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Abstract: This paper presents the design and mathematical model of an innovative smart crane,
CHAYA-SC, based on the principle of a cable-driven parallel manipulator, as well as its stabilization.
This crane is mounted on the airship hold and intended for handling at altitude. Our objective is
to design a precise light crane that can be used for container loading or unloading, particularly in
deep-sea ports. Thus, the model developed includes the oscillations as well as the transverse and
longitudinal vibrations of the heavy cable supporting the load to be handled. The highly nonlinear
partial differential equations (PDE) and ordinary derivative equations (ODE) that govern the motion
of the system are obtained via the Lagrange equations coupled with a modal synthesis. So that
the mathematical model of the system is compatible with control and real time, we developed a
simplified dynamic model which proved to be equivalent to the complete model. As a first validation
of the modelling, a simple control vector is applied to stabilize the airship and its load under the
effect of a squall. Numerical simulations are presented at the end of the paper to show the relevance
of the design.

Keywords: smart crane; large capacity airships; cable-driven parallel manipulator; freight
transportation; modelling; stabilization

1. Introduction

Large capacity airships (LCAs) bring new perspectives for airships that hibernated for
more than half a century after the Hindenburg drama. In fact, for more than two decades,
researchers have studied the formidable potential of airships in terms of freight transport.
These airships will be able to transport blades of wind turbines or logs from or to areas
very difficult to access, load or unload container ships on the high seas in the absence of
adequate ports (as seen in Figure 1), and install field hospitals in disaster areas. Other
examples of the use of airships in land and maritime multimodal logistics can be found
in [1,2]. These various examples prove, if necessary, the enormous potential available to
these flying machines. However, we should mention that in order to be able to lift 1 kg
of load, 1 m3 of Helium must be provided within the hull of the airship. The airships
targeted for the aforementioned examples will therefore have enormous volumes, and
all the obstacles inherent in these large volumes have not yet been overcome. Among
these obstacles, we note on the one hand, the high sensitivity of airships to gusts of wind.
Various studies have looked into the stabilization of airships, particularly in hovering flight
or for tracking trajectories (see, for example, [3–7]). On the other hand, the non-standard
dimensions of these devices make the development of landing or handling areas very
problematic or costly. This has left the designers of these machines to consider handling
operations at altitude. It is in this context that our study takes place. We propose for this
task a smart crane capable not only of loading and unloading but also of stabilizing the
load during a gust of wind and of arranging the hold of the airship. This crane will be
based on a cable-driven parallel manipulator (CDPM).
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Figure 1. Prototype of a large capacity airship in handling. 

Today, CDPMs are set to have a big impact on many aspects of modern life, from 
industrial manufacturing to healthcare, transportation, and the exploration of space and 
the seabed. Cable-driven parallel manipulators are a special class of parallel manipulators 
in which the effector is directly actuated by cables. By considering the number of cables 
and the degrees of freedom of the effector, the CDPM can be overconstrained, in particular 
as in [8,9], or underconstrained.  

These manipulators offer a variety of potential advantages over traditional parallel 
robots. Because of their unique configurations, CDPMs are characterized by light struc-
tures and a large working space due to the location of the actuators at the fixed base of the 
structure, thus reducing the mass and inertia of the mobile platform. They can be pro-
duced on a very large scale at acceptable cost, which makes them very suitable for high 
velocities and high performance [10,11]. Another major advantage is that the CDPMs are 
reconfigurable, which allows them to be used for different tasks by moving the attachment 
points of cables as in [12]. 

In the literature, different approaches have been proposed to find the tension distri-
bution of cables. The set of optimal tension chosen is usually performed using an optimi-
zation method, for example, linear programming [13], quadratic programming [14], and 
convex optimization for the minimization of L1 norm [15] and p norm [16]. However, 
neither of these methods can provide a continuous solution and cover the entire work-
space as in [17]. Another disadvantage of cable parallel robots is the possibility of cables 
colliding with each other, but this is limited only to space redundant systems as in [12]. 

Given the advantages and unique characteristics of CDPMs, their use has spread to 
several types of applications. The idea of cable robots appeared from the studies of Albus 
et al. [18], Landsberger [19], and Higuchi [20]. Inspired by Stewart platform, the NIST-
Robot Crane was developed by Albus and his team [18] to overcome the drawbacks of the 
motions underlying conventional cranes. Because of their large workspace and high ve-
locities, the CDPMs have been used in sports recording, as in the case of Skycam [21]. 
Another application for this type of manipulator is medical rehabilitation as can be seen 
in [22–24]. 

