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Abstract: The forecasted growth in dynamic global air fleet size in the coming decades, together 
with the need to introduce disruptive technologies supporting net-zero emission air transport, 
demands more efficient design and optimization workflows. This research focuses on developing 
an aerodynamic optimization framework suited for multi-objective studies of small aircraft engine 
air-intake ducts in multiple flight conditions. In addition to the refinement of the duct’s performance 
criteria, the work aims to improve the economic efficiency of the process. The optimization scheme 
combines the advantages of Kriging-based Efficient Global Optimization (EGO) with the Radial 
Basis Functions (RBF)-based mesh morphing technique and the Chebyshev-type Achievement 
Scalarizing Function (ASF) for handling multiple objectives and design points. The proposed 
framework is applied to an aerodynamic optimization study of an I-31T aircraft turboprop engine 
intake system. The workflow successfully reduces the air-duct pressure losses and mitigates the 
flow distortion at the engine compressor’s front face in three considered flight phases. The results 
prove the framework’s potential for solving complex multi-point air-intake duct problems and the 
capacity of the ASF-based formulation to guide optimization toward the designer’s preferred 
objective targets. 

Keywords: optimization; multi-objective; multi-point; Kriging; metamodel; surrogate; intake;  
aerodynamics; CFD; mesh morphing; achievement scalarizing function 
 

1. Introduction 
From the time of the famous Wright brothers’ first flight, global air traffic has grown 

continuously regardless of economic or political turmoil. In only the last two decades, it 
has more than doubled. Two major commercial aircraft suppliers, Boeing and Airbus, 
forecast further air traffic growth in the coming decades at a rate of nearly 4% annually, 
which will create a demand for global air fleet development of approximately 3% per year 
[1,2]. Such an expansion rate will result in doubling the number of passenger and freight 
airplanes by the end of the fourth decade of the 21st century. 

The foreseen dynamic development coincides with a need to introduce new 
disruptive technologies supporting climate-neutral aviation. This target is imposed by the 
European Green Deal initiative [3], recently established by the European Commission. 
The ambitious goal of achieving net-zero emission air transport by 2050 requires the 
deployment of radical innovations within a short period. Such rapid anticipated progress 
forces aviation R&D entities to seek more streamlined design processes, which should be 
supported with advanced design tools and efficient optimization workflows. More 
efficient work schemes should be instituted simultaneously on an integrated aircraft level 
and for each subsystem and component. 
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This paper focuses on developing an optimization framework suited for airplane 
engine air-intake ducts. There is a long history of aerodynamic optimization studies on 
ducts of various shapes in the literature. Although surrogate-assisted optimization is a 
visible trend nowadays, conventional direct strategies are still present in recent 
investigations. For instance, Furlan et al. [4] applied a Genetic Algorithm (GA) [5] to 
optimize an S-shaped channel parameterized using Bézier curves. D’Ambros et al. [6] 
employed the Tabu Search algorithm supported by the Free-Form Deformation (FFD) 
technique to a multi-objective optimization problem of a generic S-duct. Zeng et al. [7] 
used the GA method to enhance the aerodynamic performance of an S-duct scoop inlet. 
Sharma and Baloni [8] solved a multi-objective optimization problem in a turbofan engine 
compressor transition S-duct using the Particle Swarm Optimization (PSO) technique [9]. 

All the abovementioned investigations were successful in improving the 
corresponding objectives; however, direct strategies come at a significant computational 
cost resulting from multiple objective function evaluations. This drawback occurs notably 
in aerodynamic problems for which objective values are determined using expensive 
Computational Fluid Dynamics (CFD) codes. 

Using surrogate-based frameworks allows for a significant reduction in costly 
evaluations by approximating the objective functions with simple analytical 
representations. These substitutes are commonly referred to as metamodels [10,11] or 
surrogates [12–14]. In such a procedure, conventional optimization techniques (e.g., 
steepest descent [15], as well as various quasi-Newton and population-based methods) 
are used to search for a superior solution in an artificial response landscape. CFD solver 
calls are required predominantly to build a database necessary for the surrogate 
construction and, to some extent, for its subsequent improvement. 

Surrogates are usually categorized by the class of mathematical functions used for 
their creation. Popular types supporting aerodynamic optimization problems are low-
order polynomial Response Surface Models (RSM) [16], regression splines [17], and 
various Radial Basis Functions (RBF) [18]. Polynomial-based surrogates have the 
advantages of simplicity and ease of use, although they have limited capabilities to 
approximate complex objective functions. RBF-based metamodels, instead, can model 
functions of high curvature with reasonably higher fitting effort. More complex models, 
such as Artificial Neural Networks (ANN) [19], use a nonlinear regression process to fit 
the surrogate. Although they are very efficient in applications with numerous variables, 
the ANN training process might be computationally expensive as it requires a solution to 
a high-dimensional optimization problem. 

A characteristic class of metamodels has the ability to consider a stochastic 
component in the function approximation to quantify the confidence of the surrogate 
predictions. Moreover, this property is extensively used to boost the global search by 
identifying areas in the objective space with high improvement potential. These models 
are predominantly based on the Gaussian Process (GP); among them, the Kriging 
surrogate [20–23] is the most widely exploited. 

The abovementioned metamodels have received the most prominent attention in the 
field of aerodynamic shape optimization of various ducts and channels. Lu et al. [24] 
employed a third-order polynomial RSM to optimize an S-shaped compressor transition 
duct. The authors were successful in reducing the pressure losses along the channel, 
together with an improvement in outlet pressure and velocity distribution. In the problem 
of annular S-duct shape optimization, Immonen [25] used fourth- and fifth-order RSM to 
minimize energy loss and improve flow uniformity. The multi-objective study resulted in 
considerable refinement in both examined parameters. 

An RBF-based metamodel served to approximate the objective function in the 
optimization study on a stealth aircraft diffusing S-duct performed by Gan et al. [26]. The 
problem of simultaneous maximization of the duct pressure recovery and minimization 
of total pressure distortion was solved by a GA performing a search in a surrogate-based 
space. A significant distortion coefficient improvement and slight pressure recovery factor 
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improvement characterized the solution located by the optimizer. A similar GA-based 
approach was used by Donghai et al. [27]; however, the surrogate was constructed using 
ANN. With such a method, the authors suppressed flow separation in a strutted annular 
S-duct, which resulted in a considerable reduction in total pressure loss. 

Among contemporary literature sources on duct shape optimization, the use of 
Kriging has noticeable dominance, chiefly due to its ability to interpolate complex 
functions and inherent features supporting global optimization. Zerbinati et al. [28] used 
the so-called Multiple-Gradient Descent Algorithm to search for an optimum in an 
objective space approximated using the Kriging technique. The algorithm successfully 
reduced the pressure loss and velocity variance in an air-cooling S-duct. Verstraete et al. 
[29] compared the behavior of Kriging-based and ANN-based surrogates assisting a 
Differential Evolution (DE) algorithm [30] in the minimization of U-shaped cooling 
channel pressure loss. The authors reported a superior performance by the Kriging 
metamodel. The study was broadened by Verstraete and Li [31] to a multi-objective 
problem of pressure loss minimization and heat transfer maximization. Due to the 
previous research outcomes, Kriging solely assisted the DE algorithm. Despite having 
objectives of competing nature, the optimizer was successful in improving both measures. 
Koo et al. [32] executed a similar comparison of Kriging and ANN metamodels in a multi-
objective optimization problem of a heat exchanger inlet duct. The study outcomes 
resulted in improved pressure loss and flow rate uniformity achieved by both 
metamodels, although preferences towards specific objectives were different for 
particular surrogates. Wang and Wang [33] employed a Kriging-assisted GA technique in 
a multi-objective optimization problem of a UAV S-shaped intake duct. The authors were 
successful in the combined improvement of the aerodynamic and electromagnetic 
performance of the S-duct diffuser. 

The studies referenced in the previous paragraph used merely Kriging-based 
objective landscape approximation to search for the optimum. The full potential of 
Kriging, however, manifests itself in its ability to not only predict the objective value but 
also assess the uncertainty of this prediction. This property is extensively used to balance 
local and global searches by probing the objective space in regions with a high likelihood 
of improvement. The search strategy based on this unique Kriging feature constitutes the 
Efficient Global Optimization (EGO) proposed by Jones et al. [23]. This algorithm is 
proven to balance the exploration and exploitation properties efficiently and, as such, has 
been applied in numerous shape optimization studies. 

Bea et al. [34] used the Kriging-based EGO strategy to successfully improve the 
pressure recovery factor in a diffusing S-duct. A similar objective measure was optimized 
by Dehghani et al. [35]. The authors employed EGO to enhance the performance of an 
axisymmetric diffuser channel. Marchlewski et al. [36] employed a similar search 
technique utilizing Kriging’s uncertainty assessment in multi-objective optimization of U-
shaped engine intake. Using Pareto front delimitation in an objective space, the authors 
reduced the duct pressure loss while maintaining the initial level of exiting flow 
uniformity. Drężek et al. [37] optimized analogous intake geometry using GA-assisted 
EGO. The two objectives were combined using the Achievement Scalarizing Function 
(ASF) [38]. The optimizer was successful in the simultaneous improvement of the duct’s 
pressure loss and flow distortion. 

