
Citation: Dong, X.; Wang, X.; Peng,

L.; Wang, M.; Wang, G. An Efficient

Task Synthesis Method Based on

Subspace Differential Patterns for

Arrangements of Event Intervals

Mining in the Avionics Cloud System

Architecture. Aerospace 2023, 10, 249.

https://doi.org/10.3390/

aerospace10030249

Academic Editor: Carlos

Insaurralde

Received: 19 January 2023

Revised: 3 March 2023

Accepted: 3 March 2023

Published: 5 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

An Efficient Task Synthesis Method Based on Subspace
Differential Patterns for Arrangements of Event Intervals
Mining in the Avionics Cloud System Architecture
Xiaoxu Dong 1, Xin Wang 2, Ling Peng 2, Miao Wang 1,* and Guoqing Wang 1

1 School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
2 China Ship Development and Design Center, Wuhan 430000, China
* Correspondence: miaowang@sjtu.edu.cn

Abstract: Avionics Cloud is a new multi-platform avionics system architecture that provides dynamic
access, resource pooling, intelligent scheduling, on-demand service and other cloud computing
features. Using Avionics Cloud to rationalize the order of multi-flight platform task execution and
realize multitask synthesis is a challenging problem. In this paper, we propose an Efficient Task
Synthesis Method based on Subspace Differential Patterns for Arrangements of Event Intervals
Mining-DiMining. For tasks executed in a multi-platform Avionics Cloud system with dynamic
characteristics of time intervals, DiMining is proposed. The algorithm mines the differential frequent
task execution event interval patterns related to execution efficiency from the scenario dataset with
high execution efficiency and the scenario dataset with low execution efficiency in order to identify
key task patterns related to execution efficiency and improve the task synthesis design efficiency of
the multi-platform Avionics Cloud system. Furthermore, in order to improve the mining efficiency of
the algorithm, this algorithm designs a variety of pruning strategies to ensure that two differential
time interval patterns with high and low functional execution efficiency are mined at one time without
preserving the set of candidate items. The experimental results show that the DiMining algorithm
is more efficient than the traditional algorithm on the open dataset. The DiMining algorithm is
used to mine the 350-field high-efficiency operation scenario dataset and the 350-field efficiency
operation scenario dataset under the constructed typical UAV cluster co-detection task scenarios.
Based on the simulation results, the DiMining algorithm is able to effectively support the design of
multi-platform Avionics Cloud system task synthesis architecture and improve the efficiency of UAV
cluster collaborative detection.

Keywords: Avionics Cloud system; task synthesis; subspace differential patterns; arrangements of
event intervals mining

1. Introduction

Currently, open system architecture ideas have been used in avionics software devel-
opment to reduce the cost of avionics system development. Open system architecture aims
to enhance the portability and reconfigurability of avionics software in avionics systems
with different hardware bases, thus supporting the continuous upgrading of avionics
systems [1–5]. The Future Airborne Capable Environment (FACE) architecture is an emerg-
ing open and reconfigurable avionics system architecture in recent years [6]. Under the
FACE architecture, single-platform avionics systems cannot fully meet the increasingly
complex systemic task requirements. Today, avionics equipment usually focuses on human
resources, security and perceptual impact [7,8]. With the increase in systemic applica-
tions, future avionics systems must evolve toward cross-platform synthesis. Avionics
systems have undergone four generations of development from discrete platform avion-
ics systems [9]. The existing research on multi-platform avionics systems proposed a
three-tier architecture for Avionics Cloud computing and the concept of “avionics cloud”

Aerospace 2023, 10, 249. https://doi.org/10.3390/aerospace10030249 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10030249
https://doi.org/10.3390/aerospace10030249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-2049-295X
https://doi.org/10.3390/aerospace10030249
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10030249?type=check_update&version=2

Aerospace 2023, 10, 249 2 of 21

system [10,11]. The Avionics Cloud computing environment has a set of distributed com-
puting frameworks, including a computing model, a hardware framework, and a software
model [12]. Most of the existing studies are based on a cloud computing mechanism
to process information, which cannot cover the organization and management of tasks,
functions, and resources. It is important to study the Avionics Cloud architecture from the
perspective of task organization, function organization, and resource organization.