We were therefore inspired by the CDPM principle to propose our smart crane on 
board the airship, the design of which we will present in the next section. 

A model of a multibody system formed by the airship, the crane, and the suspended 
load will be presented, and the stabilization of the system subjected to a gust of wind will 
be proposed. 

Figure 1. Prototype of a large capacity airship in handling.

Today, CDPMs are set to have a big impact on many aspects of modern life, from
industrial manufacturing to healthcare, transportation, and the exploration of space and
the seabed. Cable-driven parallel manipulators are a special class of parallel manipulators
in which the effector is directly actuated by cables. By considering the number of cables
and the degrees of freedom of the effector, the CDPM can be overconstrained, in particular
as in [8,9], or underconstrained.

These manipulators offer a variety of potential advantages over traditional parallel
robots. Because of their unique configurations, CDPMs are characterized by light structures
and a large working space due to the location of the actuators at the fixed base of the struc-
ture, thus reducing the mass and inertia of the mobile platform. They can be produced on a
very large scale at acceptable cost, which makes them very suitable for high velocities and
high performance [10,11]. Another major advantage is that the CDPMs are reconfigurable,
which allows them to be used for different tasks by moving the attachment points of cables
as in [12].

In the literature, different approaches have been proposed to find the tension distribu-
tion of cables. The set of optimal tension chosen is usually performed using an optimization
method, for example, linear programming [13], quadratic programming [14], and convex
optimization for the minimization of L1 norm [15] and p norm [16]. However, neither of
these methods can provide a continuous solution and cover the entire workspace as in [17].
Another disadvantage of cable parallel robots is the possibility of cables colliding with each
other, but this is limited only to space redundant systems as in [12].

Given the advantages and unique characteristics of CDPMs, their use has spread
to several types of applications. The idea of cable robots appeared from the studies of
Albus et al. [18], Landsberger [19], and Higuchi [20]. Inspired by Stewart platform, the
NIST-Robot Crane was developed by Albus and his team [18] to overcome the drawbacks
of the motions underlying conventional cranes. Because of their large workspace and high
velocities, the CDPMs have been used in sports recording, as in the case of Skycam [21].
Another application for this type of manipulator is medical rehabilitation as can be seen
in [22–24].

We were therefore inspired by the CDPM principle to propose our smart crane on
board the airship, the design of which we will present in the next section.

A model of a multibody system formed by the airship, the crane, and the suspended
load will be presented, and the stabilization of the system subjected to a gust of wind will
be proposed.
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2. Problem Statement and Description of the Smart Crane

As part of the development of tools essential to the development of large capacity
airships, we set out to design an embedded smart crane (the CHAYA-SC) that is as light as
possible, can both handle the containers and stabilize the load during the handling, and
finally ensure the precise arrangement of the containers within the hold.

The large airships that we are targeting have a large volume, greater than 100,000 m3,
and it would be difficult to provide them with landing and loading infrastructure. So that
these means of transport could be used everywhere, it is essential to provide a means of
handling at altitude. This will allow them to be used universally but must be accompanied
by various measures, in particular robust control of the airship and a crane adapted to this
configuration. It is in this context that we present our smart crane.

Presentation of the Smart Crane

The smart crane called CHAYA-SC is presented in Figure 2. It consists of a cuboid
trunk (that we could see in details in Figure 3) supported by eight cables suspended from
the four upper corners of the airship hold. These eight cables are arranged to kinematically
constrain the trunk.
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Eight winches have the role of controlling these eight cables. These are controlled
and coordinated by a computer. The motion of the platform is controlled by an operator
through a six-axis joystick with six DOFs. The operator can handle and manipulate the
trunk and any load attached to it over a large volume of work inside the hold.
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The trunk consists of a rigid structure overhung by four electrical engines. These
engines pull a flexible cable connected to a container hook. The multiplication of electrical
engines obeys safety constraints.

This crane has the following missions:

1. A classic container loading and unloading mission enabled by the winches integrated
into the cuboid.

2. Stabilize the suspended containers during a sudden motion of the airship under the
effect of a gust of wind by creating accelerations according to six possible degrees of
freedom of the cuboid, depending on the nature of the oscillation of the load.

3. Drop off, collect, and store the containers in the airship hold (as shown in Figure 4).
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The cables are attached to the fixed base at the exit points noted Pi ∈ R3 whose
coordinates are defined in the earth fixed frame R0 = (O, X0, Y0, Z0) by the vectors pi, i ∈
{1, 2, . . . , m}. The cable attachment points on the platform noted Vi ∈ R3 are expressed in
the mobile frame attached to the suspended platform Rp = (P, XP, YP, ZP) by vi, and li is
the length of the cable connecting these two points.