Every aerodynamic optimization problem requires design variables representing 
geometry as the subject of improvement. Expressing generic models using independent 
parameters (variables) is usually referred to as parameterization, for which a variety of 
methods is possible. The choice of a specific technique may profoundly impact the 
optimization process’s computational cost and the final result. The vast majority of 
literature sources referenced above use parameterization techniques that focus on 
modifying geometry definition, namely, direct engineering parameters [24,32], Bézier 
curves [4,8], B-splines [27–29,31], Non-Uniform Rational B-Splines (NURBS) [7,35], and 
Free-Form Deformation [6]. Such an approach requires a subsequent mesh regeneration 
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at each reshaping step. The mesh morphing technique is an efficient alternative to reduce 
the overall computational cost of the process. This method requires only initial generation 
of a mesh, which is adjusted in the subsequent steps while preserving the original grid 
topology. Although some recent literature sources describe the combined use of 
surrogates and mesh morphing (applied to, e.g., fuselage–wing junction [39,40], generic 
car model [40], effusion cooling plate [41], and cooling channel rib [42]), only a few studies 
report such an application to intake duct optimization. To the best of our knowledge, these 
are [36,37]. 

Most intake duct optimization studies available in the literature consider only one 
operating condition, usually the nominal on-design point. Such an approach is commonly 
called Single-Point Optimization (SPO). As the conditions may change substantially at 
various mission stages, such a strategy may lead to a suboptimal performance at off-
design points. Some studies (e.g., [33,43]) evaluate the off-design conditions in the post-
optimization phase to secure the design against severe performance deterioration. A few 
literature sources report simultaneous optimization under multiple flight conditions—
often referred to as Multi-Point Optimization (MPO). Brahmachary et al. [44] and Fujio 
and Ogawa [45] executed multi-point studies on axisymmetric scramjet intake. The 
authors employed a surrogate-assisted GA algorithm to improve multiple performance 
parameters via Pareto front evaluation. Chiang et al. [46] enhanced the shape of a 
Boundary-Layer Ingesting (BLI) engine S-duct intake. The performance objectives for 
cruise, descent, and climb conditions were combined using a simple weighted sum 
function. The foreseen importance of MPO in prospective design processes should lead to 
investigations into advanced scalarization methods allowing simultaneous involvement 
of multiple objectives and flight conditions while overcoming the well-known deficiencies 
of the weighted sum technique. Such studies are absent in the state-of-the-art literature. 

This paper concentrates on designing an optimization scheme combining the 
advantages of the Kriging metamodel, mesh morphing technique, and advanced 
objectives scalarization method. The components are duly integrated to create a 
synergistic effect of improvements in the economic efficiency of the design process. To 
assess the usefulness of the proposed framework in practical engineering problems, the 
algorithm is applied to multi-point aerodynamic optimization of an I-31T turboprop 
aircraft’s air intake. The procedure simultaneously reduces the air-duct pressure losses 
and mitigates the flow distortion at the engine compressor’s front face while considering 
multiple flight conditions. 

The novelty of this study is the use of the augmented Chebyshev-type ASF to 
combine multiple performance objectives under multiple flight conditions. Such a 
strategy integrated with the Kriging surrogate and the mesh morphing technique creates 
a synergistic effect of cost-efficient MPO. 

2. Materials and Methods 
2.1. Optimization Framework 

The optimization framework reported in this study is founded on three pillars: 
Kriging surrogate for objective function approximation, mesh morphing technique for 
geometry parameterization, and ASF method for handling multiple objectives and 
conditions. The framework integrated from the abovementioned components is presented 
schematically in Figure 1. 



Aerospace 2023, 10, 266 5 of 30 
 

 

 
Figure 1. Schematic representation of the optimization framework. 

2.1.1. Kriging Surrogate 
The concept of Kriging originates from geostatistical modeling inspired by the work 

of a South African engineer named Daniel Krige [20], further formalized by Matheron [21], 
and eventually adapted for deterministic numerical simulations by Sacks et al. [22] and 
Jones et al. [23]. The Kriging-based surrogate is founded on the hypothesis that any black-
box simulation response function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥)  can be expressed as a realization of the 
Gaussian random process 𝑌𝑌(𝑥𝑥). 

The Kriging surrogate is composed of a global trend function 𝜇𝜇(𝑥𝑥) and centered GP 
𝑍𝑍(𝑥𝑥) with zero mean and non-zero covariance (Equation (1)). 

𝑌𝑌(𝑥𝑥) = 𝜇𝜇(𝑥𝑥) + 𝑍𝑍(𝑥𝑥) (1) 

The trend function is a regression model that captures a general tendency in the 
observed data. It is expressed as a linear combination of 𝑛𝑛 deterministic basis functions 
𝜙𝜙(𝑥𝑥), based on regression of 𝑁𝑁 response function evaluations (𝑛𝑛 ≤ 𝑁𝑁): 

𝜇𝜇(𝑥𝑥) = ∑ 𝜙𝜙𝑘𝑘(𝑥𝑥)𝛽𝛽𝑘𝑘𝑛𝑛
𝑘𝑘=0   (2) 

Depending on the trend formulation, the Kriging metamodel can be classified into 
three categories: Simple Kriging (SK)—for which the trend is a known constant; Ordinary 
Kriging (OK)—for which the trend is constant but unknown; and Universal Kriging 
(UK)—for which the basis functions 𝜙𝜙(𝑥𝑥) are known and fixed, but the coefficients 𝛽𝛽𝑘𝑘 ∈
ℝ\{0} are unknown and are estimated in the surrogate construction process. In this study, 
we use the most general, i.e., UK formulation, due to the anticipated high curvature of the 
objective function. The trend is defined as a 𝑝𝑝-dimensional full first-order polynomial 
(Equation (3)). 

𝜇𝜇(𝑥𝑥) = ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗
𝑝𝑝
𝑗𝑗=0   (3) 

The stochastic component 𝑍𝑍(𝑥𝑥) in Equation (1) models a local deviation from the 
global trend to the true objective function. It is characterized by constant but unknown 
variance 𝜎𝜎2 and non-zero covariance (Equation (4)). 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑖𝑖′) = 𝜎𝜎2𝑅𝑅(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′,𝝍𝝍)   𝑖𝑖, 𝑖𝑖′ = 1, … ,𝑁𝑁  (4) 

Here, 𝑅𝑅(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′,𝝍𝝍)  denotes the spatial correlation function between any two 
samples 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖′, and is often referred to as the covariance kernel. In multi-dimensional 
problems, the kernel turns into a tensor product of 𝑝𝑝  one-dimensional correlation 
functions 𝑟𝑟(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′,𝜓𝜓): 
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𝑅𝑅(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′,𝝍𝝍) = ∏ 𝑟𝑟 �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′)𝑗𝑗
𝛿𝛿𝑗𝑗 ,  𝜓𝜓𝑗𝑗�

𝑝𝑝
𝑗𝑗=1   (5) 

The level of impact of 𝑗𝑗 -th dimension correlations on the Kriging prediction is 
controlled by the covariance kernel hyperparameters grouped in the vector 𝝍𝝍 . The 
smoothness coefficient 𝜹𝜹 governs the differentiability of the metamodel surface. In the 
present study, we assume that the true objective function is smooth, which justifies using 
an infinitely differentiable Gaussian-type kernel (𝛿𝛿𝑗𝑗 = 2 ∀ 𝑗𝑗 = 1, … ,𝑝𝑝). In one dimension, 
the Gaussian kernel is formulated as: 

𝑟𝑟𝑗𝑗(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′,𝜓𝜓) = 𝑒𝑒𝑥𝑥𝑝𝑝 �−
(𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖′)𝑗𝑗

2

2𝜓𝜓𝑗𝑗
2 �  (6) 

The values of unknown hyperparameters 𝛽𝛽,𝜎𝜎2,𝜓𝜓 are estimated in the process called 
“fitting” the metamodel to the available data samples. This procedure is based on the 
maximization of a function ℒ , expressing the probability of predicting the evaluated 
objective values at sampled locations. This method is called Maximum Likelihood 
Estimation (MLE) and is a non-trivial optimization problem of minimizing a multi-modal 
likelihood function. For the purpose of this study, we used an algorithm relying on the 
quasi-Newton method [47], available in the R language package DiceKriging [48]. 

The Kriging predictor 𝑌𝑌�(𝑥𝑥) at an arbitrary unobserved location 𝑥𝑥0 is defined using 
random function evaluations at sampled positions 𝑌𝑌(𝑥𝑥𝑖𝑖) . The estimator holds the 
properties of the Best Linear Unbiased Predictor (BLUP), i.e.: 
• Linearity—linear combination of random functions 

𝑌𝑌�(𝑥𝑥0) = ∑ 𝜆𝜆𝑖𝑖(𝑥𝑥0)𝑌𝑌(𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1   (7) 

• Unbiasedness—absence of systematic bias 

𝔼𝔼�𝑌𝑌�(𝑥𝑥0)� = 𝔼𝔼[𝑌𝑌(𝑥𝑥0)]  (8) 

• Minimal prediction variance—minimizing the mean squared error 

𝑀𝑀𝑀𝑀𝑀𝑀�𝑌𝑌�(𝑥𝑥0)� =  𝔼𝔼��𝑌𝑌�(𝑥𝑥0) − 𝑌𝑌(𝑥𝑥0)2��  (9) 

Solving the above system of equations for optimal weights 𝝀𝝀𝑇𝑇 ∈ ℝ𝑁𝑁  allows 
computation of the GP predictor’s mean and variance, which defines it entirely. 

