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Abstract: The system complexity that characterizes current systems warrants an integrated and
comprehensive approach to system design and development. This need has brought about a paradigm
shift towards Model-Based Systems Engineering (MBSE) approaches to system design and a departure
from traditional document-centric methods. While MBSE shows great promise, the ambiguities and
inconsistencies present in Natural Language (NL) requirements hinder their conversion to models
directly. The field of Natural Language Processing (NLP) has demonstrated great potential in
facilitating the conversion of NL requirements into a semi-machine-readable format that enables
their standardization and use in a model-based environment. A first step towards standardizing
requirements consists of classifying them according to the type (design, functional, performance, etc.)
they represent. To that end, a language model capable of classifying requirements needs to be fine-
tuned on labeled aerospace requirements. This paper presents an open-source, annotated aerospace
requirements corpus (the first of its kind) developed for the purpose of this effort that includes
three types of requirements, namely design, functional, and performance requirements. This paper
further describes the use of the aforementioned corpus to fine-tune BERT to obtain the aeroBERT-
Classifier: a new language model for classifying aerospace requirements into design, functional, or
performance requirements. Finally, this paper provides a comparison between aeroBERT-Classifier
and other text classification models such as GPT-2, Bidirectional Long Short-Term Memory (Bi-LSTM),
and bart-large-mnli. In particular, it shows the superior performance of aeroBERT-Classifier on
classifying aerospace requirements over existing models, and this is despite the fact that the model
was fine-tuned using a small labeled dataset.

Keywords: requirements engineering; natural language processing; NLP; BERT; requirements
classification; text classification

1. Introduction

This section provides an introduction to the field of requirements engineering and
discusses its importance in the design of systems, products, and enterprises. It also em-
phasizes the challenges and limitations associated with the use of Natural Language (NL)
for requirements elicitation. It then discusses the benefits of a shift towards model-based
approaches and examines the hindrance such shift encounters due to the ambiguities
inherent to NL requirements. This section finally concludes with the focus of the present
research and its contributions.

1.1. Importance of Requirements Engineering

A requirement, as defined by the International Council of Systems Engineering
(INCOSE), is “a statement that identifies a system, product or process characteristic or
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constraint, which is unambiguous, clear, unique, consistent, standalone (not grouped),
and verifiable, and is deemed necessary for stakeholder acceptability” [1]. Requirements
represent the first step towards designing systems, products, and enterprises. As such, the
requirements should be [2,3]:

• Necessary: capable of conveying what is necessary to achieve the required system
functionalities while being compliant with regulations;

• Clear: able to convey the desired goal to the stakeholders by being simple and concise;
• Traceable: able to be traced back to higher-level specifications and vice versa;
• Verifiable: can be verified by making use of different verification processes, such as

analysis, inspection, demonstration, and test;
• Complete: the requirements should result in a system that successfully achieves the

client’s needs while being compliant with the regulatory standards.

The current workflow of requirements engineering is typically to elicit customer input
via a series of design studies and interviews. These serve to understand the top needs of cus-
tomers and what they value in a potential system. These needs are mapped into a technical
language of functions, performance attributes, and “-ilities” (availability, maintainability,
and reliability) that can be inspected by engineers to initiate more detailed design efforts.
Sometimes formal mapping methods such as Quality Function Deployment (QFD) are used,
but more often, this is a crafts approach developed within system-developing organizations.

Requirements can be of different types, such as functional, non-functional, design,
performance, certification, etc., based on the system of interest [4]. This classification
has been developed to help focus the efforts of requirements developers and help them
provide guidelines on the style and structure of different requirements. Requirements
engineering has developed as a domain that involves elucidating stakeholder expectations
and converting them into technical requirements [5]. In other words, it involves defining,
documenting, and maintaining requirements throughout the engineering lifecycle [6].

Well-defined requirements and good requirements engineering practices are critical
to the successful design, development, and operation of systems, products, and processes.
Errors during the requirement definition phase, on the other hand, can trickle down to
downstream tasks such as system architecting, system design, implementation, inspection,
and testing [7], leading to dramatic engineering and programmatic consequences when
caught late in the product life cycle [8,9]. When “requirements engineering” is practiced as
a separate effort on large teams, typically with a dedicated team or at least a lead, it becomes
very process-focused. Configuration management, customer interviews, validation and
verification planning, and maturation sessions all take place within the effort. Specialized
software packages such as DOORS have been crafted over many years to service the
needs of processing requirements as a collection of individual data records. However,
one connection that is often lost is that between the requirements development team and
the architectural team. Because Natural Language (NL) is predominantly used to write
requirements [10], requirements are commonly prone to ambiguities and inconsistencies.
This, in turn, increases the likelihood of errors and issues in the way requirements are
formulated. The ambiguities of the requirements text are eventually resolved, and not
entirely satisfactorily, in the test definition. At this point, misunderstandings and misses
are quite expensive. If the misses do not prevent the system from being fielded, they will
often be overlooked and instead simply become potentially lost value to the end user. This
overall process orientation can make requirements development look like it is just part of
the paperwork overhead of delivering large projects to institutional customers rather than
the vital part of the understanding and embodiment of customer needs.

1.2. Shift towards Model-Based Systems Engineering

Most of the systems in the present-day world are complex and hence need a compre-
hensive approach to their design and development [11]. To accommodate this need, there
has been a drive toward the development and use of Model-Based Systems Engineering
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(MBSE) principles and tools, where activities that support the system design process are
accomplished using models compared to traditional document-based methods [12]. Models
capture the requirements as well as the domain knowledge and make them accessible to all
stakeholders [13,14]. While MBSE shows great promise, the ambiguities and inconsistencies
inherent to NL requirements hinder their direct conversion to models [15]. Hand-crafting
models is time-consuming and requires highly specialized subject matter expertise. As a
result, there is a need to convert NL requirements into a semi-machine-readable form so
as to facilitate their integration and use in an MBSE environment. The need to access data
within requirements rather than treating the statement as a standalone object has also been
recognized by the International Council on System Engineering’s (INCOSE) Requirements
Working Group in their recent publication [16]. The document envisions an informational
environment where requirements are not linked only to each other or test activities but also
to architectural elements. This is represented in the figure below, which envisions a web
of interconnections from a new kind of requirement object, which is a fusion of the natu-
ral language statement and machine-readable attributes that can connect to architectural
entities such as interfaces and functions.