Unlike series-type robots, the inverse geometric and inverse kinematic models of
parallel robots are easy to establish. These results are used to find a relation between the
operational space with n dimensions of the spatial coordinates of the platform and the
space with m dimensions of the articular coordinates.

We denote by q = (q1, q2, . . . , qm)
t ∈ Rm the column matrix of the articular coordinates

of the CDPM and by Xp =
(
Xp1 , Xp2 , . . . , Xpn

)t ∈ Rn the operational coordinates of the
platform.

The inverse kinematics problem seeks to determine the lengths of the cables taking
into account the position and orientation of the suspended platform. Inverse kinematics for
parallel structures is easier to calculate than direct kinematics. The Jacobian matrix J of a
cable-driven parallel robot is defined as a relationship between the velocity vector of the
platform

.
Xp =

( .
xp, ωp

)t and the linear velocity of the cables
.
l =

( .
l1,

.
l2, . . . ,

.
lm

)
:

.
l = J

(
Xp
) .
Xp (1)

The dynamic equations which describe the motion of the CDPM are obtained using
the Lagrange equations that we will recall later in this paper. The general dynamic model
can be divided into two expressions corresponding to the dynamics of the platform and
the dynamics of the winches. The cables are considered in deformable and of negligible
mass. The cables are controlled by motorized winches. These winches are equipped with
a drum around which a cable is wound. Each winch (Figure 6) consists of asynchronous
servomotor coupled to a planetary gearbox which is connected to a drum. In fact, the motor
torques τi drives the cylindrical drum in rotation at an angle qi about its axis of symmetry.
This generates a tensile force ti at the exit point of the cable Pi.
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The dynamic model of the actuators is given by the following equation:

τ = I
..
q + RT (2)

τ = (τ1, τ2, · · · , τm)
t is the input vector of the torques exerted by the motors which

control synchronously the cable lengths as a function of the tension T = (t1 , t2 , . . . , tm)
t in

order to provide the required movement of the platform in the Cartesian space by acting
on the winches, and I is the diagonal inertia matrix of the moments of the drums, such as
diag(I) = {I1, I2, . . . , Im}.



Aerospace 2023, 10, 290 6 of 23

By applying the Lagrange equations, the dynamic equation of the lower base will be
given, as in [25], by:

M
(
Xp
) ..
Xp + C

(
Xp,

.
Xp

) .
Xp = W

(
Xp
)
. T + Fg (3)

Fg represents the external forces, such as the weight of the platform and its loading
or the force exerted by a gust of wind, W

(
Xp
)
= −Jt(Xp

)
, M is the mass matrix of the

platform, C is the matrix of centrifugal and Coriolis forces. The latter two are defined in
detail in Appendix C.

3.1.2. Case of the CDPM on Board an Airship

The CDPM which represents the upper part of our smart crane and which we present
in this work is inspired by those used in industry from a technological and configuration
point of view. We were inspired more precisely by the robot CoGiRo developed by Tecnalia
presented in [26], which corresponds to our handling needs. In their study, Lamaury et al.
defined the appropriate number of cables for the optimal control of the movement of the
cuboid according to the six degrees of freedom. Their study concluded that this would
require the use of eight cables. We followed this recommendation and used eight cables to
manipulate the cuboid of our smart crane.

The main difference between these two CDPMs (apart from the dimensional aspect)
is that ours is embarked on a mobile system (the airship) and is therefore subject to the
turbulence and acceleration of the latter. The so-called “fixed” base actually follows the
motion of the airship.

The mobile platform is embodied by the cuboid in our smart crane. Its motion depends
not only on the motion of the eight cables that support it but also on the motion of the
airship.

The CDPM is suspended by eight cables for six DOFs. The cables are connected on the
other side to the hold of the airship at the top of the pillars (as seen in Figure 7). Each point
of attachment of the cables is therefore directly deduced from the motion of the center of
gravity G of the airship.
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The pulleys guiding the cables (as shown in Figure 8) are connected to controlled
motors which represent the actuators of the CDPM.
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The set of forces exerted on the platform (cuboid) is given by:

FC = W(XP)T (4)

Compared to the equations developed previously and neglecting the term I
..
q, we will

have to use the kinetic energy of the airship to obtain the equation of motion of the CDPM:

M(XP)
..
XP + C

(
XP,

.
XP

) .
XP − Fg = FC (5)

More details concerning the obtaining of this equation will be developed in the partic-
ular case of the plane motion of the multibody system.