The Kriging surrogate requires input data from objective function evaluations at a 
set of discrete locations. The spatial distribution of these observations across the design 
space may profoundly influence the metamodel prediction quality [49]. Historically, 
various sampling strategies were developed for planning the empirical experiments, so 
the selection of an observation pattern is often called the Design of Experiment (DoE). The 
original DoE methods locate the majority of samples close to the design space boundaries 
and only a few observations in its interior [10]. Deterministic numerical simulations, 
however, are prone to systematic rather than random error. For this reason, space-filling 
strategies, distributing samples over the entire domain, are more convenient for such 
applications. Using classic DoE methods in computer experiments might be highly 
inefficient [22]. 

Although a variety of space-filling techniques well-suited for deterministic 
simulations is available, the Latin Hypercube Sampling (LHS) [50] strategy has attracted 
the most attention in recent years [49,51]. The LHS algorithm distributes the observations 
in a 𝑝𝑝-dimensional hypercube so that the samples’ projections into (𝑝𝑝 − 1)-dimensional 
space do not share the exact location along the axes [52]. In a two-dimensional 
simplification, this criterion would result in samples being distributed on a grid in which 
only one sample is located in each row and each column. The designer can arbitrarily 
select the number of observations, which makes the LHS method attractive for studies 
based on expensive aerodynamic simulations. 
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In this paper, we use the Optimal Latin Hypercube (OLH) technique, which improves 
LHS’s space-filling properties using a columnwise-pairwise algorithm [53] to optimize 
sample distribution with respect to the S-optimality criterion [54]. The algorithm is 
executed using the lhs R package [55]. 

For the sake of computational efficiency of the optimization process, the initial 
dataset is limited to a number ensuring sufficient initial prediction quality to initiate the 
following adaptive sampling stage. The optimal number is unknown a priori, although 
some respected studies suggest approximation using the "10𝑝𝑝" rule-of-thumb [23,56], 
where 𝑝𝑝 is the number of design variables. Here, the design space has 12 dimensions, 
which would result in 120 initial samples; however, we follow the suggestion of a finite-
decimal spacing between observations [23]. Ultimately, the DoE contains 126 elements 
with an inter-distance of 1

(126−1)
= 0.008. 

The computational expense required to generate samples that construct the Kriging 
surrogate increases with the problem dimensionality, which restricts this method’s 
applicability to a moderate number of design variables. The limiting problem size 
reported in the literature is not accurate (e.g., 𝑝𝑝 < 50 in [11], 𝑝𝑝 < 20 in [14]) as it is 
dependent on the available resources. Nevertheless, the Kriging technique is prone to the 
curse of dimensionality and, as such, is not suited for extensively large optimization 
problems. 

The adaptive sampling, subsequent to the initial DoE, sequentially adds new 
observations to the dataset using current information about the predicted properties of 
the objective landscape. The process locates new samples with respect to the preselected 
infill criterion. For this purpose, we use the Expected Improvement (EI) function, 
proposed by Jones et al. [23], which takes advantage of the Kriging ability to estimate the 
prediction uncertainty.  

The EI criterion uses the Kriging variance to assess the possibility of the objective 
function value being lower than the current best prediction 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛  at any unobserved 
location. The addition of a new sample may bring an improvement 𝐼𝐼(𝑥𝑥)  equal to 
max

 
(𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑦𝑦(𝑥𝑥), 0). The value of 𝑦𝑦(𝑥𝑥) has yet to be discovered in unevaluated points, 

and it is modeled using the Kriging predictor 𝑌𝑌�(𝑥𝑥). As a result, the improvement becomes 
a random variable for which an expected value constitutes the EI function (Equation (10)). 

𝑀𝑀𝐼𝐼(𝑥𝑥) = 𝔼𝔼[𝐼𝐼(𝑥𝑥)] = 𝔼𝔼 �𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑌𝑌�(𝑥𝑥) 𝑖𝑖𝑓𝑓  𝑌𝑌� (𝑥𝑥) < 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛
0 𝐶𝐶𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

�  (10) 

Integration by parts of Equation (10) gives the following analytical formulation of the 
EI: 

𝑀𝑀𝐼𝐼(𝑥𝑥) = �
�𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑚𝑚�(𝑥𝑥)�𝐶𝐶𝐶𝐶𝐶𝐶 �𝑦𝑦𝑚𝑚𝑖𝑖𝑚𝑚−𝑚𝑚� (𝑥𝑥)

�̂�𝑠(𝑥𝑥)
� + �̂�𝑒(𝑥𝑥)𝑃𝑃𝐶𝐶𝐶𝐶 �𝑦𝑦𝑚𝑚𝑖𝑖𝑚𝑚−𝑚𝑚� (𝑥𝑥)

�̂�𝑠(𝑥𝑥)
� 𝑖𝑖𝑓𝑓 �̂�𝑒(𝑥𝑥) > 0

0 𝑖𝑖𝑓𝑓 �̂�𝑒(𝑥𝑥) = 0
�  (11) 

Here, 𝑚𝑚�(𝑥𝑥)  and �̂�𝑒(𝑥𝑥)  are the Kriging prediction mean and variance, 𝐶𝐶𝐶𝐶𝐶𝐶  is a 
cumulative distribution function, and 𝑃𝑃𝐶𝐶𝐶𝐶 is a probability density function of a standard 
normal distribution. 

Iterative introduction of new samples 𝑥𝑥∗ at locations maximizing the EI function 
constitutes the EGO algorithm (Equation (12)). 

𝑥𝑥∗ = argmax
𝑥𝑥∈𝔛𝔛

𝑀𝑀𝐼𝐼(𝑥𝑥)  (12) 

Maximization of the EI criterion might not be trivial because of its strong 
multimodality. This study uses for this purpose a derivative-supported GA algorithm 
genoud [57] available under the R package DiceOptim [48]. 

2.1.2. RBF-Based Mesh Morphing 
Out of a variety of mesh morphing methods, this study employs the RBF-based 

technique. RBF are mathematical functions originating from a multivariate approximation 
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of scattered data. Their value depends only on the distance from the function argument 
to the origin, called a control point. The RBF interpolates the value between control points 
according to the specific basis function properties while preserving it in the points’ 
location. 

A deliberate displacement of the control points introduces the desired deformation 
of the initial mesh. The motion is interpolated on the surrounding grid nodes’ positions 
according to the characteristics of the selected RBF. The interpolation function 𝔥𝔥(𝑥𝑥): ℝ3 ⟶
ℝ, (Equation (13)) defines particular nodes’ locations after deformation 𝑥𝑥′ = 𝑥𝑥 + 𝔥𝔥(𝑥𝑥). 

𝔥𝔥(𝒙𝒙) = ∑ 𝛾𝛾𝑖𝑖𝜑𝜑��𝒙𝒙 − 𝒙𝒙𝐶𝐶𝑖𝑖��
𝑁𝑁𝐶𝐶
𝑖𝑖=1 + 𝑝𝑝(𝒙𝒙)  (13) 

Here, 𝒙𝒙 ∈ ℝ3: 𝒙𝒙 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is an arbitrary spatial position, 𝒙𝒙𝐶𝐶𝑖𝑖 is a known position of 
the 𝑖𝑖 -th control point from a set of 𝑁𝑁𝐶𝐶  elements, and 𝛾𝛾𝑖𝑖  is a corresponding weight 
coefficient describing the strength of the 𝑖𝑖 -th interaction. The interpolation function 
comprises a linear combination of radial contributions described by RBF 𝜑𝜑(∙) —
depending solely on the Euclidean distance �𝑥𝑥 − 𝑥𝑥𝐶𝐶𝑖𝑖�—and a linear polynomial: 

𝑝𝑝(𝒙𝒙) = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥 + 𝛼𝛼2𝑦𝑦 + 𝛼𝛼3𝑧𝑧  (14) 

The introduction of the polynomial 𝑝𝑝(𝒙𝒙) ensures the uniqueness of the fit and allows 
for the affine motion. 

From among several RBF suited for multivariate problems (see, e.g., [58–62]), we 
select the smooth Gaussian RBF to prioritize the preservation of the mesh quality 
(Equation (15)). 

𝜑𝜑��𝑥𝑥 − 𝑥𝑥𝐶𝐶𝑖𝑖�� = 𝑒𝑒−�𝑥𝑥−𝑥𝑥𝐶𝐶𝑖𝑖�
2

/𝑐𝑐2  (15) 

The function’s shape is tuned by a parameter 𝑐𝑐, whose value was selected for this 
study in a trial-and-error process as equal to 150. 

The unknown values of weights 𝛾𝛾𝑖𝑖 (Equation (13)) and polynomial coefficients 𝛼𝛼𝑖𝑖 
(Equation (14)) are computed to satisfy the known displacement 𝔤𝔤𝑖𝑖 of each control point 
(Equation (16)). 

𝔥𝔥(𝑥𝑥𝐶𝐶𝑖𝑖) = 𝔤𝔤𝑖𝑖    for    𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶  (16) 

The given displacements are stored in an 𝑁𝑁𝐶𝐶 × 3 matrix 𝖌𝖌. Moreover, additional 
orthogonality requirements (Equation (17)) are introduced to equate the number of 
equations with the number of degrees of freedom, increased by the presence of the 
polynomial 𝑝𝑝(𝒙𝒙). 

