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Abstract: Thermal expansion is inevitable for space structures under the alternating temperature
of outer space around the earth. This may lead to the thermal stress and deformation due to the
mismatch of the coefficient of thermal expansion. Near-zero thermal expansion (Near-ZTE) is a vitally
essential demand for large-scale space telescopes or antennas to preserve their spatial precision and
resolution. Recently, mechanical metamaterials with superior and tailorable properties have attracted
significant interest with regard to developing negative materials or ultra-property materials. In this
paper, the near-ZTE space structure architected by a dual-hourglass bi-material lattice is achieved
by the structural optimization method with the gradient-based algorithm. First, an hourglass lattice
with adjustable structural parameters is optimized to seek the design of effective negative thermal
expansion (NTE) in the thickness direction. Then, two building blocks with both NTE and legacy
positive thermal expansion (PTE) are combined as a dual-layered lattice to obtain the near-ZTE.
Finally, a structure with near-ZTE of about ~10−9 m/(m·K) is obtained. Furthermore, the various
lattice configurations, such as the hexagonal pyramid and triangle pyramid, are investigated in detail.
Finally, the natural frequencies of two near-ZTE lattices are calculated by the modal analysis method,
and the stiffness is discussed for the optimal solution of space applications. This work demonstrates
that the near-ZTE structure can be achieved by utilizing the negative metamaterial and structural
optimization method. It provides a novel solution to design the large-scale space structures with
the near-zero thermal induced deformation, and may be constructed and assembled by the on-orbit
fabrication technology.

Keywords: near-zero thermal expansion; bi-material design; dual-layer lattice; structural optimization
method; gradient-based algorithm; on-orbit fabrication

1. Introduction

The heat absorption from solar radiation and heat dissipation from cosmic background
radiation supply an alternative temperature field for spacecraft operating in outer space
around the Earth [1–4]. Large-scale space structures such as space telescopes and reflector
antennas [5,6] are typically of more sensitive to the mismatch of coefficient thermal expan-
sion (CTE). To deal with the effects, the thermomechanical metamaterials with near-ZTE
properties have attracted favorable interest in terms of stabilizing the thermal deformation
of the space structures.

There are various methods of designing metamaterials with programmable CTE, such
as bending-dominated [7–11], stretching-dominated [12–16], and representative topology
optimized types [17–19]. Timoshenko [7] found a general theory for the bending of a
bi-metal strip subjected to a uniform heating and developed a thermostat utilizing this
mechanism. And utilizing this method, Lakes et al. [8] designed a lattice structure with
programmable CTE properties. Wu et al. [9] designed a metamaterial with an isotropic
and tunable negative thermal expansion on any scale. Yu et al. [10] composed a tunable
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2D homogeneous thermal expansion metamaterial underlying the conversion of thermal-
induced deflection of bilayer beams. Jefferson et al. [11], based on the internal cell bending
deformation, designed a bi-material nested planar hexagonal lattice with the effect of zero
thermal expansion.

According to the sketching-dominated deformation and rotation, Steeves et al. [20,21]
designed a family of triangular planar lattices which have low thermal expansion and high
structural stiffness, both theoretically and experimentally. Hopkins et al. [22] designed a
re-entrant polygon microstructure with superior thermal expansion properties. Parsons
et al. [23] developed a special lattice with NTE attributes though a negative Poisson ratio
and bi-material design. Inspired by the crystallography, Wei et al. [12,24–26] constructed
two classes of planar metamaterials with the isotropic CTEs and verified the theorical
design through experimentation. Wang et al. [13] devised a programmable CTE structure
constituting a bi-material pyramid unit cell through the matrix transformation method.
Peng [14] et al. devised a class of 3D metamaterial by using an exclusive geometrical
methodology. Xu et al. [15] developed a bi-material hourglass-lattice metastructure and
reached ZTE performance in thickness direction by stacking the NTE and PTE layers. He
et al. [16] designed a cellular structure for coupling the tailorable coefficient of thermal
expansion and tunable Poisson’s ratio properties.