3.2. Dynamic Modeling of the Multibody System in a Plane Motion

As an application, we are interested in modeling the system assuming that the airship
as well as the cuboid move in XZ space. They follow unidirectional motion along axis
(GX1) and axis (G’X2), respectively. The system to be modeled is shown in Figure 9. It
is composed of an airship, a cuboid, and a load suspended by a cable. The latter, which
holds the container, is thick and massive. Unlike the cables that support the cuboid, we will
consider here its flexibility as well as its elongation. The cable has a length lc, a mass per
unit of length ρ, a modulus of Young E, and a moment of inertia Iy3. The load has mass mL
and matrix of inertia IL. The distance between its center of mass and the end of the cable is
represented by rL, and the deformation is denoted by ω.

As part of the modelling of this system, this assumption will be retained: the rotational
inertia of the pulleys is neglected in front of the other inertias.

The analysis of the global system motion is made with respect to six reference frames,
namely:

i. An earth-fixed frame R0(O, X0, Y0, Z0).
ii. A local frame fixed to the airship R1(G, X1, Y1, Z1), having as origin the inertia center

of the airship.
iii. A local frame fixed to the cuboid R2(G′, X2, Y2, Z2), having as origin the inertia center

of the cuboid G′.
iv. A reference frame R3(G′, X3, Y3, Z3), linked to the cable in rotation at an angle θ with

respect to R2.
v. A reference frame R4(Pc, X4, Y4, Z4), attached to any section of the cable located at a

distance z3 from the z3 axis.
vi. A reference frame R5(PL, X5, Y5, Z5), at the end of the cable to describe the motion of

the load.
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To facilitate the writing of the equations of motion, we adopt the notations below:

w = w(z3, t),wz3 = ∂w(z3,t)
∂z3

, wz3z3 = ∂2w(z3,t)
∂2z3

,
.

w = dw(z3,t)
dt represent the deformation of the

cable as well as its derivatives at a point z3 of the cable.
When point z3 is equal to lc, the deformation and its first and second derivatives are

noted by:

wlc = w(lc, t), wz3,lc =

(
∂w(z3, t)

∂z3

)
|z3=lc

, wz3z3,lc =

(
∂2w(z3, t)

∂2z3

)
|z3=lc

In order to apply the Lagrange equations, we need to calculate the Lagrangian of the
system. This Lagrangian can be defined as follows as in [27]:

L = Ttot −Vtot + FR (6)

With Ttot is the total kinetic energy of the system, Vtot
, is the total potential energy, and

FR is the Rayleigh dissipation function.

3.2.1. Kinetic Energy of the System

It should be noted that the kinetic energy of the whole system is made up of that of
the airship (TA), the cuboid (TC), the payload (TL), and the flexible cable.

Ttot = TA + TC + TL +

lc∫
0

Tf (7)

We will denote by uA and uC the speeds of the airship and of the cuboid projected
onto the mobile reference frames linked to each of them. In our particular example of a
plane case, we have: uA =

.
xA and uC =

.
xC.

The kinetic energy of the airship is simply expressed as:

TA =
1
2

mA u2
A (8)
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TC is the kinetic energy of the cuboid:

TC =
1
2

mC u2
C, (9)

where mC is the mass of the cuboid, and mA is the mass of the airship including the added
mass. For more details concerning the added masses one could consult [28]. The kinetic
energy of the load has two terms: the first term which takes into consideration the linear
motion of the body with respect to the frame R3 and the second term which takes into
consideration the rotation of the load. The expression of the kinetic energy of the load is:

TL = 1
2 IL

(
.
θ

2
+

.
w2

z3,lc + 2
.
θ

.
wz3,lc

)
+ 1

2 mL
(
u2

A + u2
C + 2uAuC +

.
w2

lc +
.

w2
z3,lc r2

L + 2
.

wlc(uA + uC)cθ

+
.
θ

2
(lc + rL)

2 + 2rL
.

wz3,lc(uA + uC)cθ + 2(uA + uC)
.
θcθ(lc + rL)

−rL(uA + uC)
.
θcθw2

z3,lc −
.
θ(uA + uC)cθ

lc∫
0

w2
z3

dz3 + 2rL
.

wz3,lc
.

wlc

+2
.
θ

.
wlc(lc + rL) +

.
θ

2
w2

lc + r2
L

.
θ

2
w2

z3,lc + 2rL(l + rL)
.
θ

.
wz3,lc

−2(uA + uC)sθ
lc∫
0

wz3

.
wz3 dz3 − 2rL(uA + uC)sθ

.
wz3,lc wz3,lc

−2(uA + uC)
.
θsθwlc + 2rL(uA + uC)sθwz3,lc + o(3)