∑ 𝛾𝛾𝑖𝑖
𝑁𝑁𝐶𝐶
𝑖𝑖=1 = 0   

∑ 𝛾𝛾𝑖𝑖𝑥𝑥𝐶𝐶𝑖𝑖
𝑁𝑁𝐶𝐶
𝑖𝑖=1 = 0   

∑ 𝛾𝛾𝑖𝑖𝑦𝑦𝐶𝐶𝑖𝑖
𝑁𝑁𝐶𝐶
𝑖𝑖=1 = 0   

∑ 𝛾𝛾𝑖𝑖𝑧𝑧𝐶𝐶𝑖𝑖
𝑁𝑁𝐶𝐶
𝑖𝑖=1 = 0  (17) 

A linear system of equations (Equation (18)) is constructed using the above 
conditions, which is subsequently solved for 𝑁𝑁𝐶𝐶 × 3  matrix 𝜸𝜸  of the interpolation 
function weights and 4 × 3 matrix 𝜶𝜶 of polynomial coefficients. 

�
𝑴𝑴 𝑷𝑷

𝓟𝓟𝑇𝑇 0
� �
𝜸𝜸

𝜶𝜶
� = �

𝖌𝖌

0
�  (18) 

The 𝑁𝑁𝐶𝐶 × 𝑁𝑁𝐶𝐶  interpolation matrix 𝑴𝑴 gathers RBF evaluations with respect to the 
distances between all considered control points (Equation (19)). 



Aerospace 2023, 10, 266 9 of 30 
 

 

𝑴𝑴 = �
𝜑𝜑��𝑥𝑥𝐶𝐶1 − 𝑥𝑥𝐶𝐶1�� ⋯ 𝜑𝜑 ��𝑥𝑥𝐶𝐶1 − 𝑥𝑥𝐶𝐶𝑁𝑁𝐶𝐶��

⋮ ⋱ ⋮
𝜑𝜑 ��𝑥𝑥𝐶𝐶𝑁𝑁𝐶𝐶 − 𝑥𝑥𝐶𝐶1�� ⋯ 𝜑𝜑 ��𝑥𝑥𝐶𝐶𝑁𝑁𝐶𝐶 − 𝑥𝑥𝐶𝐶𝑁𝑁𝐶𝐶��

�  (19) 

The orthogonality conditions (see Equation (17)) result in 𝑁𝑁𝐶𝐶 × 4  matrix 𝓟𝓟 
containing a unity column and all control points’ positions (Equation (20)). 

𝓟𝓟 = �
1 𝑥𝑥𝐶𝐶1 𝑦𝑦𝐶𝐶1 𝑧𝑧𝐶𝐶1
⋮ ⋮ ⋮ ⋮
1 𝑥𝑥𝐶𝐶𝑁𝑁𝐶𝐶 𝑦𝑦𝐶𝐶𝑁𝑁𝐶𝐶 𝑧𝑧𝐶𝐶𝑁𝑁𝐶𝐶

�  (20) 

After solving the system above, the post-deformation spatial position 𝒙𝒙′ = (𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′) 
of an arbitrary location is computed as an incremental displacement (Equation (21)). 

⎩
⎪
⎨

⎪
⎧
𝑥𝑥′ = 𝑥𝑥 + 𝔥𝔥𝑥𝑥(𝒙𝒙)

𝑦𝑦′ = 𝑦𝑦 + 𝔥𝔥𝑦𝑦(𝒙𝒙)

𝑧𝑧′ = 𝑧𝑧 + 𝔥𝔥𝑧𝑧(𝒙𝒙)⎭
⎪
⎬

⎪
⎫

  (21) 

In the definition of the optimization problem considered in the present paper, the 
Cartesian components of control points’ translation vectors serve as design variables. 

This study implements the mesh morphing algorithms using the RBF module of 
PyGeM (Python Geometrical Morphing) [63], an open-source Python programming 
language library for parameterization and deformation of complex geometries. 

A vital aspect of the functional mesh morphing process is maintaining the mesh 
quality. Such a problem usually comes down to controlling an appropriate quality metric. 
Selecting a measure essential for the specific flow solver’s error-free operation is 
fundamental. From the various metrics available in the literature [64,65], we select the 
mesh element orthogonality angle diagnostic as appropriate for the employed fluid 
dynamics solver. This measure compares the angle between adjoining mesh cell faces to 
the ideal level (Equation (22)). 

90° −  cos−1(𝒅𝒅 ⋅ 𝒏𝒏)  (22) 

The vector 𝒅𝒅 connects two element centroids, and 𝒏𝒏 is a face normal vector. The 
orthogonality metric positively correlates with the mesh quality as the grid element shape 
approaches the idealized form for high values. An area-weighted averaging over relevant 
faces gives a value for the specific control volume. Quality control involves monitoring 
the minimum of the metric among all mesh elements and comparing it to the value for the 
initial mesh as a reference. 

2.1.3. Achievement Scalarizing Function 
Multiple objectives and flight conditions considered in this study are combined using 

the augmented Chebyshev-type ASF [38]. This technique belongs to the a priori methods, 
for which the designer articulates their preferences about the relative importance of the 
objectives and conditions before the optimization process starts. Such an approach is 
particularly attractive for studies involving computationally expensive simulations, as 
only a fraction of the objective space needs to be resolved. 

Combining preferences into one function, such that the problem can be solved with 
a single objective optimizer, is usually called scalarization. Consequently, the resulting 
function is referred to as a scalarizing function. Although the weighted sum method [66] 
is the most intuitive representant of this class, it has an inherent drawback in its inability 
to find solutions on a non-convex portion of a Pareto front (see Figure 2a). This issue is 
not present in methods minimizing a metric of distance to a reference point arbitrarily 
located in the objective space (see Figure 2b). The ASF selected for this study employs the 
Chebyshev metric as a measure of distance and the optimization target 𝑓𝑓𝑇𝑇, expressing the 
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designer’s aspirations about particular objectives, as a reference point. The scalarizing 
function in a multi-point formulation is defined as follows: 

𝑌𝑌𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥�𝜆𝜆𝑗𝑗𝑘𝑘�𝑓𝑓𝑗𝑗𝑘𝑘(𝑥𝑥) − 𝑓𝑓𝑗𝑗𝑘𝑘𝑇𝑇�� + 𝜚𝜚 ∑ ∑ 𝜆𝜆𝑗𝑗𝑘𝑘�𝑓𝑓𝑗𝑗𝑘𝑘(𝑥𝑥) − 𝑓𝑓𝑗𝑗𝑘𝑘𝑇𝑇�𝑘𝑘𝑗𝑗   (23) 

Above, subscripts 𝑗𝑗  and 𝑘𝑘  refer to particular design conditions and objectives, 
respectively. The augmentation coefficient 𝜚𝜚  (together with the following term) 
guarantees proper Pareto optimality and takes an arbitrarily small positive value, here 
0.05. 

 
Figure 2. Non-convex Pareto front in different methods: (a) weighted sum, (b) reference point. 

The coefficients 𝜆𝜆𝑗𝑗𝑘𝑘  serve to normalize the objective values to a similar range 
(Equation (24)). 

𝜆𝜆𝑗𝑗𝑘𝑘 = 1
𝑓𝑓𝑗𝑗𝑗𝑗
𝑁𝑁−𝑓𝑓𝑗𝑗𝑗𝑗

𝑇𝑇   (24) 

The 𝑓𝑓𝑁𝑁  is called the nadir point and represents the upper bound of an objective 
value. The designer usually estimates its value based on knowledge about the landscape 
of the objective supported by their educated judgment. 

Except for the advantages referred to above and the proven efficiency, the ASF is 
characterized by an intuitive concept of setting a target and aiming at advancing on it. 

2.2. Optimization Problem 
The surrogate-based framework is applied to the I-31T aircraft air-intake duct multi-

point optimization problem. The I-31T flight demonstrator is a retrofitted make of the I-
23 “Manager” airplane. The plane was designed in Łukasiewicz Research Network—
Institute of Aviation [67] and modified under the EU R&D program ESPOSA (Efficient 
Systems and Propulsion for Small Aircraft) [68]. The redesign had in scope a replacement 
of the piston motor with the PBS TP100 turboprop engine [69–72]. Integration of the 
nominally pusher-purpose engine with the tractor-type airplane required the introduction 
of a tailored air delivery U-shaped duct. The duct was designed by Stalewski and Żółtak 
[73] using a parametric design strategy [74,75] relying on the NURBS-based in-house code 
PARADES [76]. This study takes the outcome of the abovementioned work as an initial 
point and aims to further improve the duct’s performance characteristics in various flight 
conditions. 

Figure 3 presents the initial air-intake duct geometry. The upstream portion of the 
channel is slightly S-shaped and transitions into a U-shaped duct with the flow direction. 
Further downstream, the U-duct interfaces with the engine compressor front face at the 
location marked as the Aerodynamic Interface Plane (AIP). The intake channel has a 
slightly converging character with a hydraulic diameter equal to 0.180 m at the duct’s 
entrance and 0.147 m at the AIP. The dummy extension, of a length of two diameters, is 



Aerospace 2023, 10, 266 11 of 30 
 

 

an artificial portion introduced to secure the flow solver’s stability. The duct’s inlet and 
AIP shapes and positions are constrained, i.e., not subject to shape deformation. 

 
Figure 3. Initial mesh with an indication of flow stations and mesh morpher control points’ 
locations. 

The surface of the duct in Figure 3 shows the initial computational mesh. The nine 
points surrounding the geometry indicate the baseline location of the mesh morpher 
control points subject to displacement during optimization. They are located in regions 
where presumed deformation should have a significant impact on the duct performance. 
The horizontal and vertical translation vector components form a set of design variables. 
Three pairs of points are bounded so that each duplet shares the exact translation. This 
strategy guarantees the maintenance of duct symmetry. Such a formulation results in 
twelve design variables, shown in Figure 3, whose ranges are defined in Table 1. The 
ranges corresponding to control points close to the AIP are narrower to avoid excessive 
deformations in the vicinity of the constrained section. Such distorted geometries would 
have a low probability of generating superior solutions. 