Combining the topology optimization method and additive manufacturing technology,
Takezawa et al. [17,27] developed a design methodology for porous composites with tunable
thermal expansion. Hirtoa et al. [18] used a topology optimization method to design a planar
periodic metastructure with NTE attributes. Yang et al. [19] proposed a novel dual-constituent
lattice sandwich panel with optimal in-plane thermal expansion and stiffness properties.

At present, there are a few methods which have been developed for optimization prob-
lems. The gradient descent method [28,29] considers the negative gradient as a searching
direction because of the fastest descent being at the current position. It has the advantages
of being the most widely used and simplest realization, but the convergence pace will be
noticeably slow when approaching the minimum. Newton’s method [30,31] uses the Taylor
series approximation to obtain the solution of the functions. Owing to the second-order
convergence, the method has faster pace but with high sophistication to calculate the Hes-
sian matrix. Subsequently, the conjugate gradient method [32,33] combined the advantages
of fast convergence rate and low calculation cost, but involves a more sophisticated theory
derivation above all.

In the previous research, scholars have demonstrated that the engineered lattice
configuration could lead to extraordinary thermal and mechanical behaviors. However, the
investigations on the tunable CTE design field are mostly under a line array configuration,
which is not appropriate for structures such as a space telescope. Moreover, the scales
of legacy metastructures are not suitable for the utilization of large structures on orbit
fabrication. This paper devised a novel design method for a bi-material hourglass lattice in
circular array conditions. It enables the carrying out of near-ZTE performance combining
the stretch-dominated concept and structural parameter optimization. A general design
method of a ZTE metastructure is proposed to adapt to a varisized in-space construction
index, and to establish a preliminary guideline of a low-cost large-scale design method.
Firstly, the theoretical analysis of stretching-dominated type hourglass-lattice and structural
optimization with the gradient-based algorithm is devised. Secondly, the conceptual
design of the lattice structure and thermomechanical finite element method (FEM) is
introduced. Next, to demonstrate the feasibility of the hourglass lattice design and adapt
the construction technique, the ZTE attributes with regard to the condition of diverse types
of unit cells are investigated. Furthermore, the modal analysis is performed to determine
the rationality of the natural frequency under the unconstrained state in space. Finally, the
discussion and conclusions are provided.

The novelty of this paper is mainly threefold: (1) The bi-material dual-layer hourglass
metamaterial design of hexagonal type and triangular type are proposed with the near-ZTE
capacity by a structural optimization scheme; (2) Metastructures with different circular
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arrays of lattices are established and constructed, with an overall ZTE performance; (3) The
natural frequency behaviors of the circular array structures are analyzed, and an optimal
cell array layout is obtained.

The structure of the paper is organized as follows: first, the construction of bi-material
hourglass lattice metamaterials is introduced. Second, the topological optimization proce-
dure is discussed. The numerical investigation of NTE lattices and ZTE lattices are then
described. The configurations of both hexagonal and triangular types are discussed. Finally,
the modal analysis and stiffness behaviors are discussed in detail.

2. Bi-Material Hourglass Lattice Metamaterials
2.1. Theoretical Analysis for Triangular Cell

It is known that the triangle configuration is the simplest hinged structure that is free
to deform upon temperature change [34,35]. An isosceles triangle structure is considered
here. Two equal-length beams are constituted with one material and the base beam is
constituted with another material. The shape before and after heat transformation are
shown in Figure 1.
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Figure 1. Schematic illustration of the thermal expansion deformation of a triangle cell: (a) initial
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Assume that the CTE of two materials are α1 and α2, respectively. The origin length of
the hypotenuse is a, and that of the brace is b. According to the Pythagorean theorem and
the thermal expansivity of the triangle configuration, we can get that,

αx = α2 (1)

y0
2 = a2 −

(
b
2

)2
(2)

(y0 + δy)2 = (a + δa)2 −
(

b + δb
2

)2
(3)

And in general:

αy =
δy

y0·∆T
(4)

Thus, the effective CTE in y-direction is,

αy =
4a2α1 − b2α2

4a2 − b2 (5)