The Avionics Cloud system provides resource virtualization capabilities that can iden-
tify and connect the various flight units in the system. Ultimately, networked collaborative
capabilities can be realized to efficiently perform tasks such as long-range communications,
route navigation, and disaster prediction. The task allocation of multi-flight platform avion-
ics task system in the avionics system cloud organization architecture is a difficult point
to study. The article [13] proposes a three-branch clustering-based scheduling algorithm
for cloud task optimization to improve scheduling efficiency by granularizing tasks in the
cloud. The article [14] uses a deep reinforcement learning scheduling algorithm based on an
action branching architecture improvement to comprehensively sense potential correlations
between scheduling jobs in the cloud system. The article [15] describes recent advances in
the problem of resource scheduling optimization in cloud-side collaboration and gives a
reference scheme for resource scheduling optimization adapted to the characteristics of the
scenario. Existing studies on task allocation in cloud architectures have not been analyzed
from the perspective of task synthesis. Task synthesis refers to the gradual decomposition
of requirements on top of unit resources and functions with corresponding capabilities.
To cope with the increasing number and complexity of task patterns in the context of task
integration, data mining techniques can be applied to assist in task sequence analysis. The
specific application is as follows: Avionics Cloud completes the optimal task sequence with
the help of a data mining algorithm based on a historical task database through known
task objectives, to improve the efficiency of task completion. To effectively balance the
system load and data mining as a means, the study of task allocation relationship based on
spatiotemporal data mining for Avionics Cloud architecture becomes a theoretical problem
that needs to be solved at present.

Traditional sequential pattern mining methods are constrained based on support or
frequency. Because efficiency with sequential pattern mining does not satisfy the downward
closure property, it needs to reduce its candidate set or search space. Therefore, some
attributes need to be defined to reduce the search space. Fournier [16] et al. combine
sequential pattern mining with dimensional pattern mining, time intervals, automatic
clustering with valued actions, and closed sequence mining. The SARA algorithm [17]
not only mines the relationship between two events, but also reveals the time period in
which each event occurs and ends. The HUFTI-SPM [18] algorithm uses any two-time,
frequency, or utility constraints to mine sequential patterns with time intervals. The
VertTIRP algorithm [19] uses the temporal relationship of pairwise tests for ranking to
speed up the mining process. The Z-Miner algorithm [20] proposes an efficient algorithm
for mining time-interval data. All the above algorithms focus on the constraint of time
interval but are unable to extract the key patterns from the difference samples. The SDC
algorithm [21] proposed that the concept of differential support can be used to mine
differential frequent function patterns, i.e., a set of functions that are frequent in one dataset
but not represented or represented in the opposite way in another dataset, but the algorithm
requires high storage space and computational complexity and strong constraints. The
above algorithms have different drawbacks and are not applicable to assist Avionics Cloud
architecture design for data mining. In this paper, we propose the DiMining algorithm
for complete and efficient mining of differential frequent time interval patterns. The
algorithm utilizes a memory-efficient data structure and a new link table pruning method
for analyzing efficient task-matching patterns between units in a task scenario dataset. The
contributions of the DiMining algorithm proposed in this paper that distinguish it from
existing frequent algorithms are as follows:

Aerospace 2023, 10, 249 3 of 21

(1) The algorithm mines the differential dataset and can mine the typical patterns that
affect the efficiency of task execution.

(2) The algorithm uses a relational pair storage data structure graph to store the
original data, ensuring that two kinds of differential time interval patterns with high and
low execution efficiency are mined at one time, avoiding losses from secondary mining and
improving mining efficiency.

(3) The algorithm mines by linear expansion and uses multiple pruning strategies to
mine the differential frequent time interval patterns.

(4) The algorithm is suitable for the application of finding resources suitable for
performing tasks in avionics systems.

The remainder of this paper is organized as follows: Section 2 describes the Avionics
Cloud architecture. Section 3 describes the underlying definitions. Section 4 describes
the proposed DiMining algorithm in detail. Section 5 compares the differences in mining
efficiency between this paper’s algorithm and existing algorithms, and a typical task sce-
nario is designed for Avionics Cloud optimization before and after effectiveness validation.
Conclusions are given in the last section.

2. Avionics Cloud Architecture
2.1. Avionics Cloud Organizational Structure

Avionics Cloud organizational structure consists of an application cloud platform
(Software-as-a-Service, SaaS) for flight platform, a function cloud platform (Platform-as-a-
Service, PaaS) for common application service, and a resource cloud platform (Infrastructure-
as-a-Service, IaaS) for common function operation, as shown in Figure 1. In the IaaS cloud
delivery model, the physical resources on each flight platform are virtualized and processed
to form virtual resources located in the cloud. The PaaS cloud delivery model includes
all the functions involved in the process and provides a pre-configured environment that
is used to build and deploy cloud services and solutions. SaaS shared a cloud service
delivery model.