Table 1. Ranges of design variables. 

Design Variable Range of Displacement 
𝑥𝑥1, … , 𝑥𝑥4 ±100 mm 
𝑥𝑥5, 𝑥𝑥7, 𝑥𝑥8 ±50 mm 
𝑥𝑥6 ±75 mm 
𝑥𝑥9, … , 𝑥𝑥12 ±15 mm 

The amount of pressure loss along the air intake and the level of circumferential 
pressure distortion at the compressor entrance substantially influence the ultimate 
performance and operability of the airplane engine. These two objectives are subject to 
minimization in the present study: 

pressure loss coefficient: 𝑓𝑓1 ≡ 𝑑𝑑𝑃𝑃 = 𝑀𝑀𝑡𝑡
𝐼𝐼𝑁𝑁−𝑀𝑀𝑡𝑡

𝐴𝐴𝐼𝐼𝐴𝐴

𝑀𝑀𝑡𝑡
𝐼𝐼𝑁𝑁   (25) 

distortion coefficient: 𝑓𝑓2 ≡ 𝐶𝐶𝐶𝐶60 =
𝑀𝑀𝑡𝑡
𝐴𝐴𝐼𝐼𝐴𝐴− min

𝜃𝜃∈[0,2𝜋𝜋]
𝑀𝑀𝑡𝑡
𝐴𝐴𝐼𝐼𝐴𝐴�𝜃𝜃−𝜋𝜋6,𝜃𝜃+𝜋𝜋6�

𝑞𝑞𝐴𝐴𝐼𝐼𝐴𝐴
 (26) 

In the above equations, 𝑃𝑃𝑡𝑡𝐼𝐼𝑁𝑁 and 𝑃𝑃𝑡𝑡𝐴𝐴𝐼𝐼𝑀𝑀 denote total pressure values mass-averaged 
over the inlet and AIP cross-sections, respectively, and 𝑞𝑞𝐴𝐴𝐼𝐼𝑀𝑀 indicates dynamic pressure 
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mass-averaged across the AIP. The term min
𝜃𝜃∈[0,2𝜋𝜋]

𝑃𝑃𝑡𝑡𝐴𝐴𝐼𝐼𝑀𝑀 �𝜃𝜃 −
𝜋𝜋
6

,𝜃𝜃 + 𝜋𝜋
6
� refers to the lowest 

average pressure in the 60° sector, which is proven to have the most detrimental impact 
on the compressor performance [77]. This evaluation is realized by clocking a virtual 
sector around the AIP with ∆𝜃𝜃 = 10° angular intervals—as given schematically in Figure 
4. 

 

Figure 4. Illustration of 𝑚𝑚𝑖𝑖𝑛𝑛
𝜃𝜃∈[0,2𝜋𝜋]

𝑃𝑃𝑡𝑡𝐴𝐴𝐼𝐼𝑀𝑀 �𝜃𝜃 −
𝜋𝜋
6

,𝜃𝜃 + 𝜋𝜋
6
� evaluation process at the AIP. The blue segment 

represents the pressure averaging region. 

The multi-point optimization problem considers three I-31T airplane flight 
conditions: DP1—nominal cruise, DP2—low-altitude climb, and DP3—high-altitude 
cruise. Details of the design points and related environmental properties are gathered in 
Table 2. The corresponding targets and nadir points are given in Table 3. The goal for the 
nominal cruise has a priority over the off-design conditions to reflect the contribution of 
this design point to the aggregated efficiency over the entire flight mission. Both 
performance objectives are considered to be of equal importance and share similar targets 
for particular design points. On the grounds of the designer’s experience, the possible 
falloff of 200% for each objective gives a basis for the function’s upper bound estimation. 

Table 2. Details of operating conditions for considered design points. 

Design Point Altitude 
(m) 

A/C Velocity 
(m/s) 

Ambient  
Pressure 

(Pa) 

Ambient  
Temperature 

(K) 

Ambient  
Density 
(kg/m3) 

Engine Mass 
Flow Rate 

(kg/s) 
DP1: Nominal cruise 3 000 65 69 700 268.6 0.909 1.5 
DP2: Low-altitude climb 100 46 100 129 287.5 1.213 1.9 
DP3: High-altitude cruise 3 700 71 64 089 264.1 0.845 1.3 

Ambient conditions were evaluated with use of the U.S. Standard Atmosphere model [78]. 

Table 3. Target and nadir points for objectives under selected flight conditions. 

Design Point 𝒅𝒅𝑷𝑷  𝑫𝑫𝑫𝑫𝟔𝟔𝟔𝟔  

DP1: Nominal cruise target: 10% 
nadir: 200% 

target: 10% 
nadir: 200% 

DP2: Low-altitude climb target: 5% 
nadir: 200% 

target: 5% 
nadir: 200% 

DP3: High-altitude cruise 
target: 5% 

nadir: 200% 
target: 5% 

nadir: 200% 

2.3. Evaluation of Objectives 
2.3.1. Flow Solver Governing Equations 

The values of the objective functions are derived from the flow field solution of the 
air-intake duct CFD simulations. For this purpose, we use a Reynolds-averaged Navier–
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Stokes (RANS) solver capable of modeling three-dimensional turbulent viscous flow to 
accurately predict flow features characterized by a secondary flow motion, strong 
pressure gradients, and occurrence of separation. Such flow features are highly expected 
in channels of high curvature [79]. The solver is implemented using a commercial CFD 
code: ANSYS CFX Release 18.0. 

In this study, the code solves the following Favre-averaged Navier–Stokes 
conservation equations: 
• The continuity equation: 

𝜕𝜕𝜌𝜌�
𝜕𝜕𝑡𝑡

+ 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(�̅�𝜌𝑢𝑢�̇�𝚤� ) = 0  (27) 

• The momentum conservation equation: 
𝜕𝜕
𝜕𝜕𝑡𝑡

(�̅�𝜌𝑢𝑢�̇�𝚤� ) + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

��̅�𝜌𝑢𝑢�̇�𝚤�𝑢𝑢�̇�𝚥� � = 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�−𝑝𝑝𝛿𝛿𝑖𝑖𝑗𝑗 + 𝑜𝑜�̇�𝚤�̇�𝚥��� + �̅�𝜌𝜏𝜏𝑖𝑖𝑗𝑗�  (28) 

In the above formulations, 𝜌𝜌, 𝑢𝑢𝑖𝑖, and 𝑝𝑝 denote fluid density, velocity components, 
and static pressure, respectively. The tensor 𝑜𝑜𝑖𝑖𝑗𝑗  indicates the viscous shear stress 
component. The operators (∙)���  and (∙)�  stand for the Reynolds-averaged and Favre-
averaged mean variables, respectively [80]. The presence of the turbulent (Reynolds) 
stress tensor �̅�𝜌𝜏𝜏𝑖𝑖𝑗𝑗 = −𝜌𝜌𝑢𝑢𝚤𝚤′′𝑢𝑢𝚥𝚥′′���������  requires additional closure for the system of RANS 
equations. By employing the Boussinesq hypothesis, which is the foundation of eddy 
viscosity-based turbulence models, the Reynolds stress tensor is approximated as: 

�̅�𝜌𝜏𝜏𝑖𝑖𝑗𝑗 = −𝜌𝜌𝑢𝑢𝚤𝚤′′𝑢𝑢𝚥𝚥′′��������� ≅ 𝜇𝜇𝑡𝑡 �
𝜕𝜕𝑢𝑢𝚤𝚤�
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝚥𝚥�
𝜕𝜕𝑥𝑥𝑖𝑖

− 2
3
𝜕𝜕𝑢𝑢𝑗𝑗�
𝜕𝜕𝑥𝑥𝑗𝑗

𝛿𝛿𝑖𝑖𝑗𝑗� −
2
3
�̅�𝜌𝑘𝑘𝛿𝛿𝑖𝑖𝑗𝑗  (29) 

where 𝜇𝜇𝑡𝑡  is the turbulent viscosity determined using the selected turbulence model. 
Here, we use the two-equation SST k-ω turbulence model by Menter [81,82]. This model 
computes 𝜇𝜇𝑡𝑡  from a solution of additional transport equations for two variables: the 
turbulent kinetic energy 𝑘𝑘 and the specific dissipation rate 𝜔𝜔 (Equations (30) and (31)). 

𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡

(�̅�𝜌𝑘𝑘) + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

��̅�𝜌𝑢𝑢�̇�𝚥�𝑘𝑘� = �̅�𝜌𝜏𝜏𝑖𝑖𝑗𝑗
𝜕𝜕𝑢𝑢𝚤𝚤�
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝛽𝛽∗�̅�𝜌𝑘𝑘𝜔𝜔 + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�(𝜇𝜇 + 𝜎𝜎𝑘𝑘𝜇𝜇𝑡𝑡)
𝜕𝜕𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗
�  (30) 

𝜕𝜕
𝜕𝜕𝑡𝑡

(�̅�𝜌𝜔𝜔) + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

��̅�𝜌𝑢𝑢�̇�𝚥�𝜔𝜔� = 𝛼𝛼
𝜈𝜈𝑡𝑡
�̅�𝜌𝜏𝜏𝑖𝑖𝑗𝑗

𝜕𝜕𝑢𝑢𝚤𝚤�
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝛽𝛽�̅�𝜌𝜔𝜔2 + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�(𝜇𝜇 + 𝜎𝜎𝜔𝜔𝜇𝜇𝑡𝑡)
𝜕𝜕𝜔𝜔
𝜕𝜕𝑥𝑥𝑗𝑗
� + 2(1 − 𝐶𝐶1) 𝜌𝜌�𝜎𝜎𝜔𝜔2

𝜔𝜔
𝜕𝜕𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝜔𝜔
𝜕𝜕𝑥𝑥𝑗𝑗

  (31) 

Details of the SST k-ω model formulation used in this paper and a specification of the 
closure coefficients are available in [83].  