The approach of creating and maintaining requirements as more information-rich
objects than natural language sentences has been called “Information-Based Needs and
Requirements Definition and Management” (I-NRDM). In the INCOSE manual [16], it is
recommended that model-based design (working on architecture and analysis) be combined
with I-NRDM to be the full definition of MBSE. The “Property-Based Requirement” of
recent SysML revisions can serve as the “Requirements Expression”, as shown in Figure 1.

Figure 1. Information-based requirement development and management model [17].

Despite these identified needs and ongoing developments, there are no standard
tools or methods for converting NL requirements into a machine-readable/semi-machine-
readable form.

1.3. Research Focus and Expected Contributions

A first step towards standardizing requirements consists in classifying them according
to their type (design, functional, performance, etc.). For example, if a certain requirement is
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classified as a design requirement, then it is expected to contain certain specific information
regarding the system design as compared to a functional requirement, for example, which
focuses on the functions to be achieved by a system. Hence, it is important to be able to tell
one requirement apart from another. While the field of Natural Language Processing (NLP)
has shown promise when it comes to classifying text, text classification has mainly been
limited to sentiment analysis, news genre analysis, and movie review analysis, and when
applied to engineering disciplines, has mostly focused on software requirements analysis.
In other words, its application to aerospace engineering requirements and, in particular,
requirements centered around certification is limited, if not entirely lacking. To address
the aforementioned need, the research presented herein develops an annotated aerospace
requirements corpus, leverages a pre-trained language model, the Bidirectional Encoder
Representational Transformer (BERT) [18], and fine-tunes it on the aforementioned labeled
dataset of aerospace requirements for the purpose of requirement classification. This model
is then further benchmarked against existing models. As a result, the main contributions of
this work are as follows:

1. Creation of the first open-source annotated aerospace requirements dataset. This dataset
includes three types of requirements, namely, design, functional, and performance.

2. Demonstration of a methodology describing the data collection, cleaning, and anno-
tation of aerospace requirements from Parts 23 and 25 of Title 14 Code of Federal
Regulations (CFRs) [19]. This demonstration is particularly important as it is missing
from the existing literature on the use of NLP on datasets.

3. Demonstration of the fine-tuning of a pre-trained large language model (BERT) to
obtain an aerospace requirements classifier (aeroBERT-Classifier), which generalizes
despite having been trained on a small annotated dataset.

4. Demonstration of the viability of LMs in classifying high-level policy requirements
such as the Federal Airworthiness Requirements (FARs), which have resisted earlier
attempts to use NLP for automated processing. These requirements are particularly
freeform and often complex expressions with a higher degree of classification difficulty
than typical software or systems requirements (even for expert practitioners).

The remainder of this paper is organized as follows: Section 2 presents the rele-
vance of NLP in requirements engineering and discusses various language models for
text classification. Section 3 identifies the gaps in the literature and summarizes the re-
search goal. Section 4 presents the technical approach taken to collect data, create a require-
ments corpus, and fine-tune different variants of BERT. Section 5 discusses the results and
compares the results from the aeroBERT-Classifier with that of GPT-2, Bi-LSTM (using
GloVe [20]), and bart-large-mnli (zero-shot text classification). Lastly, Section 6 summarizes
the research conducted as part of this effort and discusses potential avenues for future work.

2. Background

This section provides the necessary background into the historical and current-day use
of NLP in the field of requirements engineering. The following sections and subsections
describe the evolution of NLP and establish the relevance of pre-trained large language
models (LLMs) to requirements classification.

2.1. Natural Language Processing for Requirements Engineering (NLP4RE)

Requirements are almost always written in NL [21] to make them accessible to different
stakeholders. According to various surveys, NL was deemed to be the best way to express
requirements [22], and 95% of 151 software companies surveyed revealed that they were
using some form of NL to capture requirements [23]. Given the ease of using NL for
requirements elicitation, researchers have been striving to come up with NLP tools for
requirements processing dating back to the 1970s. Tools such as the Structured Analysis
Design Technique (SADT) and the System Design Methodology (SDM) developed at MIT
are systems that were created to aid in requirement writing and management [22]. Despite
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the interest in applying NLP techniques and models to the requirements engineering
domain, the slow development of natural language technologies thwarted progress until
recently [10]. The availability of NL libraries/toolkits (Stanford CoreNLP [24], NLTK [25],
spaCy [26], etc.) and off-the-shelf transformer-based [27] pre-trained language models
(LMs) (BERT [18], BART [28], etc.) have propelled NLP4RE into an active area of research.

A recent survey performed by Zhao et al. reviewed 404 NLP4RE studies conducted be-
tween 1983 and April 2019 and reported on the developments in this domain [29]. Among
those 404 NLP4RE studies, 370 were analyzed and classified based on the main NLP4RE
task being performed. It was found that 26.22% of these studies focused on detecting linguis-
tic errors in requirements (use of ambiguous phrases, conformance to boilerplates, etc.),
19.73% focused on requirements classification, and 17.03% of text extraction tasks focused
on the identification of key domain concepts. Figure 2 shows a clear increase in the number
of published studies in NLP4RE over the years. This underlines the critical role that NLP
plays in requirements engineering, a role that is expected to become more important with
time as the availability of off-the-shelf language models increases.