)

(10)

o(3) are small terms of the third order that can be neglected later.
On the other hand, the kinetic energy of the cable is computed by a summation over

the entire length of the latter. We can see its expression in detail in Appendix A.
By developing the equations of the kinetic energy of the cable and of the load, we will

keep the expressions of the position and the speed exact to the second order. All other
quantities can be linearized. Finally, to obtain the expression for the linearized total kinetic
energy of the system, it would suffice to add and rearrange the corresponding terms. The
developed expression of the total kinetic energy of the system can be seen in Appendix A.

3.2.2. Potential Energy

The potential energy will be computed using the same reasoning as that of the kinetic
energy: in theory, the potential energy of the multibody system is the sum of the potential
energies of the different bodies.

However, for the case mentioned in Section 3.2.1, and which will be our illustrative
example in this paper, the airship as well as the cuboid will have horizontal rigid body
motions and will therefore not affect the potential energy. For these reasons, the total
potential energy can be written as:

Vtot = VL +

lc∫
0

Vf (11)

The potential energy of the load is given by:

VL = mL g sθ
(
wlc − rLwz3,lc

)
−mL g cθ

lc + rL −
1
2

rLw2
z3,lc −

1
2

lc∫
0

w2
z3

dz3

 (12)
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On the other hand, the potential energy of the cable will not only have the contribution
of gravity but also a contribution given by its elasticity, which we could write as follows:

Vf =
1
2

EIz3 w2
z3z3

dz3 + gρ w(z3, t)sθ dz3 − ρg cθ

z3 −
1
2

z3∫
0

w2
z3
(s, t) ds

dz3 (13)

Hence the expression of the total potential energy becomes:

Vtot =
1
2 EIz3

lc∫
0

w2
z3z3

dz3 + gρ sθ
lc∫
0

w(z3, t)dz3

−ρ g cθ
lc∫
0

(
z3 − 1

2

z3∫
0

w2
z3
(s, t)ds

)
dz3 + mLg sθ

(
wlc − rLwz3,lc

)
−mLg cθ

(
lc + rL − 1

2 rLw2
z3,lc −

1
2

lc∫
0

w2
z3

dz3

) (14)

3.2.3. Dissipation Function

Within a flexible metal cable, there is an internal energy dissipative damping. To
model this characteristic, the Rayleigh dissipation function was used. Its expression is:

FR =
1
2

ke EIz3

lc∫
0

.
w2

z3z3
dz3 (15)

In order to obtain a dynamic model having a reasonable number of degrees of freedom,
modal synthesis will be used to discretize the energies calculated previously. This procedure
is usual in the vibratory problems and allows the number of degrees of freedom to be
minimized in our precise case by minimizing the modes retained. This will have the
advantage of facilitating the implementation of control laws.

3.2.4. Modal Synthesis

The vibration of cables is extensively investigated in the literature. Recently, vibration
of axially moving materials has received a great deal of attention in the literature (see,
for example, [29]). These survey papers present a picture of the state of the art in the
vibration and dynamic stability of axially moving strings or beams. Little research on the
vibration behavior of overhead cranes with flexible cables has been studied in [30,31]. In
the study of [32], the authors used the Rayleigh–Ritz discretization method. Meirovitch [33]
describes the behavior of the deformation of the cable as an ordinary differential equation
model. Another approach named the Galerkin method has been used by a number of
researchers to solve problems of deformation of cables of fixed length [34]. Vibration
problems of materials whose effective lengths vary with time have also been the subject
of recent research activities where the system is discretized via a modified finite element
technique [35,36], and finally a modified Galerkin method was used by Fung [37].

In the present work, we have used the assumed modes method. This approach consists
in representing the deformation as a weighted sum of the shape functions. The solution is
approximated by a series of finite superimposed functions multiplied by indeterminate
coefficients. In other words, this deformation is decomposed into two functions as in [38]:
a spatial function over the length of the cable Φj(z3), and a time varying function δj(t) as
follows:

w(z3, t) =
m

∑
j=1

Φj(z3) δj(t), (16)

where Φ = (Φ1, Φ2, . . . , Φm)
t is the vector of shape functions. This vector gives the general

configuration of the cable, δ = (δ1, δ2, . . . , δm)
t is the vector of the generalized coordinates
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relating to the flexible modes. This vector represents the nature of the motion made by the
cable and m being the number of modes retained in the series.