In the real alternative thermal condition, the overall CTE in the y-direction is related
to the section area, the second moment of area, the beam length, etc. Thus, the discretized
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mesh of each cross-section of the beam in FEM is uniform. The local stiffness matrix of a
beam element [36] in the 3D coordinate system is expressed as Equation (6):

ke(12×12) =



EA
L 0 0 0 0 0 − EA

L 0 0 0 0 0
0 12EIz

L3 0 0 0 6EIz
L2 0 − 12EIz

L3 0 0 0 6EIz
L2

0 0 12EIy
L3 0 − 6EIy

L2 0 0 0 − 12EIy
L3 0 − 6EIy

L2 0
0 0 0 GJ

L 0 0 0 0 0 −GJ
L 0 0

0 0 − 6EIy
L2 0 4EIy

L 0 0 0 6EIy
L2 0 2EIy

L 0
0 6EIz

L2 0 0 0 4EIz
L 0 − 6EIz

L2 0 0 0 2EIz
L

− EA
L 0 0 0 0 0 EA

L 0 0 0 0 0
0 − 12EIz

L3 0 0 0 − 6EIz
L2 0 12EIz

L3 0 0 0 − 6EIz
L2

0 0 − 12EIy
L3 0 6EIy

L2 0 0 0 12EIy
L3 0 6EIy

L2 0
0 0 0 −GJ

L 0 0 0 0 0 GJ
L 0 0

0 0 − 6EIy
L2 0 2EIy

L 0 0 0 6EIy
L2 0 4EIy

L 0
0 6EIz

L2 0 0 0 2EIz
L 0 − 6EIz

L2 0 0 0 4EIz
L



(6)

The thermal load of the element is

fe(12×1) = α·∆T·E·A·BT ·L (7)

where the thermal gradient vector is:

B(1×12) =
[
−1 0 0 0 0 0 1 0 0 0 0 0

]
/L (8)

In general, the mechanical variables are transformed from the local coordinate system
to the global one, {

ke(12×12) = TTkeT
fe(12×1) = TTfe

(9)

The transformation matrix of 2D element T is given by:

T(12×12) =


λ(3×3) 0(3×3) 0(3×3) 0(3×3)
0(3×3) λ(3×3) 0(3×3) 0(3×3)
0(3×3) 0(3×3) λ(3×3) 0(3×3)
0(3×3) 0(3×3) 0(3×3) λ(3×3)

 (10)

where the coordinate projection matrix of 2D element [λ] is given by:

λ(3×3) =

cos(x, x) cos(x, y) cos(x, z)
cos(y, x) cos(y, y) cos(y, z)
cos(z, x) cos(z, y) cos(z, z)

 (11)

As shown in the above equations, the thermal deformation is related to the section
area, profile type, beam length, etc. It was proven that the above variables are influencing
the CTE though this theoretical analysis. Thus, considering these parameters’ effects, the
stretching-dominated unit cells or meta-units with a programmable CTE are proposed.

2.2. Bi-Material Design of Metametarials

Two basic configurations are proposed to seek the ZTE design. They are the hexagonal
hourglass type and the triangle hourglass type. The schematic illustration of two types
of single layer hourglass unit cells is shown in Figure 2. It is composed of two materials.
The top and bottom braces are chosen to be nylon, and the hypotenuses are CFRP-nylon in
this analysis [15]. The mechanical and thermal properties of the two different materials are
listed in Table 1. Under the background of in-space fabrication, the length of braces is set as
L = 6 m, and that of the hypotenuses vary with the height.
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Table 1. Mechanical and thermal properties of the materials.

Material Elastic Modulus
(GPa) Poisson’s Radio Density

(kg/m3)
CTE

(m/m·K)

Nylon 4.9 0.38 1300 4.4 × 10−5

CFRP-Nylon 15.9 0.33 1160 7.4 × 10−6

The materials listed in Table 1 are only used for demonstration purposes. This design
optimization methodology is also suitable to other material pairs if their CTEs have a high
contrast and are 3D printable by the additive manufacturing technology, such as with
thermoplastics [37].

