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Abstract: A magnetic field induced by an electromagnetic coil is the key variable that determines
the performance of a magnetically driven actuator. The applicability of the empirical models of the
coil turns, static resistance, and inductance were discussed. Then, the model of the mean magnetic
field induced by the coil was established analytically. Based on the proposed model, the sinusoidal
response and square-wave response were calculated with the wire diameter as the decision variable.
The amplitude and phase lag of the sinusoidal response, the time-domain response, steady-state
value, and the response time of the square-wave response were discussed under different wire
diameters. From the experimental and computational results, the model was verified as the relative
errors were acceptably low in computing various responses and characteristic variables. Additionally,
the optimization on the wire diameter was carried out for the optimal amplitude and response
time. The proposed model will be helpful for the analytical analysis of the mean magnetic field, and
the optimization result of the wire diameter under limited space can be employed to improve the
performance of a magnetically driven actuator.
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1. Introduction

The magnetically driven actuator has been widely used in plenty of engineering
fields, including vibration reduction or control, ultra-precision machining, acting fluidic
valves, etc. [1–4]. Magnetically driven actuators have also been introduced to quite com-
monly actuate an aerospace device [5–15], including the electro-hydraulic servo valve.

Optimization of the actuator is quite important to improve the actuator’s performance.
A magnetic field was generally chosen as the optimization objective function as it influences
the output performance of the actuator directly, and is the simplest variable to optimize the
actuator, compared to the magnetization/magnetic induction intensity or the displacement.
Taking the giant magnetostrictive actuator which employs the giant magnetostrictive
material (GMM) as its actuation core as an example, Figure 1 summarizes the generally
used optimization methods. From the point of view of magnetic fields, the optimization of
actuator performance was generally converted to the promotion of the mean magnetic field
in the GMM area, which is equivalent to the maximization of the magneto motive force
(MMF) distributed on GMM. Additionally, two methods were used to promote the MMF
on GMM, respectively, improving the MMF ratio occupied by GMM and increasing the
total MMF.

The first optimization method was accomplished based on some magnetic field mod-
els from a “field” or “circuit” method [16–19]. Liang Yan et al. [20] and HyoYoung
Kim et al. [21] proposed a mathematic model based on the Biot–Savart law and the fi-
nite element model to formulate the three-dimensional magnetic field distribution in a
spherical actuator. Abdul Ghani Olabi et al. [22] also established the finite element model of
a magnetostrictive actuator for analyzing the magnetic field in the actuator. The proposed
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models supplied the mean values and distribution characters of magnetic devices, which
were quite helpful for the magnetic circuit optimization. Due to the complex magnetic
circuit of the hybrid excitation generator used in an energy conversion system, Huihui
Geng et al. [23] proposed an analytical method of the main magnetic field, where the
Carter coefficient and rotor magnetomotive force were taken as the objective variables.
Compared with traditional methods, the proposed method can improve the accuracy of
the outputted magnetic field. Jaewook Lee et al. [24] adopted a simplified finite element
model to execute structural topology optimization for the high magnetic force of a linear
actuator, and they found that the use of a periodic ladder structure was best for magnetic
field manipulation. Kim Tien, Xulei Yang et al. [14,25] utilized the finite element model to
analyze the distribution of the magnetic field in a giant magnetostrictive actuator separately.
By adjusting the permeability of the parts appropriately, the uniformity and mean intensity
of the magnetic field within the material could be improved. Some other modeling and
optimizing methods for the magnetic field within specified structures can also supply
effective references [17,26–29]. On the whole, the circuit model was always used to form a
magnetic field model for an analytical analysis. The finite element model [19,30,31] was
commonly used to promote magnetic field uniformity. For the mean magnetic field applied
to the giant magnetostrictive material, the positively proportional model vs. the coil cur-
rent [1–3,16,19,28,32–35] was quite commonly used. Then, the closed circuit was verified to
be helpful for higher magnetic field intensity [15] as it improved the proportional factor.
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For the second optimization method, an appropriate voltage waveform or the winging
method was considered to directly promote the total MMF and the magnetic field induced
by a coil [2]. A high threshold with a low-holding voltage has been widely used in an elec-
tromagnetic injector. C.B. Britht et al. [36] and G. Xue et al. [37,38] introduced this type of
voltage to stimulate a giant magnetostrictive device. Additionally, it was comprehensively
verified that the introduced voltage promoted the response time of the coil current, and the
magnetic field, quite efficiently. Manh Cuong Hoang et al. [39] proposed an optimization
method of the magnetic field for an electromagnetic actuation system. The maximum
magnetic and gradient fields were significantly enhanced by the proposed algorithm com-
pared to the conventional independent control. Haoying Pang et al. [40] proposed a novel
spherical coil for the atomic sensor, where the magnetic field uniformity was improved
along the axis. Yiwei Lu et al. [18] introduced the magnetically shielded room to enhance
the coil magnetic field and reduce power loss for a multi-coil system. Cooperated with the
non-dominated sorting genetic algorithm, the design reached prominent reductions in total
current and power loss. Yundong Tang et al. [41] introduced two correcting coils to improve
the uniformity of the magnetic field for a solenoid coil, while it was not so convenient when
the coil space was limited as the correcting coils should have occupied some axial spaces.
Some other optimization methods for the coil or contactor [42–44] can also provide useful
references for optimizing the magnetic field induced by an electromagnetic coil.