(1) Application Cloud Platform (SaaS)

The application cloud platform (SaaS) is located at the top layer. In the application
cloud platform (SaaS), task services are established, and service scheduling, service analysis,
and service organization are realized through distributed processing.

(2) Function Cloud Platform (PaaS)

The function cloud platform (PaaS) is located in the middle layer. The function cloud
platform mainly uses algorithms to data mine the scene dataset to get function-matching
patterns, and feeds the mining results to the resource cloud platform to realize resource
allocation.

(3) Resource Cloud Platform (IaaS)

The resource cloud platform (IaaS) is located at the bottom layer. In the resource cloud
platform, navigation resources, communication resources, etc. are virtualized. Logical
virtual spaces are established on each flight platform, and each physical entity in the
Avionics Cloud is scheduled based on task requirements to collaborate to complete tasks.

Based on the analysis of the layered view of the cloud, it is clear that how to conduct
intelligent scheduling of resources within the Avionics Cloud is a problem that needs to be
solved at present.

The practical application of a layered view of the Avionics Cloud is illustrated using a
shipboard aircraft as an example, as shown in Figure 2. The shipboard aircraft provides
task organization modes such as air interception, air strike, strike against islands, and
cyber-attack. The management of shipboard aircraft under the Avionics Cloud architecture
is achieved through a virtual formation-based task organization cloud processing.

Aerospace 2023, 10, 249 4 of 21

Aerospace 2023, 10, x FOR PEER REVIEW 4 of 22

SAAS

PAAS

IAAS

Cloud Service

A

Cloud Service

B

Cloud Service

C

Ready

Environment A

Ready

Environment B

Ready

Environment C

Virtual Resource

A

Virtual Resource

B

Physical resources located on each flight platform

Communicat

ion function

Navigation

function
Disaster

prediction

function

Communicat

ion function

Navigation

function
Disaster

prediction

function

Communicat

ion function

Navigation

function
Disaster

prediction

function

Figure 1. Avionics Cloud IaaS, PaaS, SaaS layered view.

Air interception Air strike
Strike against

islands
Cyber attack

Task organization of shipboard aircraft

SaaS

Combat unit

organization

Task Application

Cloud

Universal Function

Cloud

Resource Operations

Cloud

Virtual task processing for shipboard aircraft

PaaS

Air-to-air missiles
Medium Range

Missile

Electromagnetic

emitter
Information Network

Weapons organization of shipboard aircraft

IaaS

Avionics Cloud Platform for Shipboard Aircraft

Figure 2. Layered view of Avionics Cloud IaaS, PaaS, and SaaS for shipboard aircraft.

Figure 1. Avionics Cloud IaaS, PaaS, SaaS layered view.

Aerospace 2023, 10, x FOR PEER REVIEW 4 of 22

SAAS

PAAS

IAAS

Cloud Service

A

Cloud Service

B

Cloud Service

C

Ready

Environment A

Ready

Environment B

Ready

Environment C

Virtual Resource

A

Virtual Resource

B

Physical resources located on each flight platform

Communicat

ion function

Navigation

function
Disaster

prediction

function

Communicat

ion function

Navigation

function
Disaster

prediction

function

Communicat

ion function

Navigation

function
Disaster

prediction

function

Figure 1. Avionics Cloud IaaS, PaaS, SaaS layered view.

Air interception Air strike
Strike against

islands
Cyber attack

Task organization of shipboard aircraft

SaaS

Combat unit

organization

Task Application

Cloud

Universal Function

Cloud

Resource Operations

Cloud

Virtual task processing for shipboard aircraft

PaaS

Air-to-air missiles
Medium Range

Missile

Electromagnetic

emitter
Information Network

Weapons organization of shipboard aircraft

IaaS

Avionics Cloud Platform for Shipboard Aircraft

Figure 2. Layered view of Avionics Cloud IaaS, PaaS, and SaaS for shipboard aircraft. Figure 2. Layered view of Avionics Cloud IaaS, PaaS, and SaaS for shipboard aircraft.

Aerospace 2023, 10, 249 5 of 21

The task operation management of the shipboard aircraft is built on the basis of the
management of the Avionics Cloud. It realizes task organization and operation processing
based on task sensing and information acquisition of the shipboard aircraft. It completes
the weapon control and delivery of the shipboard aircraft through the task output and
weapon management of the shipboard aircraft, as shown in Figure 3.