In this paper, this hourglass shape is set as the baseline in seeking the configuration
of NTE. According to the effective medium theory [38], the ZTE or near-ZTE goal can
be achieved by combining both the PTE and NTE lattices. The PTE hourglass lattice is
easily obtained by using the same configuration of NTE lattice with a single material.
Then, stacking both NTE and PTE lattices in the thickness direction will reach the goal, as
depicted in Figure 3. Each layer height of the dual-hourglass lattice is considered as H1 and
H2, respectively.
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The large-scale space lattice structure is constructed by the way of arranging the
dual-layer unit cells into a circular array. The array number N represents the number
of circular layers of the unit cells that are around the centered unit cell (N = 0). The
circular array method is shown schematically in Figure 4. This type of configuration is
widely used in the design of space telescopes and antennas, such as the James Webb space
telescope [39]. The lattice structures in various array conditions have all satisfied the rule
of the circumferentially dense accumulation. The beams are connected to a whole through
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the coincident nodes from each other. Two types of circular array are shown in Figure 5.
All the beams in the dual construction have a tunable section radius, which is the sensitive
parameter for optimizing the ZTE design.
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3. Structural Optimization Algorithm
3.1. Formulation of Optimization Problems

As shown in Figure 5, the metamaterial is assumed to be constructed with a circular
beam. The inertial moment Iz and Iy, the polar moment of inertia J, and section area A are
all corresponding to the beam radius ri (I = 1, . . . , Ne):

A ∝ r2, Iy, Iz ∝ r4, J ∝ r4 (12)

Thus, ri is selected as the design variable in the optimization problems. Ne represents
the total number of elements. The geometric constraints are also taken into consideration
in the optimization problem. The nodes on the top and bottom surface are reinforced
to maintain the flatness through constraining the variance of the thermal displacements.
Assume the thermal displacements are uz

k (k = 1, . . . , Np), and thus their variance D(uz) is
expressed as:

D(uz) =
1

Np

Np

∑
k=1

(
uk

z − uz

)2
(13)

where Np represents the number of nodes at the upper and lower surfaces, and
−
uz represents

the average value of uz.
Here, the optimization problem of minimizing effective ZTE in the thickness direction

is formulated. The optimization formulation can be expressed as Equation (14):

f ind : ri, i = 1, . . . , Ne
Minimize : |uz|

s.t.


KU = F
D(uz) < ε
r ≤ ri ≤ r

(14)

The variance D(uz) is limited by a small number: ε = 1 × 10−4. The convergence crite-
rion is set to be 0.01% of the objective function variation. u represents nodal displacement
vector, and K, F represent the global stiffness matrix and global thermal force vector, i.e.
the total global element stiffness matrix and force vector,

K = ∑ ke, F = ∑ fe (15)

3.2. Sensitivity Analysis

In this paper, the Globally Convergent Method of Moving Asymptotes (GCMMA) [40]
is adopted to solve the optimization problems. The gradient-based optimization solver
needs to take the analytical sensitivity into consideration. The sensitivities of objective

function
−
uz and constraints D(uz) are deduced as:

∂uz

∂ri
=

1
Np

Np

∑
k=1

∂uzk
∂ri

(16)

∂D(uz)

∂ri
=

1
Np

Np

∑
k=1

2(uzk − uz)·
(

∂uzk
∂ri
− ∂uz

∂ri

)
(17)

Considering the FEM equilibrium equation, the sensitivities of displacement vector equals:

∂K
∂ri

U + K
∂U
∂ri

=
∂F
∂ri
⇒ ∂U

∂ri
= K−1

(
∂F
∂ri
− ∂K

∂ri
U
)

(18)
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Afterwards, the sensitivities of stiffness matrix K and load vector F are deduced. In
each individual element, their sensitivities equal:

∂ke

∂ri
= TT ∂ke

∂ri
T (19)

∂fe
∂ri

= TT ∂fe
∂ri

(20)

Thus, the global sensitivities are simply an assembly of element sensitivities. The last
step is to deduce the sensitivities of ke, fe and coordinate transformation matrix T:

∂ke

∂ri
=

∂ke

∂A
∂A
∂ri

+
∂ke

∂Iz

∂Iz

∂ri
+

∂ke

∂Iy

∂Iy

∂ri
+

∂ke

∂It

∂J
∂ri

(21)

∂fe
∂ri

=
∂fe
∂A

∂A
∂ri

(22)

