
of Pareto optimal solutions.

3. Infill iterations 9–12—many infill points in promising areas of the search space. The
surrogate model prediction was relatively good, however, no further optimal solutions
were found.

The whole optimization process, including both initial sample and infill iterations
took approximately 50–60 thousand CPU hours. Both initial sample and infill interations
took advantage of parallel case execution, which allowed us to complete all computations
within a week on High-Performace Computing (HPC) cluster. Consequently, SBO applied
to RANS-based global propeller design was feasible from a computational point of view.

5.3. Results Analysis

The analysis of optimization results in the current work is focused on the qualitative
aspects of the obtained results, rather than on the selection of particular design(s). For this



Aerospace 2023, 10, 306 18 of 21

purpose, two blade designs obtained from the Pareto set are compared: the FM and OASPL
optima. A CFD verification confirmed the accuracy of predictions provided by surrogate
models for both cases.

Figure 18 presents distributions of chord and twist along the radius for the FM- and
OASPL-optimal propellers. Major differences can be observed: the FM optimum has a
higher aspect ratio and lower twist, especially in the inboard part of the blade. The design
rpm, i.e., rotational speed required to achieve the target thrust, is 4740 and 4250 for the FM
and OASPL optima, respectively. Airfoils used to define the stacking of both propellers
are presented in Figure 19. The camber of the root airfoil is significantly higher in the
FM-optimal design, which explains the difference in twist. The tip airfoils have a similar
camber magnitude, which is expected, as the twist distribution is similar near the tip.
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Figure 18. Chord (left plot) and twist (right plot) distributions describing the geometries of the FM
and OASPL optimal designs.
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Figure 19. Root (left plot) and tip (right plot) airfoils used to define the airfoil shape along the radius
for the FM—(red line) and OASPL—(blue line) optimal designs.

The axial and tangential force distributions along the radius, computed from the CFD
model, are presented in Figure 20 for FM and OASPL optima. It can be observed that the
OASPL optimum has the loading shifted towards the rotation axis, compared to the FM
optimum. Similarly, peak values are higher for the FM optimum. These trends are expected,
as noise reduction is achieved by lowering peak pressure, which is the highest near the tip.
It should be noted that the differences in the distributions of dominating axial force are not
very large. This is a result of the limitations of the parametric model, which prevented the
loading from being shifted further towards the root of the blade.

To conclude the optimization results, it should be noted that all expected trends
regarding noise-minimizing propeller design were reproduced. Apart from that, local
shape features—such as airfoils—were selected by the optimizer, based on the blade
geometry-resolved CFD. Consequently, the results are expected to be of high accuracy. The
methodology can be used with custom parametric models, including geometry features
which require blade-resolved CFD, such as winglets.
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Figure 20. Axial and tangential forces along the radius. Forces are scaled by the average value along
the radius.

6. Conclusions

A comprehensive study of computational modeling of a propeller blade was presented.
The optimization context of the study constrained the computational cost of the CFD and
CAA models. As a result, the blade-resolved steady RANS model was used, with tonal noise
calculation based on the F1A formulation of FWH aeroacoustic analogy applied to a blade
surface. The methodology was validated against a literature benchmark. The resulting
balance between computational cost and model fidelity and robustness allows to perform a
global surrogate-based optimization. A global sensitivity study was performed using Sobol’
indices. The results show the relative importance of individual design variables (geometric
parameters and rotational speed) on force outputs and efficiency metrics. Consequently, an
optimization strategy was devised, to establish the Pareto front of aeroacoustic optimization.
The selection of the final design still questions the objective function specification (e.g.,
desired microphone(s) location for noise minimization, relative importance of aerodynamic
and acoustic performance, etc.).

The key findings of the work are:

• Global multidisciplinary aeroacoustic optimization of a propeller blade using RANS
equations and the FWH analogy can be performed at a reasonable computational cost
using robust blade-resolved methods. Assuming parallelization capabilities and the
nature of surrogate-based optimization, the associated total computational time is
relatively small. Further computational time reductions can be achived by reduction
of parametric model dimensionality.

• The parametric model of the blade geometry is the most sensitive to the twist distri-
bution, which affects the local effective angle of attack. The airfoil camber and chord
distributions are less significant. Sweep has a negligible influence on the performance
metrics used in the current study.

• An implicit definition of geometric variables in the parametric model (i.e., the defini-
tions of chord and sweep at the tip) can result in misleading sensitivity study results.
In this study, the tip twist parameter (β4) has a relatively small effect on thrust, the
FM, and torque as a result of its implicit definition.

• The spline-based approach yields a parametric model which results in virtually no
parameter interactions for thrust, torque, and SPL. Only in the case of FM do the
interactions between parameters become significant.

• SBO allows for performing a range of different optimizations, basing on the starting
data sample. The objective function can be modified during the optimization process
without loss of data and computational effort. Examples are: a switch between raw and
A-weighted OASPL, or a redefinition of noise metrics from one to another microphone.

The limitations of the current work, which will be addressed in future work, are:

• The CAA model used in the current work calculates only the tonal part of noise.
When propellers of a smaller scale are investigated, where the broadband part of noise
becomes important, or a when a different objective function is addressed, e.g., focused
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on mitigation of high-frequency noise, the broadband noise should be included in
the model.

• System-level noise resulting from aerodynamic interactions between propellers and
vehicle body should be investigated to fully address the problem of noise emission.
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