Aerospace 2023, 10, x FOR PEER REVIEW 5 of 22

The task operation management of the shipboard aircraft is built on the basis of the

management of the Avionics Cloud. It realizes task organization and operation processing

based on task sensing and information acquisition of the shipboard aircraft. It completes

the weapon control and delivery of the shipboard aircraft through the task output and

weapon management of the shipboard aircraft, as shown in Figure 3.

Task organization view of the shipboard aircraft under

the avionics cloud architecture

Regional Tasks

Aircraft Posture

Display

Task Perception

and Information

Acquisition

Aircraft Task Mode

Task Operations

Organization

Task Output Results

Aircraft Weapons

Capabilities

Mission Output

and Weapon

Management

Aircraft Weapon

Drop

Aircraft Weapons

Management

Formation Task Operation Management

SaaS

PaaS

IaaS

Task Services Task Services

Task application scheduling

and management

General

Functions

General

Functions

System function

organization and processing

Resource

Capacity

Resource

Capacity

Operation process operation

and management

Sensor 1

Sensor 2

Sensor N

Weapon 1

Weapon 2

Weapon M

Figure 3. Task organization view of the shipboard aircraft under the Avionics Cloud architecture.

2.2. Avionics Cloud Logical Architecture

The Avionics Cloud hierarchical logical architecture can be divided into three layers:

task layer, functional layer, and resource layer, as shown in Figure 4.

(1) Task layer

The task layer based on the Avionics Cloud architecture refers to the process that

requires the collaboration of resources and functions in multiple flight units in order to

meet the distributed system requirements’ goals, which is essentially a process of complex

system state change. The requirement goals of a systematic process often need to be satis-

fied by the collaboration of multiple unit tasks, so task synthesis is required. Task synthe-

sis contains two meanings. On the one hand, the requirements are gradually broken down

into unit resources and functions with corresponding capabilities. On the other hand, the

appropriate sequence of units is selected in real-time to perform tasks based on current

resources, functional capabilities and the operational status of the entire system.

Therefore, the elasticity of the task organization and synthesis based on the Avionics

Cloud architecture reflects the task execution units and sequence selection is based on the

cloud organization’s way of dynamic selection of units. Thus, it is possible to execute each

task sequence in an elastic and collaborative manner to ensure the completion of the task.

The process of executing tasks is as follows:

(1) Based on the current functional cloud and resource cloud capabilities, the re-

quirements are gradually decomposed into platforms with corresponding capa-

bilities according to the requirements. In the task generation phase, the resource

pool of the task cloud is the platform that can perform various tasks, and the

platform that can be selected to meet the task requirements is selected from the

current resource pool. The task is organized to ensure that the requirements can

be met. In the process of organization, the process of how many platforms need

to be selected from the resource pool and how to collaborate between platforms

Figure 3. Task organization view of the shipboard aircraft under the Avionics Cloud architecture.

2.2. Avionics Cloud Logical Architecture

The Avionics Cloud hierarchical logical architecture can be divided into three layers:
task layer, functional layer, and resource layer, as shown in Figure 4.

(1) Task layer

The task layer based on the Avionics Cloud architecture refers to the process that
requires the collaboration of resources and functions in multiple flight units in order to
meet the distributed system requirements’ goals, which is essentially a process of complex
system state change. The requirement goals of a systematic process often need to be satisfied
by the collaboration of multiple unit tasks, so task synthesis is required. Task synthesis
contains two meanings. On the one hand, the requirements are gradually broken down
into unit resources and functions with corresponding capabilities. On the other hand, the
appropriate sequence of units is selected in real-time to perform tasks based on current
resources, functional capabilities and the operational status of the entire system.

Therefore, the elasticity of the task organization and synthesis based on the Avionics
Cloud architecture reflects the task execution units and sequence selection is based on the
cloud organization’s way of dynamic selection of units. Thus, it is possible to execute each
task sequence in an elastic and collaborative manner to ensure the completion of the task.

The process of executing tasks is as follows:

(1) Based on the current functional cloud and resource cloud capabilities, the require-
ments are gradually decomposed into platforms with corresponding capabilities
according to the requirements. In the task generation phase, the resource pool of
the task cloud is the platform that can perform various tasks, and the platform that
can be selected to meet the task requirements is selected from the current resource
pool. The task is organized to ensure that the requirements can be met. In the
process of organization, the process of how many platforms need to be selected from
the resource pool and how to collaborate between platforms to generate plans is
undertaken in the task cloud based on task dynamic demand elasticity.