After deducing the analytical sensitivities, the optimization procedure is performed
as depicted in Figure 6. The absolute value of thermal displacement is considered as
the objective function. As mentioned above, the initial variables are fed into the FEM
calculation. The resultant parameters given by the FEM are then calculated to obtain the
gradients in the sensitivity analysis step. The objective function can develop along the
descending direction based on its gradients during the iteration until obtaining a converged
result, i.e., the optimized objective function.
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4. Results and Discussion
4.1. Meta-Units with NTE

In this section, several numerical examples are conducted to evaluate the performance
of NTE in the thickness direction by the structural optimization method with the gradient-
based algorithm. The initial temperature is set as T0 = 273.15 K, and then a temperature
change of ∆T = T1 − T0 = 100 K is applied to the whole model. To calculate the free expan-
sion in the thickness direction during the temperature change, the horizontal displacement
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freedom is constrained at the bottom. Each beam is divided into three elements, and the
radius of the beam element is set as the variable in the optimization algorithm. The radius
change range is 0.05 m ≤ ri ≤ 0.2 m. As depicted in Figure 7, the NTE performance of the
unit cell is achieved by the optimization algorithm. The NTE of final optimized lattices
in the thickness direction are −8.586 × 10−5 m/(m·K) for that of the hexagonal type and
−5.576 × 10−5 m/(m·K) for that of the triangular type.
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4.2. Near-ZTE Metamaterials

As mentioned in Section 2.2, the ZTE structure can be constructed by the way of
stacking the PTE and NTE unit cells, as illustrated in Figures 3 and 4. From the thermal-
displacement Equation (12) in Section 3.1, the radius of beams is one of the key parameters
which influenced the effective CTE attribution in the thickness direction. In this section, the
beam radius is set as the design variable to optimize the lattices with near-ZTE. Not only
the unit cells but also the corresponding circular array metamaterials are investigated. The
convergence of the algorithm behaves well during the structure optimization process, as
depicted in Figure 8.
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Several optimization examples with different circular array numbers N are conducted
by the numerical analysis procedure. N = 0 refers to the optimization result of a centered
unit cell. One or more arrays of the metaunit are under the N control, in which the total scale
increases as the number N increases. From the following cases shown in Figures 9 and 10,
the metastructure possessing extremely near-ZTE values around the order of 10−7 m/(m·K)
are obtained. Furthermore, in comparison with each other, the unit cells have already
reached at least a local optimum value. The results of the lattice with a larger scale have
negligible changes, i.e., the results of the lattice array replicate the metaunit results.
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Figure 9. Schematic illustration of optimized results and thermal deformation of the hexagonal hourglass
lattice: (a) N = 0, CTE = 5.727 × 10−7 m/(m·K); (b) N = 1, CTE = 5.457 × 10−7 m/(m·K); (c) N = 2,
CTE = 5.433 × 10−7 m/(m·K); (d) N = 3, CTE = 5.202 × 10−7 m/(m·K).

The near-ZTE results are listed in Table 2. The comparison of results shows that the
effective CTEs of the triangular lattice are higher than those of the hexagonal lattice. Recall-
ing that the performance of the NTE triangle unit is weaker than that of the hexagonal unit
(Section 4.1), the dual-layer structure enlarges their difference. The source of this difference
can be traced back to the connection and topology of the lattice structure. Fortunately, the
ZTE performance can be further improved by tuning the heights of different layers. This
will be discussed in the next section.
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4.3. Height Optimization to Achieve a ZTE Metamaterial

The height of the unit cells is an obviously critical geometry parameter during the ZTE
design. In order to intuitively sketch the influence, the simplest model of a triangle with all
DOF constraints at the top node is studied, which is shown in Figure 1. The CFRP-nylon
and nylon mentioned in Table 1 are given to the hypotenuse and the brace, respectively. The
height of the triangle can be solved by the Pythagorean theorem. Consequently, according
to Equation (5), the CTE curve with respect to the geometry height is illustrated in Figure 11.
It is obvious that the height parameter can lead PTE and NTE attributes in different values.
Based on this finding, the design space of a near-ZTE structure can be found.
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Using the structural optimization method, the PTE lattice height H1 and NTE lattice
height H2 are adjusted, as shown in Figure 3, at the reasonable boundaries to calculate
the effective thermal displacement in the thickness direction. As shown in Figure 12, the
thermal displacement in the thickness direction with variable height parameters is drawn.
When a ZTE plane is inserted into the plot, a ZTE curve can be obtained by corresponding to
different height parameters, as depicted in Figure 13. Table 3 lists several height-dominated
optimization results with the different height ratios. Compared to Table 2, the effective CTE
is further reduced to the order of about 10−9 by considering the optimal height ratio.