Figure 2. Published studies in the NLP4RE domain between 1983 and April 2019 [29].

The following section focuses more specifically on requirement classification, which is
a critical step toward their conversion into a semi-machine-readable/standardized format.
In particular, it discusses how NLP has evolved and can be leveraged to enable classification.

2.2. Natural Language Processing (NLP) and Language Models (LMs)

NLP is promising when it comes to classifying requirements, which is an anticipated
first step in the development of pipelines that can convert free-form NL requirements
into standardized requirements in a semi-automated manner. Language models (LMs),
in particular, can be leveraged for classifying text (or requirements, in the context of this
research) [18,28,30]. Language modeling was classically defined as the task of predicting
which word comes next [31]. Initially, this was limited to statistical language models [32],
which use prior word sequences to compute the conditional probability for each of a future
vocabulary word. The high-dimensional discrete language representations limit these
models to N-grams [33], where only the prior N words are considered for predicting the
next word or short sequences of following words, typically using high-dimensional one-hot
encodings for the words.
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Neural LMs came into existence in the 2000s [34] and leveraged neural networks to
simultaneously learn lower-dimensional word embeddings and learn to estimate condi-
tional probabilities of the next words simultaneously using gradient-based supervised
learning. This opened the door to ever-more-complex and effective language models to
perform an expanding array of NLP tasks, starting with distinct word embeddings [35]
to recurrent neural networks (RNNs) [36] and LSTM encoder–decoders [37] to attention
mechanisms [38]. These models did not stray too far from the N-gram statistical language
modeling paradigm, with advances that allowed text generation beyond a single next word
with, for example, the beam search in [37] and sequence-to-sequence learning in [39]. These
ideas were applied to distinct NLP tasks.

In 2017, the Transformer [27] architecture was introduced that improved computational
parallelization capabilities over recurrent models and therefore enabled the successful
optimization of larger models. Transformers consist of stacks of encoders (encoder block)
and stacks of decoders (decoder block), where the encoder block receives the input from
the user and outputs a matrix representation of the input text. The decoder takes the input
representation produced by the encoder stack and generates outputs iteratively [27].

All of these works required training on a single labeled dataset for a specific task.
In 2018–2020, several new models emerged and set new state-of-the-art marks in nearly all
NLP tasks. These transformer-based models include the Bidirectional Encoder Represen-
tational Transformer (BERT) language model [18] (auto-encoding model), the Generative
Pre-trained Transformer (GPT) family [40,41] of auto-regressive language models, and T5
character-level language model [42]. These sophisticated language models break the single
dataset-single task modeling paradigm of most mainstream models in the past. They
employ self-supervised pre-training on massive unlabeled text corpora. For example, BERT
is trained on Book Corpus (800 M words) and English Wikipedia (2500 M words) [18]. Simi-
larly, GPT-3 is trained on 500 B words gathered from datasets of books and the internet [41].
These techniques set up automated supervised learning tasks, such as masked language
modeling (MLM), next-sentence prediction (NSP), and generative pre-training. No labeling
is required as the labels are automatically extracted from the text and hidden from the
model, and the model is trained to predict them. This enables the models to develop a deep
understanding of language, independent of the NLP task. These pre-trained models are
then fine-tuned on much smaller labeled datasets, leading to advances in the state of the
art (SOTA) for nearly all downstream NLP tasks, such as Named-Entity Recognition (NER),
text classification, language translation, and question answering, etc. [18,43–45].

Training these models from scratch can be prohibitive given the computational power
required; to put things into perspective, it took 355 GPU-years and USD 4.6 million to
train GPT-3 [46]. Similarly, the pre-training cost for THE BERTBASE model with 110 million
parameters varied between USD 2.5k and USD 50k, while it cost between USD 10k and
USD 200k to pre-train BERTLARGE with 340 million parameters [47]. Pre-training the BART
LM took 12 days with 256 GPUs [28]. These general-purpose LMs can then be fine-tuned for
specific downstream NLP tasks at a small fraction of the computational cost and time—even
in a matter of minutes or hours on a single-GPU computer [18,48–51].

Pre-trained LMs are readily available on the Hugging Face platform [52] and can be
accessed via the transformers library. These models can then be fine-tuned on downstream
tasks with a labeled dataset specific to the downstream task of interest. For example,
for text classification, a dataset containing the text and the corresponding labels should
be used for fine-tuning the model. The final model with text classification capability
will eventually have different model parameters as compared to the parameters it was
initialized with [18]. Figure 3 illustrates the pre-training and fine-tuning steps for BERT for
a text classification task.
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Figure 3. Fine-tuning a BERT language model on a text classification task [18,53].

Multiple approaches to text classification exist. The following section discusses the
use of Bidirectional Encoder Representations from Transformers (BERT) and Zero-shot Text
Classification for this purpose.

2.2.1. Bidirectional Encoder Representations from Transformers (BERT)

As mentioned previously, BERT is a pre-trained LM that is capable of learning deep
bidirectional representations from an unlabeled text by jointly incorporating both the left and
right context of a sentence in all layers [18]. Being a transformer-based LM, BERT is capable
of learning the complex structure and the non-sequential content in language by using
attention mechanisms, fully-connected neural network layers, and positional encoding [27,53].
Despite being trained on a large corpus, the vocabulary of BERT is just 30,000 words since
it uses WordPiece Tokenizer, which breaks words into sub-words and eventually into
letters (if required) to accommodate for out-of-vocabulary words. This makes the practical
vocabulary BERT can understand much larger. For example, “ing” is a single word-piece,
so it can be added to nearly all verbs in the base vocabulary to extend the vocabulary
tremendously. BERT comes in two variants when it comes to model architecture [18]:

1. BERTBASE: contains 12 encoder blocks with a hidden size of 768 and 12 self-attention
heads (total of 110 M parameters);

2. BERTLARGE: contains 24 encoder blocks with a hidden size of 1024 and 16 self-
attention heads (total of 340 M parameters).