(2) Based on the task plan, a suitable sequence of units is selected to execute tasks in
real-time based on the current platform operation status. In the task execution phase,

Aerospace 2023, 10, 249 6 of 21

based on the changes in demand caused by changes in the task plan and current
scenario, as well as battle damage, etc., the platform is automatically increased or
decreased from the resource pool to ensure that the demand is met. This means
that the task execution can be completed automatically and flexibly during the
execution process.

Aerospace 2023, 10, x FOR PEER REVIEW 6 of 22

to generate plans is undertaken in the task cloud based on task dynamic demand

elasticity.

(2) Based on the task plan, a suitable sequence of units is selected to execute tasks in real-

time based on the current platform operation status. In the task execution phase, based

on the changes in demand caused by changes in the task plan and current scenario, as

well as battle damage, etc., the platform is automatically increased or decreased from the

resource pool to ensure that the demand is met. This means that the task execution can

be completed automatically and flexibly during the execution process.

Task

Generation

Task

Breakdown
Task Sorting

Task

Matching

Task

Selection

Task

Sequence
Rulebase

Task

Registration
Task Synthesis

Task execution

status confirmation

Upper level

command nodes

Tasks

Mission

Pool

Functional

requirement

generation

Function/

performance

matching

Features/

Performance

Options

Rulebase

Function

Registration

Functional

integration

Function execution

status confirmation

Function

Pool

Resource Matching
Choose to generate

a resource directory

Inbound Resource Catalog

Pooling Catalog

Updates

Resource execution

status confirmation

Radio Frequency

Sensing

Photoreception

Perceptual

Resources

Acoustic

perception

Identification

Cognitive

Resources

Resources

Pools

Modeling

Judgment

Assisted Decision

Making

Decision-making

resources

Resource layer

Functional layer

Task layer

Target

Surveillance

Meteorological

monitoring

situational

awareness

Sharing of

calculation results

Process Reuse

Calculation

function

Sensor data fusion

Integrated monitoring

and alerting

Perceptive

functions

Integrated navigation

guidance

All-in-one

transmission

Communicati

on function

Motorized

Decision Making

Executive

Functions

Figure 4. Avionics Cloud hierarchical logic architecture.

Aerospace 2023, 10, 249 7 of 21

(2) Functional layer

The functional information fusion of Avionics Cloud is reflected in four aspects:
sensing functional information fusion, computing functional information fusion, communi-
cation functional information fusion, and execution functional information fusion. Among
them, the fusion of perceptual information is mainly reflected in the fusion of sensor data,
integrated monitoring and alerting, and integrated navigation guidance. The computation
function information fusion is reflected in the sharing of computation results and the reuse
of the processing process. The communication function information fusion is reflected in
the integration of transmission. The information fusion of the execution function is mainly
reflected in the aspect of maneuvering and decision-making.

The process of function execution is as follows:

(1) Task-oriented requirements and selection of available functions from the pool of
functional resources. When, the function organization and fusion method meet the
task capability requirements, this is called the function generation and organization
phase. In this phase, facing the dynamic changes of the task, the functional cloud
dynamically selects the required functions. In addition, based on the functional ca-
pability demand of real-time fusion to enhance the capability, the elasticity achieves
dynamic function generation and organization.

(2) Function execution is based on the current function’s required physical resource
operation state, and real-time selection of the appropriate physical platform to
execute the function, called function execution. In the functional execution phase,
based on the functional organization and changes in demand caused by changes
in the current scenario and battle damage, functional modules are automatically
added or reduced from the resource pool to ensure that the capability requirements
are met. This means that functional execution can be performed automatically and
flexibly during the execution process.

(3) Resource Layer

Resource pooling is oriented to functional capability requirements, and the appropriate
resources are scheduled and selected from the currently registered resources to provide
performance capabilities to ensure that capability requirements are met. Similar to functions
and tasks, resource pool resiliency is also reflected in two aspects: resource generation and
resource execution. Resource organization elasticity is based on the upper-level functional
capability requirements, and automatically matches the appropriate resources from the
current resource pool required to satisfy the functional capability. Similarly, to support
different layers of tasks and their functional capability matching, resources in the resource
pool will be characterized according to the granularity of resource capabilities required for
task execution.