Based on the second optimization method, this paper focuses on coil optimization
when the volume of the magnetically driven actuator suitable for an electro-hydraulic servo
valve is limited. In this paper, the dynamic magnetic field was tested based on the linear
relationship between the magnetic field and coil current. Then, the dimension parameter,
static resistance, and static induction were modeled based on empirical equations or
mathematical fitting. The mean magnetic field within the coil was modeled, especially
its functional relationship with respect to the wire diameter. Then, the sinusoidal and
square-wave responses were calculated, and the important characteristic parameters of
these responses were extracted. From the calculated and tested results, the influence of the
wire diameter on the mean magnetic field was discussed comprehensively for an optimal
selection of the wire diameter. During analysis, the relative errors in computing various
variables were also given to verify the precision of the proposed model and effectiveness of
the optimization. For the magnetically driven actuator, optimized results can be employed
to promote the amplitude and response speed of the mean magnetic field, and then to
improve the actuator performance.

2. Experimental Methods
2.1. Test Principle

The dynamic magnetic field intensity or magnetic flux density was always measured
“indirectly” based on Ampere’s circuital theorem or Faraday’s law of induction. Based on
the former principle, the induced magnetic field and coil current have an ideal positive
proportion relationship, which has been a commonly used analytical model of the mean
magnetic field in some magnetically driven actuators, especially the giant magnetostrictive
actuator. Based on this measuring principle, as long as the coil current is measured, the
accurate mean of the magnetic field in a dynamic type can be obtained.

The model was easily given by adding a proportional coefficient to the magnetic field
model in an infinitely long solenoid [3,5,14,16,19,33–35]

H = CHI
NI
L

(1)

where H is the magnetic field intensity and I is the current intensity within the coil, CHI is
the proportional coefficient of the mean magnetic field intensity; its value belongs to (0,1),
N is the number of the coil turn, and L is the coil length.

The following optimization was based on Equation (1)—the optimization is effective as
long as the mean magnetic field in the magnetically driven actuator is in direct proportion
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to the product of the number of coil turns and current intensity. For a hollow coil, Equation
(1) was not only capable of computing the mean magnetic field within homogeneous
medium, but was also suitable to the local mean magnetic field as long as the whole
magnetic circuit was filled locally uniformly and did not have too many reluctance numbers.
Considering Equation (1) is suitable for most giant magnetostrictive actuators and some
micro-displacement electromagnetic actuators; the optimization proposed in this paper is
suitable to these types of actuators.