By replacing the expression of the deformation defined above in that of kinetic energy,
we obtain a new developed expression of the kinetic energy (see Appendix B).

This expression can be written in the following compact form:

Ttot =
1
2

(
uA uC

.
θ

.
δ

t
)T

M
(

uA uC
.
θ

.
δ

t
)

(17)

Let us denote by:

• M(X) the mass matrix;
• B the damping matrix;
• K the stiffness matrix;
• G(X) the vector of forces due to the gravity;

• C
(

X,
.

X
)

the vector of Coriolis and centrifugal forces;

• τ = (FA, FC, 0, 0)t the vector of the forces produced by the actuators and applied on the
airship and on the cuboid. (The details of these matrices are given in Appendixes B–D).

Using the same procedure as that developed in the discretization of kinetic energy, the
expression of the discretized potential energy is given by:

Vtot =
1
2 δtEIz3

lc∫
0

Φz3z3 Φt
z3z3

dz3 δ +
(
−ρ l2

c
2 −mL(lc + rL)

)
g.cθ+

1
2 δt

(
ρ

lc∫
0

z3∫
0

Φz3 Φt
z3

dsdz3 + mL

(
1
2 rLΦz3,lc Φt

z3,lc + 1
2

lc∫
0

Φz3 Φt
z3

dz3

))

gδcθ + sθ.g

(
ρ

lc∫
0

Φtdz3 + mL

(
Φt

lc − rLΦt
z3,lc

))
δ

(18)

The discretized potential energy of the system can be rewritten in a more compact
form such as:

Vtot =
1
2

δtK f f δ + Grr cθ +
1
2

δtGr f δ cθ + sθ G f f δ (19)

The discretized Rayleigh function can be written in the form:

FR =
1
2

.
δ

t
ke EIz3

lc∫
0

Φz3z3 Φt
z3z3

dz3
.
δ (20)

In matrix form, it will be written as follows:

FR =
(

uA uC
.
θ

.
δ

t
)T

B
(

uA uC
.
θ

.
δ

t
)

(21)

3.2.5. Equations of Motion

Once the energies have been discretized as well as the Rayleigh function we obtain a
discretized Lagrangian L (Equation (6)) to which we apply the Lagrange equations:

d
dt

∂L

∂
.

Xi
− ∂L

∂Xi
= FRi (22)

The dynamics of the system can be written in compact form in terms of the generalized
coordinates X =

(
xA xC θ δ

)t:

M(X)
..
X + B

.
X + KX + G(X) + C

(
X,

.
X
)
= τ (23)
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3.2.6. Simplified Model

The model of the multibody system developed above corresponds to a nonlinear
system fully coupled to (m + 2) states. In order to remedy the complexity of the model, we
have made some simplifications and arrived at a reduced and simplified model.

(a) The first simplification concerns the shape functions: we have chosen the shape
functions wi(z3) = z2

3, i ∈ {1, 2, . . . , m} and we have taken only one mode (m = 1),
the expression of the deformation then becomes:

w(z3, t) = z2
3δ(t) (24)

(b) With the aim of simplifying the dynamic model in order to be able to apply control
laws to it, we have analyzed the different terms of the matrix M(X) and succeeded
in highlighting the terms whose calculation is complex, but whose absolute value
can be neglected compared to the other terms of the matrix. The mass matrix M(X)
can thus be subdivided as the sum of two matrices: main matrix noted M̃(X) and
complementary matrix dM(X):

M(X) = M̃(X) + dM(X) (25)

The expressions of matrices M̃ and dM are defined in Appendix D. We note that matrix
dM consists of small terms compared to those of the main matrix. These terms will be
neglected in continuation and consequently, we can suppose that M ∼= M̃.

(c) A third simplification is carried out for the Coriolis vector. We replace M with M̃
in Equation (A24) (see Appendix D) and thus obtain the following expression of
C
(

X,
.

X
)

:

C
(

X,
.

X
)
=

.
M̃

.
X− 1

2
∂

∂X

(
.

X
t

M̃ X
)

(26)

The new Coriolis vector will be:

C(X,
.

X) ∼=


− 1

2 a5
.
θ sθ

.
δ

− 1
2 a5

.
θ sθ

.
δ

1
2 a5 sθ (uA + uC)

.
δ

− 1
2 a5 sθ

.
θ (uA + uC)

 (27)

with

Remark 1. It should be specified here that this study is established for a given length of cable lc.
During the loading or unloading phase, this length will vary. Because of the sensors at the level of
the pulleys, the controller intended to stabilize the load will be able to know this length at time t and
will take this information into account in real time.