The system of transport equations is closed with the ideal gas law equation, solved 
for the density (Equation (32)). 

�̅�𝑝 = �̅�𝜌𝑅𝑅𝑇𝑇�   (32) 

Here, 𝑅𝑅 is the specific gas constant for air, and 𝑇𝑇 is the fluid temperature. This study 
employs an isothermal model, for which the temperature is selected and kept constant 
according to the specifics of particular design points. Such an assumption is well 
grounded for a low Ma number flow regime and the absence of heat sources, which is 
accurate for the intake duct conditions. 

2.3.2. Validation of Turbulence Modeling Technique 
The selection of the SST k-ω turbulence model was validated prior to the 

optimization study. The model’s predictive quality was compared with the eddy 
viscosity-based k-ε turbulence model and the non-linear k-ε Explicit Algebraic Reynolds 
Stress Model (k-ε EARSM). All three models were considered in two options: with and 
without the curvature correction (CC) term. The flow field predictions for the six 
abovementioned models were compared with the experimental data for a benchmark U-
duct provided by Azzola et al. [84,85]. Details of the validation study are available in [37]. 
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Figure 5 groups the study results for the longitudinal (U) and circumferential (V) 
velocity components normalized by the bulk velocity (Ub) at the entrance to the duct’s 
curved portion. The k-ε turbulence model showed the most drastic underprediction in the 
core flow (r/D = 0) deceleration at the duct bend (see Figure 5a). Quite oppositely, the k-ε 
EARSM model failed to predict the circumferential flow motion at the station downstream 
of the curved portion. Overall, the study showed the best agreement between the flow 
simulations and the experimental reference data for the SST k-ω turbulence model. 
Moreover, no significant beneficial influence of the curvature correction term was 
detected. Following this reasoning, the SST k-ω model with deactivated CC term is 
employed in this work. 

 
Figure 5. Prediction of normalized longitudinal (U) and circumferential (V) velocity components for 
various turbulence models in a 180° curved duct with a circular cross-section. Station: (a,b) at 90° 
bend; (c,d) two diameters downstream of the curved section. Adapted from [37]. 

2.3.3. Details of the Flow Field Modeling Approach 
Steady Navier–Stokes equations are discretized by the element-based finite volume 

method, with a second-order upwind approximation of convective fluxes and a second-
order central representation of diffusive fluxes. An additional limiter using the Barth and 
Jespersen principles [86] is activated to maintain the solution’s boundedness. The solution 
to the equations is obtained using the coupled pressure-based algorithm iterated until the 
normalized residuals of the momentum and transport equations drop below 10−5. 

The boundary conditions mimic the mission characteristics given in Table 2. The 
duct’s inlet flow conditions are defined, with the total pressure value calculated using 
Bernoulli’s equation for specific flight speed and altitude. Furthermore, the inlet 
turbulence intensity is set to 𝑇𝑇𝑢𝑢 = 10%, and the eddy-to-molecular viscosity ratio equals 
𝜈𝜈𝑡𝑡 𝜈𝜈⁄ = 100. The amount of airflow accepted by the engine at specific design points is 
reflected through the mass flow rate condition at the domain outlet. The duct’s walls obey 
the non-slip boundary condition. 

The flow domain corresponding to the duct’s interior is discretized using a 
structured hexahedral mesh. To secure a high-level resolution in the near-wall region 
accompanied by quality elements in the flow core, the mesh is built in the hybrid O-H 
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grid topology (see Figure 6). On average, the non-dimensional wall distance is 𝑦𝑦+~1.7 
with extreme variation up to 𝑦𝑦+ ≤ 3.5. These values hold throughout the optimization 
process. 

 
Figure 6. O-H grid at the duct’s AIP. 

The execution of the comparative study secures the optimization results’ 
independence from the mesh size. Four different grid sizes are compared against the duct-
wise pressure distribution. The mass-averaged total pressure values are normalized using 
the duct inlet pressure. The results are compared in Figure 7. The two finest grids 
(1,451,000 and 8,007,000 cells) show no difference in predictions for the vast majority of 
the duct length (~95%). A minor deviation is observable close to the duct’s outlet. Hence, 
the mesh with 1,451,000 elements is used as it has sufficient prediction quality and protects 
the computational economy of the simulations. 

 
Figure 7. Results of the duct grid independence study. L = duct centerline length. Numerical values 
indicate the number of mesh elements. 

3. Results and Discussion 
3.1. Metamodel Fit Validation 

Before the optimization began, the Kriging surrogate was assessed for its ability to 
generalize given data, i.e., to predict objective values at unobserved locations. For this 
purpose, we used the leave-one-out cross-validation (LOO-CV) procedure, described in 
detail in Appendix A. 
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The validation process was executed for the nominal ASF formulation and its 
mathematical transformations given in Table 4. This action anticipates potential 
deficiencies in the surrogate’s prediction accuracy. In such a scenario, a deterministic 
mathematical function can be applied to the data set to deliberately impact its distribution 
and potentially improve the metamodel’s fit quality. 

Table 4. ASF transformation functions. 

Transforming Function Definition 
Natural logarithm ln𝑦𝑦 
Square root �𝑦𝑦 

Negative inverse square root 
−1
�𝑦𝑦

 

Negative inverse 
−1
𝑦𝑦

 

Cube root �𝑦𝑦3  

The outcome of the LOO-CV is presented graphically using diagnostic plots in 
Figures 8–10. In Figure 8, values on the horizontal axis denote exact evaluations of each 
observation, while the vertical axis shows the surrogate prediction when the 
corresponding sample is omitted. The markers would be distributed perfectly on a 
diagonal in a utopian metamodel with zero-error predictions. A realizable high-
performing surrogate would be characterized by samples located in close proximity to the 
imaginary line. Figure 8a shows the results for the nominal ASF. The samples 
approximately follow the diagonal and are reasonably distributed along the reference line. 
Only a few observations slightly depart from the ideal arrangement. The results for 
transformed data (see Figure 8b–f) present a similar pattern, with a slight tendency in 
some functions to cluster around the higher values (e.g., Figure 8d,e). 

 
Figure 8. LOO−CV plots for various objective function transformations. Blue lines indicate locations 
of perfect predictions. 
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Figure 9 shows the distribution of the cross-validated residuals, which—as discussed 
in Appendix A—should be bounded in a ±3 interval. Inspection of the residuals for 
nominal ASF (see Figure 9a) reveals one observation that slightly exceeds the desired 
limits with a residual value of ~3.5. Except for that fault, the residuals are randomly 
distributed along the sample values with no apparent pattern. The abovementioned 
deficiency does not impose a rejection of the model, although it might adversely affect its 
prediction accuracy. Most of the considered data transformations (see Figure 9b–e) do not 
remove the outlier, although the negative inverse function reduces it to the threshold 
value. Quite oppositely, the cube root transformation, given in Figure 9f, reduces the error 
variance to a healthy range without affecting randomized distribution. 

 
Figure 9. Plots of standardized cross-validated residuals for various objective function 
transformations. Red dashed lines indicate interval of +/− 3 standard deviations. 

The quantile-quantile plot (Q-Q plot) in Figure 10 helps to examine the standardized 
residuals’ normality and homoscedasticity. The assumption of normal distribution should 
be satisfied for the legitimate use of MLE in the surrogate’s hyperparameter estimation. 
Moreover, following the Kriging principles, the residuals should be homoscedastic, i.e., 
the variance ought to be homogeneous across the design space [87]. The Q-Q plot draws 
the residuals’ quantiles sorted in ascending order (vertical axis) against the quantiles from 
the theoretical Gaussian distribution (horizontal axis). For normally distributed residuals, 
markers on the plot would follow the diagonal. A random spread of points along this line 
manifests residuals’ homoscedasticity. 

The Q-Q plot for the original ASF (see Figure 10a) reveals that the extreme positive 
residuals tend to deviate counter-clockwise relative to the reference line. Such a pattern 
indicates that more data are located on the range’s right bound, i.e., the distribution is 
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‘heavy-tailed’. Moreover, the lack of a similar pattern on the left tail suggests asymmetry 
in the distribution with a tendency to right-skewness. Inspection of the remaining Q-Q 
plots reveals that only two transformations, negative inverse square root (Figure 10d) and 
cube root (Figure 10f), normalize the distribution of the standardized residuals. 

 
Figure 10. Q−Q plot for various objective function transformations. Blue lines indicate target normal 
distribution. 

As the cube root transformation is superior in the normalization of residuals and 
maintains the error variance in a healthy span, we use it to transform the ASF in further 
studies. Moreover, this transformation is insensitive to the sign of input, which supports 
the robustness of the process. Although this is an optimistic scenario, the ASF formulation 
potentially produces negative values for solutions superior to the presumed target. 
Although less popular than other considered transformations, the cube root has been 
recognized in applications for long-tailed data [88]. 