2.2. Experiment Setup and Parameters

The experimental system was shown in Figure 2. As illustrated in Figure 2a,c, the
computer controlled PS3403D digital oscilloscope (with an embedded signal generator) to
generate the required waveform signals. The generated signals were then amplified by an
ATA304 power amplifier and inputted into the two ends of the coil. The input voltage at
both ends of the coil was differentially collected and the coil current was measured by a
TA189A current clamp. The measured voltage and current data were delivered into the
digital oscilloscope and then into the computer for processing.
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Figure 2b,d supplied the sectional drawing and photograph of the coils, where La, Lb,
Lf represented the coil length, coil thickness, and diameter of the skeleton shaft, respectively,
and Dwire and Dcore were the enameled wire diameter and copper core diameter, respectively.
The coils were tightly wound by the use of standard enameled wires. Since this article
focuses on the optimization of the coil itself, it is not necessary to consider the influence
of the iron core or other parts in an actuator. The parameters of the coils are given in
Table 1, and some necessary parameters of the skeleton and material are supplied in Table 2.
Considering the value of CHI does not affect the increasing or decreasing relationship
between the variables; CHI will have no effect on the optimization results. CHI is specified
as 0.8 here.

Table 1. The main parameters of the coils.

Coil Label External Diameter
(Dwire) [mm]

Core Diameter
(Dwire) [mm]

Number of Coil Turns
(N) [Null]

Resistance
(R) [Ω]

Inductance
(L) [mH]

Coil 1 0.31 0.27 837 18.325 10.933
Coil 2 0.39 0.35 537 7.472 4.487
Coil 3 0.49 0.44 342 2.994 1.789
Coil 4 0.60 0.55 229 1.342 0.801
Coil 5 0.69 0.64 175 0.767 0.459
Coil 6 0.80 0.74 124 0.410 0.243

Table 2. The main parameters of the skeleton and material.

Parameter (Variable) [Unit] Value

Coil length (La) [mm] 16.5
Coil thickness (Lb) [mm] 6.8

Diameter of skeleton shaft (Lf) [mm] 18.2
Resistivity of copper (ρ) [Ω·m] 1.71 × 10−8

Proportional coefficient (CHI) [null] 0.8

3. Data Processing and Analysis
3.1. Inherent Characteristic Parameters of Coils
3.1.1. Dimension Parameters

Standard enameled wire has a nominal diameter of the external wire or the copper
core. Then, a certain functional relationship can be supplied between the enameled wire
diameter Dwire and the copper core diameter Dcore. Figure 3 shows the actual values of Dwire
and Dcore and the fitted results using linear functions. It can be seen from Figure 3 that the
diameter of copper core is approximately linear vs. the external diameter of enameled wire.
With and without an intercept, the fitted linear equations were determined as Dcore = 0.9687
Dwire − 0.03214 and Dcore = 0.9394 Dwire, respectively. The linear function with an intercept
was quite accurate as the relative error was lower than 1.52% when Dwire was higher than
0.3 mm and lower than 2.55 mm. In contrast, the linear function without an intercept
was not so accurate since the relative error was higher than 5% under some conditions,
especially when Dwire was quite low.

Though the positively proportional relationship was not suitable to a wide range of
dimensions, it may be feasible when the Dwire changed within a relatively narrow interval. The
coils used in this paper were wound by the wires with diameters of 0.3~0.8 mm. Executing a
simple linear fitting, Table 3 supplies the results and relative errors of the two line equations.
From computation, the linear equation with intercept was Dcore = 0.962 Dwire− 0.0277 and had
a relative error lower than 0.84%. In comparison, the linear equation without an intercept
Dcore = 0.898 Dwire also had high precision as the relative error was lower than 3.2%. Thus, it
is acceptable to use a positively proportional function to describe the relationship between
Dcore and Dwire when Dwire changes within a narrow interval, which is quite convenient for
the following optimization.
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Table 3. Linear fitting between Dcore and Dwire when Dwire ∈ [0.3, 0.8].