Both BERT variants come in cased and uncased versions. In the case of the cased model,
the input text stays the same (containing both upper and lowercase letters). However, the text
is made lowercase before being tokenized by a WordPiece tokenizer in the uncased model.

BERT is pre-trained on two self-supervised language tasks, namely, Masked Language
Modeling (MLM) and Next Sentence Prediction (NSP) (Figure 3), which help it develop
a general-purpose understanding of natural language. However, it can be fine-tuned to
perform various downstream tasks such as text classification, NER, Part-of-Speech (POS)
tagging, etc. A task-specific output layer is what separates a pre-trained BERT from a BERT
fine-tuned to perform a specific task.

In a recent study, Hey et al. fine-tuned the BERT language model on the PROMISE
NFR dataset [54] to obtain NoRBERT (Non-functional and functional Requirements clas-
sification using BERT)—a model capable of classifying requirements [45]. NoRBERT is
capable of performing four tasks, namely, (1) binary classification of requirements into
two classes (functional and non-functional); (2) binary and multi-class classification of
four non-functional requirement classes (usability, security, operational, and performance);
(3) multi-class classification of ten non-functional requirement types; and (4) binary clas-
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sification of the functional and quality aspects of requirements. NoRBERT was able to
achieve an average F1 score of 0.87 on the most frequently occurring classes of require-
ments (usability, performance, operational, and security). In particular, it demonstrates
the relevance and potential of transfer-learning approaches to requirements engineering
research as a means to address the limited availability of labeled data. The PROMISE NFR
dataset [54], which was used in [45], contains 625 requirements in total (255 functional and
370 non-functional, which are further broken down into different “sub-types”). Table 1
provides some examples from the PROMISE NFR dataset.

Table 1. Requirements examples from the PROMISE NFR dataset [54].

Serial No. Requirements

1 The product shall be available for use 24 h per day 365 days per year.

2 The product shall synchronize with the office system every hour.

3 The system shall let existing customers log into the website with their email
address and password in under 5 s.

4 The product should be able to be used by 90% of novice users on the internet.

5 The ratings shall be on a scale of 1–10.

These requirements originated from 15 projects written by students and, as a result,
might not have been written according to industry standards. The PROMISE NFR dataset
is, to the authors’ knowledge, the only requirements dataset of its kind that is publicly avail-
able. However, this dataset was not deemed suitable for this work because it predominantly
focuses on software engineering systems and requirements.

Another avenue for text classification is zero-shot text classification, which is discussed
in detail in the next section.

2.2.2. Zero-Shot Text Classification

Models performing a task they have not been explicitly trained for is called zero-
shot learning (ZSL) [55]. Such models, due to their nature, provide a logical basis for
the evaluation of LMs that have been previously fine-tuned on requirements specific to a
discipline of interest.

There are two general ways for ZSL, namely, entailment-based and embedding-based
methods. Yin et al. proposed a method for zero-shot text classification using pre-trained
Natural Language Inference (NLI) models [56]. The bart-large-mnli model was obtained
by training bart-large [28] on the MultiNLI (MNLI) dataset, which is a crowd-sourced
dataset containing 433,000 sentence pairs annotated with textual entailment information
(0: entailment; 1: neutral; 2: contradiction) [57]. For example, to classify the sentence “The
United States is in North America” into one of the possible classes, namely, politics, geography,
or film, we could construct a hypothesis such as This text is about geography. The probabilities
for the entailment and contraction of the hypothesis will then be converted into probabilities
associated with each of the labels provided.

Alhosan et al. [58] performed a preliminary study for the classification of requirements
using ZSL in which they classified non-functional requirements into two categories, namely
usability and security. An embedding-based method was used where the probability of
the relatedness (cosine similarity) between the text embedding layer and the tag (or label)
embedding layer was calculated to classify the requirement into either of the two categories.
This work, which leveraged a subset of the PROMISE NFR dataset, was able to achieve a
recall and F-score of 82%. The authors acknowledge that certain LMs (RoBERTaBase and
XLM-RoBERTa) seemed to favor one or the other class, hence classifying all the requirements
as either usability or security. This was attributed to the fact that LLMs are trained on
general domain data and hence might not perform well on specialized domains [54].
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3. Research Gaps and Objectives

As stated previously, SOTA LLMs are typically pre-trained on general-domain text
corpora, such as news articles, Wikipedia, book corpora, movie reviews, Tweets, etc. Off-
the-shelf models for specific tasks such as NER or text classification are fine-tuned on
generic text datasets as well. While the underlying language understanding learned during
pre-training is still valuable, the fine-tuned models are less effective when it comes to
working with specialized language representative of technical domains, such as aerospace,
healthcare, etc. For example, using a language model fine-tuned on classifying sentiment
data will not be effective if used for classifying aerospace requirements. To illustrate this,
bart-large-mnli LM was used for classifying the aerospace requirement “The installed power-
plant must operate without any hazardous characteristics during normal and emergency operation
within the range of operating limitations for the airplane and the engine” into three classes (design
requirement, functional requirement, and performance requirement), as shown in Figure 4.
The true label associated with the requirement is performance; however, the zero-shot text
classification model classified it as a functional requirement. Several other examples were
evaluated, and a skew toward the functional requirement class was observed.

Figure 4. Classification of a performance requirement by the bart-large-mnli model [56].

The existence of models such as aeroBERT-NER [59], SciBERT [60], FinBERT (Financial
BERT) [61], BioBERT [62], ClinicalBERT [63], and PatentBERT [64] stresses the importance of
domain-specific corpora for pre-training and fine-tuning LMs when it comes to domains
that are not well represented in the general-domain text.