3.3. Stabilization

The main objective of the design of this smart crane is to develop a control vector
based on the various actuators of the system to stabilize the airship and its load during
the loading or unloading phase. As a first approach, we present a classic system based
on the Proportional-Derivative (PD) technique. Stabilization by the qLPV method and by
model-free control will be presented in future work.

The proposed PD control law is based on measurable variables for the airship and the
cuboid, namely the displacement and speed of the airship and the cuboid, the oscillation
angle and its angular speed, and the deformation of the cable and its speed.

Different scenarios were considered and simulated numerically in order to validate
our mathematical model.
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4. Simulation Results

The numerical simulations presented in this section concern the most feared scenario
of a gust of wind impacting the airship during the loading or unloading phase. A controller
is proposed to drive the system to a stabilized position and at the same time minimize
the cable oscillations in order to preserve the products loaded in the container. The main
control objective is to use the cuboid acceleration to stabilize the motion of the cable while
damping the cable vibrations. The various computer developments were carried out within
the Matlab software R2022a.

The actuators available are, on the one side, the motorized pulleys which pull the
eight upper cables in order to control the motion of the cuboid and, on the other side, the
thrusters which act on a longer timescale in order to stabilize the airship.

In these simulations, the characteristics of the different elements of the system (airship-
cuboid-load and flexible cable) are listed in Table 1:

Table 1. Characteristics of the different elements of the system.

Parameter Symbol Value

Airship mass mA 500 kg
Cuboid mass mC 50 kg

Load mass mL 40 kg
Load radius rL 0.5 m
Cable length lc 15 m
Linear mass ρ 1.5 kg/m

Young’s modulus E 2.108 Pa
Moment of inertia of the load IL 2 mL r2

L/5
(
kg. m2)

Quadratic moment of the cable Iz3 10−4 m4

Damping coefficient ke 0.1

We have assumed that the airship is subjected to a gust of wind which will be repre-
sented by a Ricker wavelet along the X1 axis as we can see in Figure 10:
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During our simulations, we found that the difference in response between the complete
model and the reduced model is less than 1%. The different curves are superimposed
perfectly, which justifies the reduction of the model that we have made and which allows a
notable reduction of time in the simulation in comparison with the complete model. We
have therefore chosen to present the curves of the different variables calculated from the
reduced model.



Aerospace 2023, 10, 290 14 of 23

We notice also that under the effect of this impulse caused by the gust of wind, the
system oscillate due to the inertial coupling between the various generalized coordinates
(displacement of the airship xA, displacement of the cuboid xC, oscillation and deformation
of the cable θ and δ).

We apply a control vector which acts, on the one hand on the airship, through force
FA developed by the thrusters along axis X1 in order to stabilize the latter around a desired
position xAd and, on the other hand, on the cuboid by force FC along axis X1 produced by
the eight winches which drive the cuboid, such as:

FA = −kpA(xA − xAd)− kvA
.
xA

FC = kpθθ + kvθ

.
θ + kpδδ + kvδ

.
δ− kpC(xC − xCd)− kvC

.
xC

(28)

The gains are chosen as:

kpA = kvA = kpθ = kpδ = 200;
kvδ = kvθ = 150; kpC = kvC = 100

(29)

Unlike agile flying machines such as helicopters, the dynamics of the airship are
slow dynamics. This is what motivated our choice to stabilize the suspended load by the
acceleration of the cuboid, which benefits from the advantages of the CDPM and therefore
has a quick dynamic.

According to Figure 11, the airship reaches slowly the desired position (origin). The
control vector succeeds in stabilizing the system. The motion of the cuboid, the oscillation
angle θ, and the generalized deformation of the cable δ tend to zero.(Figures 12–14).
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We can see that the proposed PD-type closed loop control system reasonably sup-
presses the load oscillation, and it is also efficient at damping cable vibrations. In addition,
the final positions of the airship and the cuboid are reached in a relatively reasonable time.