The resource pool can achieve resource generation elasticity by scheduling the required
resources from the resource pool to support functional capability execution according to
different tasks and their required capabilities. If during the resource generation process, it is
found that the resources required to satisfy the functional capabilities cannot be dispatched
from the resource pool, a warning is issued to the functional layer to resiliently organize
other functional capability policies from the functional resource pool.

Resource organization is similar to functional generation. Resource organization is the
process of dynamically scheduling the required capability resources from the resource pool
in response to the task functional capability requirements. Resource execution is the process
of executing resource performance in real-time based on the resource capability state and
according to the resource scheduling method. However, in the actual execution process,
the environment and the situation change rapidly, and our units and resource capabilities
can fail with the task execution and other situations. Therefore, during the execution of
real-time resource scheduling, the resources in the resource pool are dynamically adjusted
and resources are flexibly scheduled to ensure that the functional capability requirements

Aerospace 2023, 10, 249 8 of 21

are met. If the current capacity demand cannot be met through resource scheduling, a
warning is sent to the functional layer.

The hierarchical logical architecture of the joint fleet under the Avionics Cloud ar-
chitecture is shown in Figure 5. After the fleet command center specifies the basic action
plan, the task sequence is obtained in the Avionics Cloud task layer with the assistance of
intelligent scheduling algorithms for task synthesis. The specific tasks of the combat unit
include task organization, combat coordination, target strike and weapon management.
The task synthesis results are passed to the Avionics Cloud architecture functional layer to
generate functional requirements. The matching functions are selected and passed to the
Avionics Cloud architecture resource layer for resource matching to complete the process of
resource, function and task execution status confirmation. When there is a multitask conflict
caused by resource occupation and failure, the Avionics Cloud makes a plan adjustment to
coordinate the multitask conflict.

Aerospace 2023, 10, x FOR PEER REVIEW 8 of 22

execution of real-time resource scheduling, the resources in the resource pool are dynam-

ically adjusted and resources are flexibly scheduled to ensure that the functional capabil-

ity requirements are met. If the current capacity demand cannot be met through resource

scheduling, a warning is sent to the functional layer.

The hierarchical logical architecture of the joint fleet under the Avionics Cloud archi-

tecture is shown in Figure 5. After the fleet command center specifies the basic action plan,

the task sequence is obtained in the Avionics Cloud task layer with the assistance of intel-

ligent scheduling algorithms for task synthesis. The specific tasks of the combat unit in-

clude task organization, combat coordination, target strike and weapon management. The

task synthesis results are passed to the Avionics Cloud architecture functional layer to

generate functional requirements. The matching functions are selected and passed to the

Avionics Cloud architecture resource layer for resource matching to complete the process

of resource, function and task execution status confirmation. When there is a multitask

conflict caused by resource occupation and failure, the Avionics Cloud makes a plan ad-

justment to coordinate the multitask conflict.

Task

Synthesis

Task execution status

confirmation

Tasks

Mission

Pool

Functional

requirement

generation

Function/

performance

matching

Features/

Performance

Options

Function execution

status confirmation

Resource

Matching

Resource execution

status confirmation

Resource

layer

Functional

layer

Task Layer

Multitasking

conflict

coordination

Program Adjustment

Resource Occupancy

 and

Failure

 as Conflict

Goal Tracking&Task Management

Fleet Command Center

Action

Plan

Target

allocation
Co-allocation

Combat

Tasks

Operation

mode

Operational

Command

Operational

Command

Operation

and

maintenance

Strategic

Synergy

Resource

Pool

Function Pool

Intelligent scheduling

 algorithm assistance

Task

Collaborative Maneuvering& Target Configuration

Combat

Synergy

Targeted strikes
Weapons

Management

Task

Organization

Figure 5. Joint fleet hierarchical logical architecture under Avionics Cloud architecture.

Analyzing the organizational and logical architecture of the Avionics Cloud, it is

clear that using the Avionics Cloud to rationalize the order of task execution of multiple

flight platforms and to achieve multi-task synthesis is the basis for realizing the Avionics

Cloud. It can provide input for subsequent functional fusion and resource allocation. This

paper proposes a new data mining algorithm—the DiMining algorithm, which can mine

and analyze efficient task patterns by mining and analyzing high and low utility scenar-

ios, to lay the foundation for task synthesis and task architecture design. A typical task

scenario is chosen as an example for simulation verification. By analyzing the task assign-

ment relationship between flight platforms in the task scenario dataset, the optimal task-

matching pattern is obtained, which provides a basis for the task architecture design.