Open-source datasets, however, are scarce when it comes to requirements engineering,
especially those specific to aerospace applications. This has hindered the use of modern-day
language models for requirements classification tasks. In addition, because annotating
requirements datasets requires subject-matter expertise, crowd-sourcing as a means of data
collection is not a viable approach.
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Summary

The overarching goal of this research is eventually the development of a methodology
for the standardization of aerospace requirements into semi-machine-readable requirements
by making use of requirements boilerplate. Figure 5 shows the pipeline consisting of
different language models, the outputs of which, put together, are expected to facilitate the
conversion of NL aerospace requirements into semi-machine-readable requirements, which
will inform boilerplate creation.

Figure 5. Pipeline for converting NL requirements to semi-machine-readable form enabling boiler-
plate creation.

A critical first step in this pipeline is the appropriate classification of aerospace re-
quirements, which is the focus of this paper. To that end, the present work concentrates on
fine-tuning a language model for classifying aerospace requirements into various types.
This is achieved through the:

1. Creation of a labeled aerospace requirements corpus: Aerospace requirements are
collected from Parts 23 and 25 of Title 14 CFRs [65] and annotated. The annota-
tion involves labeling each requirement with its type (e.g., functional, performance,
interface, design, etc.).

2. Fine-tuning of BERT for aerospace requirements classification: The annotated aerospace
requirements are used to fine-tune several variants of the BERT LM (BERTLARGE-UNCASED,
BERTLARGE-CASED, BERTBASE-UNCASED, and BERTBASE-CASED). We call the best resulting
model aeroBERT-Classifier. Metrics such as precision, recall, and F1 score are used to
assess the model performance.

3. The comparison of the performance of aeroBERT-Classifier against other text clas-
sification models: The performance of aeroBERT-Classifier is compared to that of
GPT-2 and Bi-LSTM (with GloVe word embedding), which are also trained or fine-
tuned on the developed aerospace requirements dataset. Lastly, the model perfor-
mance is compared to results obtained by using bart-large-mnli, a zero-short learning
classifier, to further emphasize the importance of transfer learning in low-resource
domains such as aerospace requirements engineering.

The following section describes the methodology for this work.

4. Materials and Methods

Aerospace requirements are often always proprietary, meaning that they are of limited
open-source availability. Since large amounts of data are required to train an LM from
scratch, this research focuses instead on fine-tuning the BERT variants for the classification of
aerospace requirements. To that end, an aerospace corpus containing labeled requirements
is developed and used.

The methodology for developing the aeroBERT-Classifier is illustrated in Figure 6.
The following sections describe each step in detail.
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Figure 6. Methodology for obtaining aeroBERT-Classifier.

4.1. Data Collection, Cleaning, and Annotation

The creation of an annotated aerospace requirements corpus is a critical step since such
a corpus is not readily available in the open-source domain and is required for fine-tuning
BERT. As seen in Figure 6, the first step to creating a requirements dataset is to collect
aerospace requirements from various sources. Table 2 provides a list of the resources
leveraged to obtain requirements for the purpose of creating a classification corpus.

Table 2. Resources used for the creation of aerospace requirements classification corpus.

Serial No. Name of Resource (Title 14 CFR)

1 Part 23: Airworthiness Standards: Normal, Utility, Acrobatic and Commuter Airplanes
2 Part 25: Airworthiness Standards: Transport Category Airplanes

Requirements oftentimes appear in paragraph form, which requires some rewriting
to convert texts/paragraphs into requirements that can then be added to the dataset.
For example, Table 3 shows 14 CFR §23.2145(a) in its original and modified form, which
resulted in three distinct requirements. A total of 325 requirements were collected and
added to the classification corpus.

Table 3. Example showing the modification of text from 14 CFR §23.2145(a) into requirements.

14 CFR §23.2145(a) Requirements Created

Airplanes not certified for aerobatics must:
(1) Have static longitudinal, lateral, and direc-
tional stability in normal operations;

Requirement 1: Airplanes not certified for aer-
obatics must have static longitudinal, lateral,
and directional stability in normal operations.

(2) Have short dynamic period and Dutch roll
stability in normal operations; and

Requirement 2: Airplanes not certified for aer-
obatics must have short dynamic period and
dutch roll stability in normal operations.

(3) Provide stable control force feedback
throughout the operating envelope.

Requirement 3: Airplanes not certified for aer-
obatics must provide stable control force feed-
back throughout the operating envelope.
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After obtaining the requirements corpus, a few other changes were made to the text,
as shown in Table 4. The symbols ‘§’ and ‘§§’ were replaced with the word ‘Section’ and
‘Sections’, respectively, to make it more intuitive for the LM to learn patterns. Similarly,
the dots ‘.’ occurring in the section names were replaced with ‘-’ to avoid confusing them
with sentence endings. The above pre-processing steps were also used in a companion
article for obtaining annotated named entities (NEs) corpus to train aeroBERT-NER [59].

Table 4. Symbols that were modified for corpus creation [59].

Original Symbol Modified Text/Symbol Example

§ Section §25.531→ Section 25.531

§§ Sections §§25.619 through 25.625 →
Sections 25.619 through 25.625

Dot (‘.’) used in section numbers Dash (‘-’) Section 25.531→ Section 25–531

After pre-processing the requirements text, the next step consisted of annotating the
requirements based on their type. Requirements were classified into six categories, namely,
Design, Functional, Performance, Interface, Environmental, and Quality. The definitions
used for the requirement types, along with some examples, are provided in Table 5. Our
author base consists of the expertise required to make sure that the requirements were anno-
tated correctly into various categories. It is important to keep in mind that different compa-
nies/industries might have their own definitions for requirements specific to their domain.

Table 5. Definitions used for labeling/annotating requirements [2,5,66].

Requirement Type Definition

Design Dictates “how” a system should be designed given certain technical stan-
dards and specifications;
Example: Trim control systems must be designed to prevent creeping
in flight.