Dwire Tested Dcore
Dcore from

0.962 Dwire − 0.0277
Relative Error of

0.962 Dwire − 0.0277 (%)
Dcore from
0.898 Dwire

Relative Error of
0.898 Dwire (%)

0.31 0.27 0.2705 0.1926 0.2784 3.1037
0.39 0.35 0.3475 −0.7200 0.3502 0.0629
0.49 0.44 0.4437 0.8364 0.4400 0.0045
0.6 0.55 0.5495 −0.0909 0.5388 −2.0364
0.69 0.64 0.6361 −0.6125 0.6196 −3.1844
0.8 0.74 0.7419 0.2568 0.7184 −2.9189

From the sectional drawing shown in Figure 2b, it can be observed that winding a
coil was equivalent to arranging the cross-sectional area of the wire in the rectangular area
supplied by the coil skeleton. The coil turns must be an integer; while La or Lb was not
exactly the integral multiple of Dwire, the effective length La’ and thickness Lb’ were a little
lower than La and Lb, respectively. Coil length or thickness was not fully utilized, and the
available area was La’×Lb’, which was slightly less than the actual area.

From Figure 2b, the turn number per layer was bLa/Dwirec and the number of layers
was

⌊
Lb−Dwire√

3Dwire/2

⌋
+ 1, so that the accurate value of coil turns was

N= C′ f

⌊
La

Dwire

⌋(⌊
Lb − Dwire√

3Dwire/2

⌋
+ 1
)

≤ C′ f

(
LaLb√

3D2
wire/2

− 0.155
La

Dwire

)

≈ C f
LaLb

πD2
wire/4

(2)

where Cf
′ was introduced to describing the winding effect, Cf was the filling factor of

the enameled wire. LaLb was the axis-sectional area of the coil and πDwire
2/4 was the

cross-sectional area of single enameled wire.
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From Equation (2), the assumption that N was positively proportional to the ratio
of the cross-sectional area of the coil skeleton to Dwire was conditional. That was, with
the effectiveness of Equation (2), determined by the weight of Cf’0.155 La/Dwire in the
total coil turns. Additionally, the relative error of the positively proportional function was
0.155/(1.155 Lb/Dwire − 0.155) × 100%, which was determined by Lb/Dwire.

Lb/Dwire determined the number of layers and the relative error, which are displayed
in Figure 4. From the calculation results, the relative error of CfLaLb/(πDwire

2/4) computing
N decreased with Lb/Dwire increasing. To guarantee that the relative error of Equation (2)
is lower than 5.0% in computing N, it should be met that Lb > 2.8 Dwire. That is, the
coil should be wound with three layers at least. When Lb < 2.8 Dwire, one should use
Lb’ =

⌊
Lb−Dwire√

3Dwire/2

⌋
+ 1 instead of Lb for computations. For the coils in this paper, the values

of Lb/Dwire under different Dwire were higher than 6.8/0.8 = 8.5 so that the approximate
expression in Equation (2) has enough precision.

Aerospace 2023, 10, x FOR PEER REVIEW 7 of 16 
 

 

not exactly the integral multiple of Dwire, the effective length La’ and thickness Lb’ were a 

little lower than La and Lb, respectively. Coil length or thickness was not fully utilized, 

and the available area was La’×Lb’, which was slightly less than the actual area. 

From Figure 2b, the turn number per layer was a wire
L D    and the number of layers 

was 1
3 2

b wire

wire

L D

D

−
+

 
 
 

, so that the accurate value of coil turns was 

2

2

1
3 2

0.155
3 2

π 4

a b wire

f

wire wire

a b a

f

wirewire

a b

f

wire

L L D
N C

D D

L L L
C

DD

L L
C

D

−
= +

 −



    
   

     

 
 
 

 (2) 

where Cf’ was introduced to describing the winding effect, Cf was the filling factor of the 

enameled wire. LaLb was the axis-sectional area of the coil and πDwire2/4 was the 

cross-sectional area of single enameled wire. 

From Equation (2), the assumption that N was positively proportional to the ratio of 

the cross-sectional area of the coil skeleton to Dwire was conditional. That was, with the 

effectiveness of Equation (2), determined by the weight of Cf’0.155 La/Dwire in the total coil 

turns. Additionally, the relative error of the positively proportional function was 

0.155/(1.155 Lb/Dwire − 0.155) × 100%, which was determined by Lb/Dwire.  