Aerospace 2023, 10, x FOR PEER REVIEW 14 of 19 
 

 

Using the structural optimization method, the PTE lattice height H1 and NTE lattice 
height H2 are adjusted, as shown in Figure 3, at the reasonable boundaries to calculate the 
effective thermal displacement in the thickness direction. As shown in Figure 12, the ther-
mal displacement in the thickness direction with variable height parameters is drawn. 
When a ZTE plane is inserted into the plot, a ZTE curve can be obtained by corresponding 
to different height parameters, as depicted in Figure 13. Table 3 lists several height-dom-
inated optimization results with the different height ratios. Compared to Table 2, the ef-
fective CTE is further reduced to the order of about 10−9 by considering the optimal height 
ratio. 

Table 3. Results of effective CTE in thickness direction in several height parameters. 

Metamaterial Type H1 (m) H2 (m) Effective CTE (m/m·K) 

Hexagonal dual-layer 
hourglass lattice 

6.50 13.47 1.814 × 10−8 
9.92 10.08 7.115 × 10−9 

14.61 7.27 1.374 × 10−8 

Triangular dual-layer 
hourglass lattice 

3.38 8.14 8.069 × 10−9 
6.04 5.40 2.250 × 10−8 

10.08 3.24 2.049 × 10−9 

 

  
(a) (b) 

Figure 12. Thermal displacement with variable H1 and H2 in (a) a hexagonal hourglass lattice; and 
(b) a triangular hourglass lattice. 

 
Figure 13. ZTE curve with variable H1 and H2. 

In addition, as the array number increases, the local bending caused by geometry 
constraints and bi-material composition becomes more and more apparent theoretically. 
The effective thermal displacement of the metamaterials with various array numbers un-
der different ratios of H1 and H2 are investigated, and the trend map is depicted in Figure 

Figure 12. Thermal displacement with variable H1 and H2 in (a) a hexagonal hourglass lattice; and
(b) a triangular hourglass lattice.

Aerospace 2023, 10, x FOR PEER REVIEW 14 of 19 
 

 

Using the structural optimization method, the PTE lattice height H1 and NTE lattice 
height H2 are adjusted, as shown in Figure 3, at the reasonable boundaries to calculate the 
effective thermal displacement in the thickness direction. As shown in Figure 12, the ther-
mal displacement in the thickness direction with variable height parameters is drawn. 
When a ZTE plane is inserted into the plot, a ZTE curve can be obtained by corresponding 
to different height parameters, as depicted in Figure 13. Table 3 lists several height-dom-
inated optimization results with the different height ratios. Compared to Table 2, the ef-
fective CTE is further reduced to the order of about 10−9 by considering the optimal height 
ratio. 

Table 3. Results of effective CTE in thickness direction in several height parameters. 

Metamaterial Type H1 (m) H2 (m) Effective CTE (m/m·K) 

Hexagonal dual-layer 
hourglass lattice 

6.50 13.47 1.814 × 10−8 
9.92 10.08 7.115 × 10−9 

14.61 7.27 1.374 × 10−8 

Triangular dual-layer 
hourglass lattice 

3.38 8.14 8.069 × 10−9 
6.04 5.40 2.250 × 10−8 

10.08 3.24 2.049 × 10−9 

 

  
(a) (b) 

Figure 12. Thermal displacement with variable H1 and H2 in (a) a hexagonal hourglass lattice; and 
(b) a triangular hourglass lattice. 

 
Figure 13. ZTE curve with variable H1 and H2. 