Functional Defines the functions that need to be performed by a system in order to
accomplish the desired system functionality;
Example: Each cockpit voice recorder shall record voice communications of
flight crew members on the flight deck.

Performance Defines “how well” a system needs to perform a certain function;
Example: The airplane must be free from flutter, control reversal, and diver-
gence for any configuration and condition of operation.

Interface Defines the interaction between systems [67];
Example: Each flight recorder shall be supplied with airspeed data.

Environmental Defines the environment in which the system must function;
Example: The exhaust system, including exhaust heat exchangers for each
powerplant or auxiliary power unit, must be designed to prevent likely
hazards from heat, corrosion, or blockage.

Quality Describes the quality, reliability, consistency, availability, usability, maintain-
ability, and materials and ingredients of a system [68];
Example: Internal panes must be made of nonsplintering material.

As mentioned previously, the corpus includes a total of 325 aerospace requirements.
134 of these 325 requirements (41.2%) were annotated as Design requirements, 91 (28%) as
Functional Requirements, and 62 (19.1%) as Performance requirements. Figure 7 provides
a breakdown by requirement type.
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Figure 7. Six types of requirements were initially considered for the classification corpus. Due
to the lack of sufficient examples for Interface, Environment, and Quality requirements, these
classes were dropped at a later phase. However, some of the Interface requirements (23) were
rewritten (or reclassified) to convert them into either Design or Functional requirements to include
them in the final corpus, which only contains Design, Functional, and Performance requirements.

As seen in Figure 7, the dataset is skewed toward Design, Functional, and Performance
requirements (in that order). Since the goal is to develop an LM that is capable of classifying
requirements, a balanced dataset is desired, which is not the case here. As seen, there are
not enough examples of Interface, Environment, and Quality requirements in the primary
data source (Parts 23 and 25 of Title 14 of the Code of Federal Regulations (CFRs)). This
can be due to the fact that Interface, Environment, and Quality requirements do not occur
alongside the other types of requirements.

In order to obtain a more balanced dataset, Environment and Quality requirements
were dropped completely. However, some of the Interface requirements (23) were rewritten
(or reclassified) as Design and Functional requirements, as shown in Table 6. The rationale
for this reclassification was that it is possible to treat the interface as a thing being specified
rather than as a special requirement type between two systems.

Table 6. Examples showing the modification of Interface requirements into other types of requirements.

Original Interface Requirement Modified Requirement Type/Category

Each flight recorder shall be supplied with air-
speed data.

The airplane shall supply the flight recorder
with airspeed data. (Functional Requirement)

Each flight recorder shall be supplied with di-
rectional data.

The airplane shall supply the flight
recorder with directional data.
(Functional Requirement)

The state estimates supplied to the flight
recorder shall meet the aircraft-level system re-
quirements and the functionality specified in
Section 23–2500.

The state estimates supplied to the flight
recorder shall meet the aircraft level system re-
quirements and the functionality specified in
Section 23–2500. (Design Requirement)

The final classification dataset includes 149 Design requirements, 99 Functional require-
ments, and 62 Performance requirements (see Figure 7). Lastly, the ‘labels’ attached to the
requirements (design requirement, functional requirement, and performance requirement)
were converted into numeric values: 0, 1, and 2, respectively. The final form of the dataset
is shown in Table 7.
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Table 7. Classification dataset format.

Requirements Label

Each cockpit voice recorder shall record voice communications transmitted
from or received in the airplane by radio.

1

Each recorder container must be either bright orange or bright yellow. 0

Single-engine airplanes, not certified for aerobatics, must not have a tendency
to inadvertently depart controlled flight.

2

Each part of the airplane must have adequate provisions for ventilation
and drainage.

0

Each baggage and cargo compartment must have a means to prevent the con-
tents of the compartment from becoming a hazard by impacting occupants
or shifting.

1

4.2. Preparing the Dataset for Fine-Tuning BERT

Language models (LMs) expect inputs in a certain format, which may vary from one
LM to another. BERT expects inputs in the format discussed below [18]:

Special tokens:

• [CLS]: This token is added to the beginning of every sequence of text, and its final
hidden state contains the aggregate sequence representation for the entire sequence,
which is then used for the sequence classification task.

• [SEP]: This token is used to separate one sequence from the next and is needed for
Next-Sentence-Prediction (NSP) task. Since aerospace requirements used for this
research are single sentences, this token was not used.

• [PAD]: This token is used to make sure that all the input sequences are of the same
length. The maximum length for the input sequences was set to 100 after examining
the distribution of lengths of all sequences in the training set (Figure 8). All the
sequences with a length less than the set maximum length will be post-padded with
[PAD] tokens till the sequence length is equal to the maximum length. The sequences
that are longer than 100 will be truncated.

Figure 8. Figure showing the distribution of sequence lengths in the training set. The 95th percentile
was found to be 62. The maximum sequence length was set to 100 for the aeroBERT-Classifier model.
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All the sequences were cased or uncased depending on the BERT variant being fine-
tuned. This was followed by a tokenization step where a WordPiece tokenizer was used to
split requirement sentences into tokens. Special tokens ([CLS], and [PAD]) were added to
the beginning and end of the requirements, and each token was mapped to its respective ID
in the BERT vocabulary of approximately 30,000 tokens. Lastly, the requirements sentences
were padded/truncated to match the maximum length specified, and attention masks were
created (1 for “real” tokens, and 0 for [PAD] tokens).

The dataset was split into training (90%) and test set (10%) containing 279 and 31 sam-
ples, respectively (the corpus contains a total of 310 requirements). Table 8 gives a detailed
breakdown of the count of each type of requirement in the training and test sets. The LM
was fine-tuned on the training set, whereas the model performance was tested on the test
set, which the model had not been exposed to during training.

Table 8. Breakdown of the types of requirements in the training and tests set.