Figure 5. Joint fleet hierarchical logical architecture under Avionics Cloud architecture.

Analyzing the organizational and logical architecture of the Avionics Cloud, it is
clear that using the Avionics Cloud to rationalize the order of task execution of multiple
flight platforms and to achieve multi-task synthesis is the basis for realizing the Avionics
Cloud. It can provide input for subsequent functional fusion and resource allocation.
This paper proposes a new data mining algorithm—the DiMining algorithm, which can
mine and analyze efficient task patterns by mining and analyzing high and low utility
scenarios, to lay the foundation for task synthesis and task architecture design. A typical
task scenario is chosen as an example for simulation verification. By analyzing the task
assignment relationship between flight platforms in the task scenario dataset, the optimal
task-matching pattern is obtained, which provides a basis for the task architecture design.

Aerospace 2023, 10, 249 9 of 21

3. Problem Description

Definitions 1 and 2 give the definition of the dataset.

Definition 1. Given a task dataset D = {T1 . . . Tn}. Each T contains desired serial number id,
desired start-time, desired end-time, and start-time is less than end-time.

Definition 2. Let I denote the set of all possible tasks. Task i ∈ I is maintained over a pe-
riod of time [s, e), denoted as (i, s, e), where s is the start time and e is the end time. (i,
s, e) is called the state interval. The state sequence in I consists of a series of state intervals
< (i1, s1, e1), (i2, s2, e2), . . . , (in, sn, en) >, which si < si+1,si < ei.

All the data in dataset D with the same serial number id are grouped together and
sorted by incremental start time, then the dataset can be converted into a set of state
sequences. Dataset D can be considered as a collection of state sequences.

Example 1. By definition, I may contain duplicate entries, and Tables 1 and 2 depict two examples
of datasets D, which are represented as follows.

Table 1. Dataset D1.

Number of T Data

T1 (A, 1, 5) (B, 1, 5) (C, 1, 5) (D, 1, 5) (B, 7, 13) (A, 15, 20)
T2 (A, 1, 8) (B, 1, 8) (C, 1, 8) (D, 1, 8) (A, 15, 20)
T3 (A, 1, 5) (B, 1, 5) (C, 7, 13) (B, 15, 20)
T4 (A, 1, 17) (D, 9, 11) (C, 11, 13) (D, 14, 18) (B, 18, 20)

Table 2. Dataset D2.

Number of T Data

T1 (B, 1, 8) (A, 7, 17) (D, 9, 11) (C, 10, 12) (D, 14, 18) (A, 18, 20)
T2 (A, 1, 17) (D, 9, 11) (C, 10, 12) (D, 14, 18) (A, 18, 20)
T3 (A, 7, 17) (C, 9, 13) (D, 12, 14) (C, 14, 18) (A, 18, 20)
T4 (A, 1, 17) (C, 11, 13) (D, 12, 14) (C, 14, 18) (A, 18, 20)

Definition 3 describes the definition of possible relationships between time period data.

Definition 3 (temporal relationship). The execution relationship between tasks IA and IB can
be divided into the following five types according to the execution time: follows, meets, overlaps,
contains, and matches (without distinguishing between left and right), as shown in Figure 6. A
and B in the figure represent the time periods of tasks IA and IB.

Aerospace 2023, 10, x FOR PEER REVIEW 11 of 22

(,)A Br I I ma : A matches B if:
| . . | 0Ae Be  or | . . | 0As B s 

A B

A B

B

A

follows

meets

overlaps

A
contains B

A

B

A

B

A

B

matches

left-

matches

right-

matches

GAP

Figure 6. Five types of task relationships.

Definitions 4 and 5 describe the definitions of frequent patterns that we want to mine.

Definition 4. The number of transactions that contain items is called the frequency of occurrence

of items. The frequency of occurrence of item X, denoted as sup()X , is the number of supported

transactions containing X. The set of transactions supporting item X is represented as X . If

qX T
, then say qT supports item X. Therefore, sup() | |XX   . Let the user-specified mini-

mum support threshold be  . If sup() | |X D  , then X is called a frequent pattern (FP) in

dataset D.

Definition 5. P is a task set and the Subspace Differential Frequent (SDF) support of P can be

defined as:

,

()()
() max

| | | |i j

B i jA
p p P

N p pN P
SDF P

A B
  

,
(1)

where NA(P) is the number of frequent samples of P in dataset A. ()B i jN p p is a binomial subset

i jp p of P the number of frequent samples in the data set B.
,

()
max

| |i j

B i j

p p P

N p p

B
 

 is the proportion

of the binomial subset of P in dataset B when the maximum number of frequent samples is in dataset

B [21].