In addition, as the array number increases, the local bending caused by geometry 
constraints and bi-material composition becomes more and more apparent theoretically. 
The effective thermal displacement of the metamaterials with various array numbers un-
der different ratios of H1 and H2 are investigated, and the trend map is depicted in Figure 

Figure 13. ZTE curve with variable H1 and H2.



Aerospace 2023, 10, 294 13 of 16

Table 3. Results of effective CTE in thickness direction in several height parameters.

Metamaterial Type H1 (m) H2 (m) Effective CTE
(m/m·K)

Hexagonal dual-layer
hourglass lattice

6.50 13.47 1.814 × 10−8

9.92 10.08 7.115 × 10−9

14.61 7.27 1.374 × 10−8

Triangular dual-layer
hourglass lattice

3.38 8.14 8.069 × 10−9

6.04 5.40 2.250 × 10−8

10.08 3.24 2.049 × 10−9

In addition, as the array number increases, the local bending caused by geometry
constraints and bi-material composition becomes more and more apparent theoretically.
The effective thermal displacement of the metamaterials with various array numbers under
different ratios of H1 and H2 are investigated, and the trend map is depicted in Figure 14.
The numerical results show that the array number does not affect the height ratio to ZTE
very much. This result shows that a unit-cell level optimization may provide sufficient
information to seek a ZTE metamaterial.
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4.4. Modal Analysis of ZTE Lattices with Free Boundary Condition

A structure modal analysis is performed under a free boundary condition to obtain
the natural frequencies and mode shapes of the metastructure. The FEM procedure is used
for the modal analysis. In consideration of the space operation environment, there is no
displacement constraint or inertial force applied to it. Next, the Lanczos method is adopted
to solve eigenvalues to calculate the natural frequencies [41]. Because of the boundary
condition, the first six eigenmodes represent the rigid body motion and are disregarded.
The seventh to tenth eigenmodes are shown in Figure 15. The seventh eigenfrequency
represents the natural frequency of the structure. Its relation corresponding to the array
number is investigated, as shown in Figure 16. It shows that the frequency increases first
and then drops as the array number N increases, as depicted in Figure 16a. The natural
frequency is a crucial factor for orbit and attitude control [42]. Furthermore, the effective
stiffness is plotted in Figure 16b. The effective stiffness is actually calculated by the scaling
of 2π f =

√
K/m. The structural stiffness starts to drop as the circular array layer number

N moves beyond 3 and the structure becomes large and flexible.
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Figure 15. Modal analysis and the mode shapes of a space structure in freedom (a) hexagonal
hourglass lattice (b) triangle hourglass lattice.
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5. Conclusions

A novel near-ZTE metastructure design composed of bi-material hourglass unit cells
is proposed by the structural optimization method with a gradient-based algorithm. The
thermomechanical performances of the structures with different sensitive parameters and
configurations are carried out. The conclusions are as follows:

(1) To satisfy the utilization requirement for structures such as a space telescope and
apertures, the circular array condition is considered for the metastructure construction.
The hexagonal and triangular configurations built from triangle units is considered as
the building blocks.

(2) By analyzing the thermomechanical macroscopic properties, the beam radius and
layer height ratio are selected as sensitive parameters during the optimization calcula-
tion. The optimization results show an excellent near-ZTE capacity in the thickness
direction, with the magnitudes of about 10−9 m/(m·K).

(3) The CTE of metastructures with diverse array numbers are investigated in a specific
temperature change. A replication behavior is found in two configurations, i.e., the
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divergence due to the array number is insensitive to the structural thermal expansion.
Therefore, a preliminary ZTE optimal result for a large-scale structure design can be
conducted at the unit cell scale at a relatively low cost.

(4) Focusing on orbit and attitude control, the natural frequencies are obtained by modal
analysis. It is shown that the larger the size, the more flexible the structure behaves.

This study aims to provide a novel design composed of a dual-layer bi-material
hourglass lattice metamaterial with near-ZTE behaviors in the thickness direction. It shows
great potential in maintaining the optimal precision demands of space architectures under
a harsh thermal environment. The design provides a novel solution for the design of
large-scale space structures, such as RF apertures, reflector antennas, and space telescopes.
In particular, this type of space structure can be fabricated by the additive manufacturing
technology directly on orbit in the near future [43].
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