Requirement Type Training Set Count Test Set Count

Design (0) 136 13

Functional (1) 89 10

Performance (2) 54 8

Total 279 31

4.3. Fine-Tuning BERT

A pre-trained BERT model with a linear classification layer on the top is loaded
from the Transformers library from HuggingFace (BertForSequenceClassification). This
model and the untrained linear classification layer (full-fine-tuning) are trained on the
classification corpus created previously (Table 7).

The batch size was set to 16, and the model was trained for 20 epochs. The model was
supplied with three tensors for training: (1) input IDs; (2) attention masks; and (3) labels
for each example. The AdamW optimizer [69] with a learning rate of 2× 10−5 was used.
The previously calculated gradients were cleared before performing each backward pass.
In addition, the norm of gradients was clipped to 1.0 to prevent the exploding gradient
problem. The dropout rate was set to the default value of 0.1 (after experimenting with
other rates) to promote the generalizability of the model and speed up the training process.
The model was trained to minimize the cross-entropy loss function. In addition, the model
performance on the test set was measured by calculating metrics, including the F1 score,
precision, and recall. Various iterations of the model training and testing were carried out
to make sure that the model was robust and reliable. The fine-tuning process took only 39 s
on an NVIDIA Quadro RTX 8000 GPU with a 40 GB VRAM. The small training time can be
attributed to the small training set. The optimizer, batch size, and other hyperparameters
were tuned to maximize validation performance.

Figure 9 provides a rough schematic of the methodology used to fine-tune the BERT
LM for the requirement, “Trim control systems must be designed to prevent creeping in flight”.
The token embeddings are fed into the pre-trained LM, and the representations for these
tokens are obtained after passing through 12 encoder layers. The representation for the
first token (R[CLS]) contains the aggregate sequence representation and is passed through a
pooler layer (with a Tanh activation function) and then a linear classification layer. Class
probabilities for the requirement belonging to the three categories (design, functional,
and performance) are estimated, and the requirement is classified into the category with
the highest estimated probability, ‘Design’ in this case.
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Figure 9. The detailed methodology used for the full-fine-tuning of BERT (base and large) LM
is shown here. Ename represents the embedding for that particular WordPiece token, which is a
combination of position, segment, and token embeddings. Rname is the representation for every token
after it goes through the BERT model. Only R[CLS] is used for requirement classification since its
hidden state contains the aggregate sequence representation [18].

5. Results

This section discusses the performance of aeroBERT-Classifier on the test dataset. In ad-
dition, the performance of this model is compared to other classification models, including
fine-tuned GPT-2, trained Bi-LSTM (with GloVe), and zero-shot model bart-large-mnli.

5.1. aeroBERT-Classifier Performance

aeroBERT-Classifier was trained on a dataset containing 279 requirements. The dataset
was imbalanced, meaning there was more of one type of requirement compared to others
(136 design requirements compared to 89 functional, and 54 performance requirements).
Accuracy as a metric will favor the majority class—design requirements in our case. There-
fore, precision, recall, and F1 score were used to measure the model performance more
rigorously. Table 9 provides the aggregate values for these metrics along with the break-
down for each requirement type. The aeroBERT-ClassifierLU (obtained by fine-tuning
BERTLARGE-UNCASED) was able to identify 100% (Recall) of functional requirements present
in the test set; however, of all the requirements that the model identified as functional re-
quirements, only 83% (Precision) belonged to this category. Similarly, aeroBERT-ClassifierBC
(obtained by fine-tuning BERTBASE-CASED) was able to identify 80% of all the functional
requirements and 75% of all the performance requirements present in the test set. The preci-
sion obtained for functional and performance requirements was 0.89 and 0.86, respectively.

Table 9. Requirements classification results on aerospace requirements dataset. The highest score for
each metric per class is shown in bold. (P = Precision, R = Recall, F1 = F1 Score).

Models Design Functional Performance Avg.
P R F1 P R F1 P R F1 F1

aeroBERT-ClassifierLU 0.91 0.77 0.83 0.83 1.0 0.91 0.75 0.75 0.75 0.83
aeroBERT-ClassifierLC 0.86 0.92 0.89 0.82 0.90 0.86 0.83 0.63 0.71 0.82
aeroBERT-ClassifierBU 0.80 0.92 0.86 0.89 0.80 0.84 0.86 0.75 0.80 0.83
aeroBERT-ClassifierBC 0.79 0.85 0.81 0.80 0.80 0.80 0.86 0.75 0.80 0.80

GPT-2 0.67 0.60 0.63 0.67 0.67 0.67 0.70 0.78 0.74 0.68
Bi-LSTM (GloVe) 0.75 0.75 0.75 0.75 0.60 0.67 0.43 0.75 0.55 0.68
bart-large-mnli 0.43 0.25 0.32 0.38 0.53 0.44 0.0 0.0 0.0 0.34
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Of all the variants of aeroBERT-Classifier evaluated, uncased variants outperformed
the cased variants. This indicates that “casing” is not as important to text classification as it
would be in the case of an NER task. In addition, the overall average F1 scores obtained by
aeroBERT-ClassifierLU and aeroBERT-ClassifierBU were the same. This suggests that the
base-uncased model is capable of learning the desired patterns in aerospace requirements in
less training time and, hence, is preferred.

Various iterations of the model training and testing were performed, and the model
performance scores were consistent. In addition, the aggregate precision and recall were
not very far off from each other, giving rise to a high F1 score (harmonic mean of precision
and recall). Since the difference between the training and test performance is low despite
the small size of the dataset, it is expected that the model will generalize well to unseen
requirements belonging to the three categories.

Table 10 provides a list of requirements from the test set that were misclassified
(Predicted label 6= Actual label) by aeroBERT-ClassifierBU. A confusion matrix summa-
rizing the classification task is shown in Figure 10. It is important to note that some of
the requirements were difficult to classify even by the authors with expertise in require-
ments engineering.