Lb/Dwire determined the number of layers and the relative error, which are displayed 

in Figure 4. From the calculation results, the relative error of CfLaLb/(πDwire2/4) computing 

N decreased with Lb/Dwire increasing. To guarantee that the relative error of Equation (2) is 

lower than 5.0% in computing N, it should be met that Lb > 2.8 Dwire. That is, the coil 

should be wound with three layers at least. When Lb < 2.8 Dwire, one should use Lb’ = 

1
3 2

b wire

wire

L D

D

−
+

 
 
 

 instead of Lb for computations. For the coils in this paper, the values of 

Lb/Dwire under different Dwire were higher than 6.8/0.8 = 8.5 so that the approximate ex-

pression in Equation (2) has enough precision.  

For convenience, the value of Cf was determined by the mean values of N and Dwire 

so that Cf = 0.57. The effect of Equation (2) computing N is shown in Table 4. From the 

calculation results, the model of coil turn can predict the practical coil turn effectively as 

the relative error was lower than 2.8%. 

 

Figure 4. Relative errors of the positively proportional function of the available area of coil skele-

ton vs. the cross-sectional area of enameled wire. 

Figure 4. Relative errors of the positively proportional function of the available area of coil skeleton
vs. the cross-sectional area of enameled wire.

For convenience, the value of Cf was determined by the mean values of N and Dwire
so that Cf = 0.57. The effect of Equation (2) computing N is shown in Table 4. From the
calculation results, the model of coil turn can predict the practical coil turn effectively as
the relative error was lower than 2.8%.

Table 4. Coil turns from the test and model.

Coil Label Coil Turns from Test Coil Turns from Model 1 Relative Error (%)

1 837 847.33 1.23
2 537 535.36 −0.30
3 342 339.15 −0.83
4 229 226.19 −1.23
5 175 171.03 −2.27
6 124 127.23 2.61

1 Cannot be an integer.

From above analysis, the empirical equations in describing the relationships between
Dcore, Dwire and N were written as{

D̂core = 0.962Dwire − 0.0277 or 0.898Dwire

N = C f
La Lb

πD2
wire/4

(3)
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3.1.2. Static Resistance and Static Inductance

Static resistance and inductance are the key parameters to determine the current
response of a coil with an unobvious skin effect. Based on the empirical expression of
inductance L and the basic equation of resistance R, the model can be easily established as

L = 4πCL0N2 =
CLC2

f

D4
wire

R = ρ
N(L f +Lb)

D2
core/4

= 16ρC f
La Lb(L f +Lb)

πD2
coreD2

wire

(4)

where CL0 and CL were two parameters dependent on La, Lb, Lf while independent of other
variables and met CL = 64 CL0(LaLb)2/π; ρ was the resistivity of copper.

Figure 5 displays the relationships between L, R, and Dwire from the experiment and
computation. From the results, it was easily reached that both L and R were monotonically
decreasing functions vs. Dwire. More specifically, as concluded from the expression of N in
Equation (3) and Dcore = 0.898 Dwire, both R and L were inversely proportional functions
vs. Dwire

4 (also N2). The model was in good agreement with the experiment as the relative
errors of the model in computing R and L were lower than 3.1% and 2.8%, respectively.
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variables and met CL = 64 CL0(LaLb)2/π; ρ was the resistivity of copper.  
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Figure 5. Curves of the static resistance and static inductance vs. the enameled wire diameter.

3.2. Sinusoidal Response

Equivalent to the series connection of an inductor and a resistor, the electromagnetic
coil was generally modeled as a first-order linear time-invariant system model. Addition-
ally, the amplitude-frequency and phase-frequency characteristics are the most important
characteristics of the sinusoidal response of the coil.