3.2. Sensitivity Analysis 
A sensitivity analysis was executed to assess how strong is the dependence of the 

surrogate’s output (i.e., the objective function prediction) on variance in particular design 
variables. As a result, less impactful variables could be identified and removed from 
further consideration, thus reducing the computational cost of the optimization. 

We used Functional Analysis of Variance (FANOVA), described in detail in 
Appendix B. This method assesses the contribution of particular inputs and interactions 
between them using the notion of Sobol’ indices [89,90]. FANOVA is particularly 
beneficial in use with surrogates that might be non-linear and non-monotonic but are 
inexpensive in the output estimation. 
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Figure 11 displays graphically the outcome of the FANOVA analysis applied to the 
Kriging surrogate constructed on the DoE observations. The height of the bars represents 
the value of the total effect Sobol’ indices, while black and gray bars’ fractions denote the 
main effect and aggregated higher-order interactions, respectively.  

 
Figure 11. The effect of FANOVA analysis on model considering 12 variables. Bar height indicates 
the total effect Sobol’ index value; black color represents the main effect index, and gray color 
denotes all higher-order interactions. 

Undoubtedly, the design variable 𝑥𝑥11 has the most substantial influence on variance 
in the objective function. The second most impactful is the variable 𝑥𝑥12 . Both factors 
correspond to the spatial motion of the control point located in the duct’s inner wall area 
(see Figure 3). Except for the high total index value, these variables are characterized by a 
strong direct effect, suggesting their crucial influence on the final optimization results. 

Quite oppositely, the impact of variables {𝑥𝑥1, 𝑥𝑥5, 𝑥𝑥7, 𝑥𝑥10}  is less significant. Their 
already low total effect value is related mainly to the higher-order interactions rather than 
to the direct impact. For this reason, these variables are removed from the design space, 
notably reducing its dimensions and increasing the process’s cost-efficiency. Variable 𝑥𝑥6 
presents a similar level of total impact to 𝑥𝑥7, although its main influence is slightly more 
prominent. Contrarily, the direct effect of 𝑥𝑥9  is minor; however, strong higher-order 
interactions result in a meaningful value of the total effect index. It depends on the 
designer’s intuition whether such variables should be further considered; here, we 
preserve them in the study. 

3.3. Assessment of Deformed Mesh Quality 
This section discusses the influence of shape deformation on the mesh quality using 

the metric defined in Section 2.1.2. Figure 12a displays the mesh orthogonality angle 
distribution plotted on a symmetry plane of selected exceptionally deformed duct 
geometry. Although a fall in the quality criterion is evident in the strongly warped 
regions, the bulk values are well above the warning limit of 20°. 
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(a) (b) 

Figure 12. Assessment of deformed mesh quality: (a) mesh orthogonality angle distribution at the 
duct symmetry plane for a selected solution; (b) histogram of minimum value of mesh elements’ 
orthogonality angle distribution in all optimization cases. The dashed line indicates the 
orthogonality angle value for the reference case. 

Figure 12b shows a histogram of the minimum value of the orthogonality angle for 
all solutions produced in the course of optimization. The dashed line denotes the metric’s 
reference value for the baseline geometry. The bulk of generated solutions maintain the 
quality criterion value close to the reference level. Some cases, however, report a reduction 
in the orthogonality angle, yet still without violating the warning limit. Finally, a few 
solutions show criterion values below 20°. Such distortion in the mesh elements might 
trigger a warning for the flow solver. After inspection, the cases were identified as 
excessively deformed and, as such, located far from the objective target. These instances 
did not harm the solver’s stability and convergence; hence, they were accepted. 

3.4. Optimization Results 
Figure 13 shows the contours of the baseline and optimized shape displayed on the 

duct’s symmetry cross-section. The optimization affects the geometry mostly in the 
transition from the channel to the AIP. The sharp shape change from the inner wall to the 
compressor entrance is moderated in the final solution. Moreover, the optimizer reduced 
the curvature of the inner and outer walls; however, the effect on the concave side is more 
apparent. 

 
Figure 13. Contours of the duct’s symmetry plane for reference and optimized shape. 

Table 5 groups the optimized objective function values for all considered conditions 
and compares them with the reference levels. The results are presented on an absolute 
scale and as a percentage of improvement with respect to the baseline shape. 
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Undoubtedly, the optimizer was successful in finding a solution that improves both 
objectives for all considered design points. 

Table 5. Quantitative optimization results. 

 Reference Optimized Solution 
 𝒅𝒅𝑷𝑷 𝑫𝑫𝑫𝑫𝟔𝟔𝟔𝟔 𝒅𝒅𝑷𝑷 𝑫𝑫𝑫𝑫𝟔𝟔𝟔𝟔 

Design Point   Absolute Relative Absolute Relative 
DP1: Nominal cruise 0.00512 0.09640 0.00493 −3.71 % 0.09190 −4.67 % 
DP2: Low-altitude climb 0.00459 0.09369 0.00443 −3.49 % 0.08943 −4.55 % 
DP3: High-altitude cruise 0.00471 0.09679 0.00454 −3.61 % 0.09252 −4.41 % 

The greatest improvement level in both objectives is attained for the nominal cruise, 
which corresponds with the predefined preferences in targets (see Table 3). Furthermore, 
comparable gains in the pressure loss and the distortion coefficient coincide with the 
equality in targets set for both objectives. However, a slight consistent preference towards 
refinement in the distortion coefficient is noticeable. Such an outcome confirms the ability 
of the ASF formulation to guide optimization toward the presumed target, although a 
margin has to be considered for potential moderate departures. 

Figure 14 shows a cumulated best value of the ASF and the convergence criterion 
value along the EGO steps. A rapid convergence towards the optimized solutions is 
evident. The optimizer finds a case significantly improving the initial ASF value (marked 
by the dashed red line) already in the first iteration. Such superior performance results 
from a fine design space sampling and high-quality surrogate fit. 

 
Figure 14. Cumulated minimum value of the ASF (a) and convergence criterion evolution (b) in the 
course of optimization. 
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The objective space with DoE and EGO evaluations is displayed in Figure 15 for the 
three considered design points. For all conditions, the instances from the optimization 
stage converge towards an imaginary line connecting the reference and target points. The 
vast majority of the Pareto front is not resolved, which is intentional and prioritizes the 
use of computational resources in the target’s neighborhood. Such an observation shows 
the algorithm’s ability to follow the direction defined by a predetermined target. 

 
Figure 15. Optimization solutions in the objective function space for the three design points. 
Markers indicate optimization target (target), evaluation of initial geometry (reference), and best 
obtained solution (best). 

Figure 16 gives insights into the improvements in the distortion coefficient. Figure 
16a contrasts radially averaged total pressure values for the reference and optimized 
solutions. The pressure value is normalized against the average dynamic pressure over 



Aerospace 2023, 10, 266 23 of 30 
 

 

the AIP and plotted against the azimuthal position at the compressor face. For the 
optimized solution, an apparent reduction in the total pressure’s lowest peak value 
manifests for all considered design points. The source of refinement is located in the 150–
210° sector, corresponding with the transition area from the duct’s inner wall to the AIP. 
Such an improvement translates directly to an enhancement in the distortion coefficient. 
A slight shift in the total pressure curves for the optimized solution toward higher values 
is an effect of reduction in the duct’s pressure loss; however, it does not directly impact 
the distortion metric. 

The distortion coefficient value can be visualized intuitively as an area between a 
plane-averaged total pressure (solid lines in Figure 16a) and total pressure averaged over 
the worst 60° sector (dashed lines in Figure 16a). The areas are marked with shaded fields 
with a color corresponding to the reference (gray) and optimized (blue) solutions. The 
area of the fields representing the improved solution is visibly smaller than the 
corresponding regions for the baseline case. Such an observation confirms the quantitative 
results given above in Table 5. 

  
(a) (b) 

Figure 16. Details of the distortion coefficient improvements: (a) radially averaged total pressure 
distribution at AIP. Solid and dashed lines indicate total pressure levels averaged over the AIP and 
worst 60° sector, respectively; (b) total pressure at AIP normalized by the average dynamic head. 
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Figure 16b groups the maps of total pressure normalized by the average dynamic 
head and plotted at the AIP. The pressure field homogenization is visible for all 
conditions, although the most significant effect is noticeable for Design Point 1. This 
corresponds with the highest 𝐶𝐶𝐶𝐶60 improvement observed in the quantitative data. The 
reduction in the low-pressure zone visible in the six o’clock position matches the 
improvement in the 150–210° sector discussed above. A slight improvement is observable 
in the twelve o’clock region corresponding to the convex wall transition to the AIP. This 
local enhancement can also be seen in Figure 16a for sector ~360 ± 30°. Even though such 
improvement does not influence the distortion metric, an increase in the pressure field 
uniformity at the compressor face is a positive effect. 

Figure 17 shows details of the flow field with regard to the pressure loss coefficient 
improvements. Figure 17a displays the flow loss evolution along the duct through a local 
pressure loss coefficient contour. This metric is conceptually similar to the pressure loss 
objective; however, it quantifies the drop from the duct’s inlet to each spatial location 
(Equation (33)). 

𝑑𝑑𝑃𝑃∗ = 𝑀𝑀𝑡𝑡
𝐼𝐼𝑁𝑁−𝑀𝑀𝑡𝑡
𝑀𝑀𝑡𝑡
𝐼𝐼𝑁𝑁   (33) 

 

 

 

(a) (b) 

Figure 17. Details of the pressure loss coefficient improvements: (a) maps of local pressure loss 
coefficient; (b) flow streamlines colored by the vertical velocity component at cross−section plane 
downstream of the AIP. 