The performance of the proposed control scheme is good. Our goal thereafter is to
highlight the behavior of the eight winches driving the cuboid. We show in Figure 15 the
detail of all the simulation of the accelerations of each winch.
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We recall that the expression which links the cuboid accelerations with the angular
accelerations

..
qi of the eight actuators is given by:

..
q = R−1

(
J

.
uC +

.
JuC

)
, (30)

where J is the Jacobian matrix of the robot.
The coordinates of the exit points and the attachment points used in this example are

taken from a reference example given by the Tecnalia Company for an industrial CoGiRo
robot. They are listed in Table 2:
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Table 2. Coordinates of exit points and attachment points.

pi xpi (m) ypi (m) zpi (m)
p1 0.500 −0.507 0.555

p2 −0.488 0.361 0.554

p3 −0.500 −0.260 0.555

p4 0.503 0.342 0.548

p5 −0.500 0.507 0.555

p6 0.497 −0.353 0.554

p7 0.499 0.260 0.549

p8 0.499 0.260 0.549
vi xvi (m) yvi (m) zvi (m)
v1 −7.224 −5.359 −5.468

v2 −7.435 −5.058 5.477

v3 −7.425 5.196 5.486

v4 −7.210 5.497 5.495

v5 7.139 5.463 5.481

v6 7.440 5.158 5.494

v7 7.415 −5.089 5.481

v8 7.113 −5.388 5.492

The diagonal matrix R = diag{1, 1, 1, 1, 1, 1, 1, 1}. The following figure shows the
acceleration behavior of these eight actuators.

Figures 15 and 16 show the angular accelerations and speeds of the motorized pulleys
which drive the cuboid. With the movement of the latter being rectilinear along axis X1,
it is noted that the accelerations of the “front” pulleys (colored in blue) are identical and
opposite to those placed at the rear of the cuboid (colored in magenta).
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5. Discussion

In this study we wanted to validate a concept. It involved equipping a Large Capacity
Airship with a smart on-board crane capable of stabilizing the load, in addition to its usual
functions of lifting the load and arranging the containers in the hold of the airship. By
design, this innovative crane can stabilize the load regardless of the direction of oscillation.
We have conducted an extensive study on the dynamics of the multibody system including
the flexible heavy cable. However, in this study, we made a strong hypothesis and confined
ourselves to a disturbance of the wind along the x axis alone. The results obtained are
encouraging and allow us to validate the concept. We remain aware that the dynamic
model used for the airship is relatively simplistic. Our first objective was to present the
smart crane and its interaction with a particular movement of the airship.
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Generalization to external disturbances along various directions and taking into ac-
count the complete dynamic model of the airship [3] is being studied and will be the subject
of future publications.

6. Conclusions

As part of the development of large capacity airships, we have presented in this paper
the design and modelling of an on-board smart crane based on the CDPM principle. The
main objective of this crane is to ensure safe handling at altitude, in particular for loading
or unloading container ships on the high seas. For this objective, we have established a
precise mathematical model of a multibody system including the airship, the crane, the
flexible lifting cable, and the suspended load. For control requirements, we proposed a
reduced dynamic model which proved to be very reliable and consistent with the complete
model, while being very useful for control applications.

A classical control vector was applied to the system for its stabilization after a dis-
turbance due to a gust of wind. The numerical results were conclusive and validated our
model.

More elaborate control laws (qLPV control and modeless control) are under study and
will be the subject of future publications.

Author Contributions: Conceptualization, F.G. and N.A.; methodology, all authors; software, F.G.;
validation, all authors; investigation, all authors, writing—original draft preparation, all authors;
writing—review and editing, F.G. and N.A.; supervision, J.N.; project administration, N.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding. All authors certify that they have no affiliations
with or involvement in any organization or entity with any financial interest or non-financial interest
in the subject matter or materials discussed in this manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

Nomenclature

‖ . ‖ is the norm of the vector (.).
.
A is the time derivative of A.
x is the cross product.
Diag(R) is the column matrix of the diagonal components of R.
At is the transpose of the matrix A.
wz3 is the partial derivative of w with respect to z3.
o(3) are small terms of the third order
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Appendix A

Ttot =
1
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3
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Appendix B
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1
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Appendix C

M
(
Xp
)
=

(
mp I3x3 03x3

03x3 R0
p IpR0

p

)
is the classical mass matrix, C

(
Xp,

.
Xp

)
is the matrix

of centrifugal and Coriolis forces defined by:

C
(

Xp,
.

Xp

) .
Xp =

(
03x1

ωp × Rp
0 IpR0

p ωp

)
(A4)

mp is the mass of the platform, I3×3 is the identity matrix, and Ip is the inertia matrix
of the platform.
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Appendix D

M =


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(a8+δta9 δ cθ+a10 δ sθ)
2

(a8+δta9 δ cθ+a10 δ sθ)
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lc∫
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z3,lc + 2 ILΦt
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a8 = l2
c ρ + 2 (lc + rL) (A14)
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lc∫
0

Φtdz3 − 2 mLΦt
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z3,lc (A16)
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 (A18)
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