Stimulated by a sinusoidal voltage U(t) = Uampsin(ωt), the current response within the
coil can be calculated by I(t) = Iampsin(ωt – ϕI), where ω is the angular frequency of the input
and ϕI is the phase lag of the coil current compared to the voltage. From the theory of the lin-
ear time-invariant system, the amplitude ratio function is AI = Iamp/Uamp = 1/(R2 + ω2L2)1/2,
and tanϕI = ωL/R. Substituting Equation (4) into these expressions, one obtains

AI =
πD2

coreD2
wire

C f La

√√√√√
 16ρLb·
(D f + Lb)

2

+

(
ωCLC f D2

core
D2

wire

)2
≈ 0.806πD4

wire

C f La

√√√√√
 16ρLb·
(D f + Lb)

2

+(0.806ωCLC f )
2

ϕI = arctan
ωCLC f

16ρLb(D f +Lb)
· D2

core
D2

wire
≈ arctan

0.0504ωCLC f
ρLb(D f +Lb)

(5)

From the empirical equation of the mean magnetic field given in Equation (1), the
amplitude radio to inputted voltage of the magnetic field AH and the lagging phase of
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the magnetic field ϕH can be easily reached as CHINAI/La and ϕH = ϕI. By substituting
Equation (5) into these two equations, one obtains

AH = 4CHI LbD2
core

La

√√√√√
 16ρLb·
(D f + Lb)

2

+

(
ωCLC f D2

core
D2

wire

)2
≈ 3.226CHI LbD2

wire

La

√√√√√
 16ρLb·
(D f + Lb)

2

+(0.806ωCLC f )
2

ϕH = arctan
ωCLC f

16ρLb(D f +Lb)
· D2

core
D2

wire
≈ arctan

0.0504ωCLC f
ρLb(D f +Lb)

(6)

Changing the frequency from 10 Hz to 1000 Hz, Figure 6 shows the tested and calcu-
lated amplitude ratios and phase lags of the magnetic field with respect to the inputted
voltage. To demonstrate the influence of the wire diameter more clearly, the wire diameter
was plotted on the horizontal axis. From the tested and calculated results, a wider wire
diameter is quite helpful for a higher magnetic field amplitude as the amplitude ratio
increased faster with an increase in wire diameter. On the contrary, the wire diameter has
little influence on the phase lag of the magnetic field, which represents the response time of
the magnetic field from 0 to some required proportion of a steady-state value.
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Figure 6. Amplitude ratio and phase lag of the magnetic field under different wire diameters:
(a) curves of the amplitude ratio vs. enameled wire diameter; (b) curves of the phase lag vs. enameled
wire diameter.

Figure 7 shows the relative errors of the model under various frequencies. For predict-
ing the amplitude ratio, the calculation error was lower than 2.0% when the wire diameter
was between 0.39 mm and 0.69 mm. The model accuracy was a little lower when the
wire diameter was wider than 0.8 mm or narrower than 0.31 mm, as the relative errors at
these points were higher than 5%; this was acceptable as the errors were still lower than
6.4%. For computing the lagging phase, the relative errors under different parameters,
including various frequencies and wire diameters, were lower than 3.2%, which showed
high precision of the model in predicting the lagging phase of the magnetic field. A low
calculation accuracy regarding the computing amplitude ratio was mainly caused by poor
winding when the coil wire was quite thin or thick. On the whole, the proposed models for
the magnetic field amplitude and lagging phase were verified by the low relative errors
under most conditions.
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Figure 8 shows the relationships between AH and Dwire
2. From Figure 8, the linear

relationship between the amplitude ratio of the magnetic field and the square of the wire
diameter was verified as the tested points under a certain frequency were roughly plotted
in a line passing through the origin.
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2 from the model and test under different frequencies.

3.3. Square-Wave Response
3.3.1. Time-Domain Response

In addition to the sinusoidal voltage, the direct current (DC) square-wave voltage is
frequently used, especially to drive an on–off-type actuator.

For the square-wave response, more attention should be paid to the transient-state
process. Additionally, based on the first-order linear time-invariant system, the transient-
state current within the coil is

I(t) =
Ust

R
+ (I0 −

Ust

R
)e−

R
L t (7)

where I0 is the initial value of the coil current, Ust is the steady-state amplitude of the
voltage. Equation (7) was suitable to both the charging and discharging process of the coil.
For charging, I0 = 0. For discharging, Ust = 0.