The most apparent enhancement is the reduction in pressure loss in the transition 
region from the duct’s convex wall to the AIP. Adjusting the shape of the wall’s top sector 
and the above-discussed reduction in the low-pressure zone on the concave side transition 
removes a secondary flow motion downstream of the AIP. This improvement is visualized 
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in Figure 17b, in which the vertical velocity component values color flow streamlines. The 
two counter-rotating vortices, visible at the twelve o’clock position in the baseline case, 
are evidently removed in the optimized solution. 

The reduction in the concave wall curvature and expansion of the duct’s cross-section 
results in a diffusing shape, bringing additional pressure recovery from the flow kinetic 
energy. This effect is subtle but still contributes to the duct’s overall performance. 

4. Conclusions 
The proposed aerodynamic optimization framework, constructed from state-of-the-

art components in advanced surrogates, mesh morphing, and distance-based 
scalarization, was applied to the multi-point optimization problem of an I-31T airplane 
air-intake duct. The study aimed to simultaneously improve the duct’s pressure loss and 
flow distortion under three flight conditions: nominal cruise, low-altitude climbing, and 
high-altitude cruise. 

The optimizer obtained both objective values superior to the reference configuration 
for all considered design points. The consistent level of improvements in the pressure loss 
and flow distortion confirms the capacity of the ASF-based formulation to guide 
optimization toward the presumed target. The study results prove the methodology’s 
potential for optimizing complex multi-objective air-intake duct problems in multiple 
flight conditions while saving substantial computational resources. 

Moreover, FANOVA-based sensitivity analysis was recognized as a valuable tool for 
assessing the importance of particular design variables. Application of this technique is 
particularly beneficial in Kriging-based frameworks where the use of surrogate 
predictions balances high computational costs related to the variance-based techniques. 

This research, however, may be subject to potential limitations regarding the 
generalization of its results. Primarily, the number of design variables was relatively 
moderate, which favors the use of the Kriging surrogate. Although literature sources 
report a considerable margin for increased design space dimensions, studies on larger 
problems should be executed to prove the framework’s efficiency. Moreover, the results 
revealed that all considered flight conditions were coherent in the direction of shape 
improvements. Although justified for this particular application, this scenario might only 
represent part of the class of problems. Future studies should cover scenarios with design 
points of contradicting performance requirements to generalize the results. Finally, the 
optimization was initiated from an already well-designed solution, which aimed to set an 
ambitious task for the optimizer but also resulted in a relatively low level of required 
deformations. Optimization studies demanding significant geometry adjustments may be 
subject to numerical errors resulting from an excessively distorted mesh. Such problems 
may require the implementation of a solution for handling erroneous data samples. 

Optimization studies using the proposed framework could be expanded to more 
holistic multi-disciplinary problems. The most natural development would include solid 
body mechanics addressing the structural targets, although involvement of the intuitively 
more distant performance and economic objectives seems feasible. No fundamental 
reasons were identified that might inhibit the ASF-based formulation in handling such 
heterogeneous goals, although this would need to be proved in further studies. 
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Appendix A. Leave-One-Out Cross-Validation 
The leave-one-out cross-validation (LOO-CV) technique [91] sequentially omits one 

sample from the set of 𝑁𝑁  observations, and the metamodel is constructed from the 
remaining 𝑁𝑁 − 1 points. Afterward, the objective is predicted at the left-out sample’s 
location, and the estimated value is compared with the known evaluation. The concept of 
LOO-CV is demonstrated schematically in Figure A1. The operation repeats 𝑁𝑁 times, 
resulting in an assessment of prediction accuracy for the whole observation set. 

 
Figure A1. Schematic representation of LOO-CV concept for one-dimensional design space. 

The measure of difference between the true objective value 𝑦𝑦(𝒙𝒙𝑖𝑖)  and the 
corresponding LOO-CV prediction 𝑦𝑦�𝔇𝔇−𝑖𝑖(𝒙𝒙𝑖𝑖) is termed a residual (Equation A1). 

𝜖𝜖𝑖𝑖 = 𝑦𝑦(𝒙𝒙𝑖𝑖) − 𝑦𝑦�𝔇𝔇−𝑖𝑖(𝒙𝒙𝑖𝑖)  (A1) 

The residuals are standardized using the variance estimator 𝑒𝑒𝔇𝔇−𝑖𝑖
2� (𝒙𝒙𝑖𝑖) available in 

the Kriging surrogate (Equation A2). 

𝜖𝜖𝑖𝑖𝑧𝑧 = 𝜖𝜖𝑖𝑖

�𝑠𝑠𝔇𝔇−𝚤𝚤
2�

  (A2) 

If the residuals approximately follow the Gaussian distribution, the objective 
evaluation locates within three standard deviations from the predicted Kriging mean with 
a confidence level of 99.7%. Thus, a surrogate with good prediction quality should be 
characterized by standardized residuals bounded in a ±3 interval [23]. The probability of 
a residual being further away is less than 0.3%. Detecting such an outlier may suggest 
poor prediction quality in the vicinity of the corresponding observation. 

Appendix B. Functional Analysis of Variance (FANOVA) 
Consider that the design space 𝔛𝔛 forms a 𝑝𝑝-dimensional hypercube and 𝒙𝒙 ∈ 𝔛𝔛 is a 

vector of independent random variables normalized to a range [0,1]. The surrogate model 
is described by a square-integrable function 𝑌𝑌 = 𝑓𝑓(𝑥𝑥)  defined in 𝔛𝔛 , which can be 
decomposed using the FANOVA representation [89]: 

𝑌𝑌(𝒙𝒙) = 𝑓𝑓0 + ∑ 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑝𝑝
𝑖𝑖=1 + ∑ 𝑓𝑓𝑖𝑖𝑗𝑗�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�1≤𝑖𝑖<𝑗𝑗≤𝑝𝑝 + ⋯+ 𝑓𝑓1,…,𝑝𝑝�𝑥𝑥1, … , 𝑥𝑥𝑝𝑝�  (A3) 

In the above equation, the centered and orthogonal terms denote: 

mean value 𝑓𝑓0 = 𝔼𝔼[𝑌𝑌(𝒙𝒙)] (A4) 

main effects 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) = 𝔼𝔼[𝑌𝑌(𝒙𝒙)|𝑥𝑥𝑖𝑖] − 𝑓𝑓0 (A5) 
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second-order interactions 𝑓𝑓𝑖𝑖𝑗𝑗�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 𝔼𝔼�𝑌𝑌(𝒙𝒙)|𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� − 𝑓𝑓0 − 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) − 𝑓𝑓𝑗𝑗�𝑥𝑥𝑗𝑗� (A6) 

The interactions of higher orders can be constructed accordingly as conditional 
expected values. 

A similar technique serves for a decomposition of the model output’s variance: 

𝑉𝑉𝑚𝑚𝑟𝑟�𝑌𝑌(𝒙𝒙)� = ∑ 𝑉𝑉𝑚𝑚𝑟𝑟�𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)�
𝑝𝑝
𝑖𝑖=1 + ∑ 𝑉𝑉𝑚𝑚𝑟𝑟 �𝑓𝑓𝑖𝑖𝑗𝑗�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗��1≤𝑖𝑖<𝑗𝑗≤𝑝𝑝 + ⋯  

+𝑉𝑉𝑚𝑚𝑟𝑟 �𝑓𝑓1,…,𝑝𝑝�𝑥𝑥1, … , 𝑥𝑥𝑝𝑝��  
(A7) 

The individual contribution of variable 𝑥𝑥𝑖𝑖 to the variance in the model’s output is 
quantified by the main effect Sobol index: 

𝑀𝑀𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑉𝑉�𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖)�
𝑉𝑉𝑉𝑉𝑉𝑉�𝑌𝑌(𝒙𝒙)�

  (A8) 

The influence of interaction between any two variables 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 is described by 
the second-order Sobol’ index: 

𝑀𝑀𝑖𝑖𝑗𝑗 =
𝑉𝑉𝑉𝑉𝑉𝑉�𝑓𝑓𝑖𝑖𝑗𝑗�𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗��

𝑉𝑉𝑉𝑉𝑉𝑉�𝑌𝑌(𝒙𝒙)�
  (A9) 

All higher-order interactions can be assessed by Sobol’ indices, constructed following 
a similar concept of ratios between decomposed higher-order terms and the overall output 
variance. The values of main and higher-order indices for all variables sum to unity 
(Equation (A9)). 

∑ 𝑀𝑀𝑖𝑖
𝑝𝑝
𝑖𝑖=1 + ∑ 𝑀𝑀𝑖𝑖𝑗𝑗1≤𝑖𝑖<𝑗𝑗≤𝑝𝑝 + ⋯+ 𝑀𝑀1,…,𝑝𝑝 = 1  (A9) 

The aggregated contribution to the model’s output variance of the 𝑖𝑖-th variable is 
measured by the total effect Sobol’ index: 

𝑀𝑀𝑖𝑖𝑇𝑇 = 𝔼𝔼[𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌(𝑥𝑥)|𝒙𝒙\{𝑥𝑥𝑖𝑖})]
𝑉𝑉𝑉𝑉𝑉𝑉�𝑌𝑌(𝑥𝑥)�

  (A10) 

In practice, only main and total indices are assessed for economic reasons. Knowing 
them allows for an estimation of the combined influence of all-order interactions. 

The values of the Sobol’ indices are to be computed numerically. For this purpose, 
this study employs the FAST algorithm [92] available in the R package sensitivity [93]. 
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