Table 10. List of requirements (from test set) that were misclassified by aeroBERT-ClassifierBU

(0: Design; 1: Functional; 2: Performance).

Requirements Actual Predicted

The installed powerplant must operate without any hazardous
characteristics during normal and emergency operation within
the range of operating limitations for the airplane and the engine.

2 1

Each flight recorder must be installed so that it remains pow-
ered for as long as possible without jeopardizing the emergency
operation of the airplane.

0 2

The microphone must be located and, if necessary, the preampli-
fiers and filters of the recorder must be adjusted or supplemented
so that the intelligibility of the recorded communications is as high
as practicable when recorded under flight cockpit noise conditions
and played back.

2 0

A means to extinguish a fire within a fire zone, except a combus-
tion heater fire zone, must be provided for any fire zone embedded
within the fuselage, which must also include a redundant means
to extinguish a fire.

1 0

Thermal/acoustic materials in the fuselage must not be a flame
propagation hazard.

1 0

The test set contained 13 design, 10 functional, and 8 performance requirements (Table 8).
As seen in Table 10 and Figure 10, out of the 13 design requirements, only one was misclassified
as a performance requirement. Of the eight performance requirements, two were misclassified.
Two of the ten functional requirements were misclassified.

The training and testing were carried out multiple times, and the requirements shown
in Table 10 were consistently misclassified, which might have been due to ambiguity in
the labeling. Hence, it is important to have a human-in-the-loop (preferably a Subject Matter
Expert (SME)) who can make a judgment call on whether a certain requirement was labeled
wrongly or to support a requirement rewrite to resolve ambiguities.
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Figure 10. Confusion matrix showing the breakdown of the true and predicted labels by aeroBERT-
ClassifierBU on the test data.

5.2. Comparison between aeroBERT-Classifier and Other Text Classification LMs

aeroBERT-Classifier was compared to other LMs capable of text classification with
the performance metrics for each of the LMs summarized in Table 9. aeroBERT-Classifier
and GPT-2 were fine-tuned and tested on aerospace requirements. Bi-LSTM (GloVe) was
trained and tested on aerospace requirements from scratch. Lastly, an off-the-shelf ZSL
classifier (bart-large-mnli) was used for classifying aerospace requirements without being
trained/fine-tuned beforehand.

From Table 9, it is clear that despite the small requirements dataset used for fine-
tuning/training the models, BERT, GPT-2, and Bi-LSTM, they outperform bart-large-mnli
on in-domain text (aerospace requirements in this case). This underscores the importance
of transfer-learning approaches in the aerospace requirements engineering domain, where
the availability of labeled datasets is limited. The remainder of this section provides a
one-on-one comparison between aeroBERT-ClassifierBC and bart-large-mnli.

aeroBERT-Classifier is capable of classifying requirements into three types, as shown in Table 8.
bart-large-mnli, on the other hand, is capable of classifying sentences into provided classes using
NLI-based zero-shot Text Classification [56].

All the requirements present in the test set were classified using bart-large-mnli to
facilitate the comparison with the aeroBERT-Classifier. The names of the types of require-
ments (Design Requirement, Functional Requirement, and Performance requirement) were
provided to the model for zero-shot text classification.

Figure 11 shows the true and predicted labels for all the requirements in the test
set. Upon comparing Figure 10 with Figure 11, aeroBERT-Classifier was able to correctly
classify 83.87% of the requirements as compared to 43.39% when bart-large-mnli was used.
The latter model seemed to be biased towards classifying most of the requirements as
functional requirements. Had bart-large-mnli classified all the requirements as functional,
the zero-shot classifier would have rightly classified 32.26% of the requirements. This
illustrates the superior performance of the aeroBERT-Classifier despite it being trained on a
small labeled dataset. Hence, while bart-large-mnli performs well on more general tasks
such as sentiment analysis, classification of news articles into genres, etc., using zero-shot
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classification, its performance is degraded in tasks involving specialized and structured
texts such as aerospace requirements.

Figure 11. Confusion matrix showing the breakdown of the true and predicted labels by the bart-
large-mnli model on the test data.

6. Conclusions and Future Work

The main contributions of this paper are the creation of an open-source classification
corpus for aerospace requirements and the creation of an LM for classifying aerospace
requirements. The corpus contains a total of 310 requirements along with their labels
(Design, Functional, and Performance) and was used for fine-tuning the BERT LM to obtain
aeroBERT-Classifier. A performance assessment of aeroBERT-Classifier achieved an average
F1 score of 0.83 across all three requirement types in the unseen test data.

Finally, the aeroBERT-Classifier performed better at classifying requirements than
GPT-2, Bi-LSTM (GloVe), and bart-large-mnli. This shows the benefits of using even small
labeled datasets for fine-tuning pre-trained LMs such as BERT on downstream tasks in
specialized domains.

Overall, aeroBERT-Classifier is a novel approach for classifying aerospace require-
ments. The results obtained support the fact that transfer learning can fuel aerospace
requirements engineering research by paving the way for fine-tuning pre-trained language
models with less training data while achieving generalizability.

One of the limitations of this work is that only three different types of requirements
were considered. This was due to the fact that there were too few requirements of the other
types to obtain a generalizable model for those classes. aeroBERT-Classifier was trained on
requirements from Parts 23 and 25 of Title 14 CFRs, which are mainly certification require-
ments. Hence, while the model might not directly translate to the system requirements
(which are proprietary) used by aerospace companies, the methodology demonstrated in
this paper, however, remains applicable.

A logical next step to advance this work would be to include more requirements, and
more types of requirements, to the corpus. Finally, comparing the performance of aeroBERT-
Classifier against an LM trained on aerospace requirements from scratch and fine-tuned for
the sequence classification task would be an interesting avenue for future exploration.
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