From Equation (4), the reciprocal of the time-constant used in Equation (7) was

R
L
=

ρ(L f + Lb)D2
wire

4CL0C f LaLbD2
core

(8)
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By substituting Equations (7) and (8) into H(t) = CHINI(t)/La, one obtains the transient-
state response of the magnetic field

H(t)=
CHIC f Lb

πD2
wire/4

[
Ust

R
+ (I0 −

Ust

R
)e−

R
L t
]

=
4CHIC f Lb

πD2
wire

 πD2
coreD2

wireUst

16ρC f LaLb(L f + Lb)
+

(
I0 −

πD2
coreD2

wireUst

16ρC f LaLb(L f + Lb)

)
e
−

ρ(L f +Lb)D2
wire

4CL0C f La Lb D2
core

t


=
CHI D2

core
4ρLa(L f + Lb)

Ust +
4CHIC f Lb

πD2
wire

I0e
−

ρ(L f +Lb)D2
wire

4CL0C f La Lb D2
core

t
− CHI D2

core
4ρLa(L f + Lb)

Uste
−

ρ(L f +Lb)D2
wire

4CL0C f La Lb D2
core

t

(9)

The inputted voltage was generated with an amplitude of 2 V and a high-voltage
duration of 20 ms to guarantee the coil current reaching the steady state. The time-domain
magnetic fields are shown in Figure 9. From the test and model, the proposed model
precisely calculated the amplitudes and effectively described the curve shapes under
different wire diameters as the transient-state results were also quite close.
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Figure 9. The dynamic magnetic field under square-wave input: (a) Dwire = 0.31 mm; (b) Dwire = 0.39 mm;
(c) Dwire = 0.49 mm; (d) Dwire = 0.60 mm; (e) Dwire = 0.69 mm; (f) Dwire = 0.80 mm.

3.3.2. Steady-State Value and Response Time

The steady-state value and response time are the most important characteristic param-
eters of the on–off-type actuator. When the square-wave voltage maintains a high level for
a long enough duration, the steady-state response of the magnetic field Hst can be easily
acquired from Equation (9), as

Hst =
CHI D2

core
4ρLa(L f + Lb)

Ust ≈
0.2016CHI D2

wire
ρLa(L f + Lb)

Ust (10)
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By exacting the mean value of the magnetic field in the steady-state stage, Figure 10
shows the curves of Hst vs. Dwire from the test and model. From the tested and calculated
results, a higher Dwire is helpful for a higher Hst. More specifically, Hst was positively
proportional to Dwire

2, as explained in Equation (10). Thus, the change law of the Hst under
the square wave was the same as one of the magnetic field amplitudes under the sinusoidal
voltage. It was easily illustrated that both the functions of 1/(R2 + ω2L2)1/2 and 1/R can be
expressed by the quartic function vs. the wire diameter approximately. In addition, the
relatively errors under different wire diameters were less than 1.2% thus, the model can
predict the steady-state magnetic field quite effectively.
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There are two commonly used response times—the time from 0 to the required inten-
sity and the time from 0 to the required proportion of the steady-state value. The former
was especially concerned when the high-opening voltage was employed and the latter was
generally concerned when the standard square-wave voltage was employed (or the duty
cycle was adjusted but not the amplitude in the voltage wave).

By imposing Ireq the required intensity of the coil current and substituting Ireq into
Equation (7), the response time tIv can be reached, as

tIv=
L
R

ln
(

1 +
Ireq

Ust/R− Ireq

)

=
CLC f

16ρLb(D f + Lb)

D2
core

D2
wire

ln

1 +
Ireq

πD2
coreD2

wireUst/
[
16ρC f LaLb(D f + Lb)

]
− Ireq

 (11)

Similarly, by substituting the required magnetic field Hreq into Equation (9), one obtains
the response time to the specified magnetic field intensity tHv, as

tHv=
L
R

ln
(

1 +
La Hreq

CHI NUst/R− La Hreq

)

=
CLC f

16ρLb(D f + Lb)

D2
core

D2
wire

ln

1 +
La Hreq

CHI D2
coreUst/

[
4ρ(D f + Lb)

]
− La Hreq


≈

0.0504ωCLC f

ρLb(D f + Lb)
ln

1 +
La Hreq

0.2016CHI D2
wireUst/

[
ρ(D f + Lb)

]
− La Hreq


(12)

From the calculated result, it can be observed that a thicker wire is better for reducing
both the response time of the coil current and one of the magnetic fields, while the change
degree is different. The enameled wire diameter has more influence on the response
time of the coil current than that of the magnetic field as tIv is in the function form of
aln [1 + b/(cx2 − b)] vs. Dwire while tHv is expressed by aln [1 + b/(cx4 − b)] vs. Dwire.
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The response time to a specified proportion of the steady-state value can be easily
deduced from Equations (10) and (12). For a given proportion p, the corresponding in-
tensities of the coil current and magnetic field are, respectively, Ireq = p(Ust/R) or Hreq =
p[CHIN(Ust/R)/La]. By substituting the two expressions into Equations (10) and (11), one
obtains the response time to a specified proportion, as

tHp= tIp =
L
R

ln
(

1
1− p

)
=

CLC f

16ρLb(D f + Lb)

D2
core

D2
wire

ln
(

1
1− p

)
≈

0.0504ωCLC f

ρLb(D f + Lb)
ln
(

1
1− p

) (13)

where p is a constant belonging to (0, 1).
Compared to tHv, the factors influencing tHp were almost independent of Dwire. More

specifically, tHp was just determined by the ratio of L/R. The value of L/R was only slightly
influenced by Dwire; optimizing the wire diameter would be helpless to promote this type
of response speed.

Figure 11 shows the two types of response times from the tested and calculated results;
the specified intensities Hreq were 3 kA/m, 3.5 kA/m, and 4 kA/m, and the specified
proportions p were 0.7, 0.8, and 0.9. Just as predicted by the model, Hreq was effectively
reduced by increasing Dwire. Furthermore, Hreq declined fast first and then slowly with
Dwire increasing. For the value of tHp, it changed slightly with Dwire increasing. The model
was verified as the calculated results were consistent with the experimental data.
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Figure 11. The response time of the square-wave response from the test and model: (a) the time from
0 to specified intensities, respectively, of 3 kA/m, 3.5 kA/m, and 4 kA/m; (b) the time from 0 to the
specified proportions of the steady-state response, respectively, of 0.7, 0.8, and 0.9.

On the whole, increasing the wire diameter is quite helpful for reducing the response
time from 0 to a specified value of the coil current or magnetic field, while failing to improve
the response speed from 0 to the steady-state or any other proportional value. Therefore,
for an electromagnetic actuator stimulated by a high-open-low-hold-type voltage, a coil
with a wider wire diameter will be stimulated more quickly to save the response time of the
whole actuator, while when a traditional square-wave voltage is introduced, an adjustment
in the wire diameter is helpless.

4. Conclusions

An analytical model of the mean magnetic field for the hollow cylindrical coil used in a
magnetically driven actuator was proposed in this paper. Additionally, the selection of the
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enameled wire diameter was optimized for a high-amplitude and fast-response magnetic
field based on the model.

(1) The resistance and inductance are inversely proportional functions vs. the quartic of
the enameled wire diameter. Under the sinusoidal voltage, a wider wire diameter
is quite helpful for a higher magnetic field amplitude while it has little influence on
the phase lag of the magnetic field. Under the square-wave voltage, the steady-state
magnetic field was positively proportional to the square of the wire diameter, as a
wider wire diameter is helpful for a higher steady-state magnetic field. Regarding the
response speed, increasing the wire’s diameter is helpful for reducing the response
time from 0 to the specified intensity, while it is helpless to improve the response
speed from 0 to the steady-state or any other proportional value.

(2) The proposed model was verified as the calculated results from the model were in
good agreement with the experimental results. Specifically, the relative errors of the
model in computing the resistance and the inductance were lower than 3.1% and 2.8%,
respectively. For predicting the sinusoidal response, the errors were lower than 6.4%
(lower than 2.0% under most conditions) in computing the amplitude and lower than
3.2% in computing the lagging phase. For predicting the square-wave response, the
model calculated the amplitudes with errors lower than 1.2% and described the curve
shape effectively.

This paper was devoted to the promotion of the output performance of the whole
magnetically driven actuator without considering the coil quality factor or power loss.
Further work can focus on reducing the power loss of the coil.
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