Example 2. Taking the databases shown in Tables 1 and 2 as examples, the differential frequent

support of pattern AfollowsA is () 1 0.5=0 5 .AfollowsDF AS   .

4. Algorithm Description

In this section, we introduce the DiMining algorithm in detail. The algorithm mines

frequent patterns that satisfy the definition of variance from a large amount of scene data

to analyze the patterns associated with efficiency factors. The general framework of the

algorithm is shown in Figure 7.

Figure 6. Five types of task relationships.

Aerospace 2023, 10, 249 10 of 21

r(IA, IB) = f : A follows B if :
(B.s− A.e) > 0 and (B.s− A.e) < gap
r(IA, IB) = m: A meets B if :
|B.s− A.e|= 0 and (B.s− A.s) > 0
r(IA, IB) = o: A overlaps B if :
(B.s− A.s) > 0 and (A.e− B.s) > 0 and (B.e− A.e) > 0
r(IA, IB) = c: A contains B if :
(B.s− A.s) > 0 and (A.e− B.e) > 0
r(IA, IB) = ma: A matches B if:
|A.e− B.e|≤ 0 or |A.s− B.s|≤ 0
Definitions 4 and 5 describe the definitions of frequent patterns that we want to mine.

Definition 4. The number of transactions that contain items is called the frequency of occurrence
of items. The frequency of occurrence of item X, denoted as sup(X), is the number of supported
transactions containing X. The set of transactions supporting item X is represented as ΓX. If
X ⊆ Tq, then say Tq supports item X. Therefore, sup(X) =|ΓX |. Let the user-specified minimum
support threshold be α. If sup(X) ≥ α×|D|, then X is called a frequent pattern (FP) in dataset D.

Definition 5. P is a task set and the Subspace Differential Frequent (SDF) support of P can be
defined as:

SDF(P) =
NA(P)
|A| −max∀pi ,pj∈P

NB(pi pj)

|B| , (1)

where NA(P) is the number of frequent samples of P in dataset A. NB(pi pj) is a binomial subset

pi pj of P the number of frequent samples in the data set B. max∀pi ,pj∈P
NB(pi pj)

|B| is the proportion of
the binomial subset of P in dataset B when the maximum number of frequent samples is in dataset
B [21].

Example 2. Taking the databases shown in Tables 1 and 2 as examples, the differential frequent
support of pattern AfollowsA is SDF(A f ollowsA) = 1− 0.5 = 0.5.

4. Algorithm Description

In this section, we introduce the DiMining algorithm in detail. The algorithm mines
frequent patterns that satisfy the definition of variance from a large amount of scene data
to analyze the patterns associated with efficiency factors. The general framework of the
algorithm is shown in Figure 7.

Aerospace 2023, 10, x FOR PEER REVIEW 12 of 22

DiMining Algorithm

Time database
Continuous Time

Database

 Relational pair
storage data structure

diagram

Relational pair storage data
structure diagram that meets

the support requirements
DiMining Pattern

Figure 7. DiMining Algorithm framework diagram.

4.1. Data Structure

In differential frequent itemset mining, the computation of support is very time con-

suming. We design a data structure to store the transaction information and support de-

gree of each item. The data structure consists of three parts: head node, struct node and

time node. The head node stores the head node and the relationships it may contain. The

struct node stores the nodes that have a relationship with the head node and the number

of T. The time node stores the time period data of the head node and the node in the

relationship. Specific description is as follows.

For each head node i, () { }ir m stid collects the set of pointers of its relation pairs.

()r m is as shown in the head note section in Figure 8, and follows, meets, overlaps, con-

tains, and matches points to the corresponding link table node respectively.

Figure 8. Head node of data structure diagram.

The link table nodes are shown in the struct note section in Figure 9. Transaction link

1 points to the row number where the current pattern appears in dataset 1. Support 1

indicates the support of the current pattern in dataset 1. Transaction link 2 points to the

row number where the current pattern appears in dataset 2. Support 2 indicates the sup-

port of the current pattern in dataset 2.

The time series pattern has a start time and an end time for each item. Therefore, for

a transaction node in a link table node needs to index a time node that indicates the start

and end time of a pair of itemsets under the current relationship, as shown in the time

note section in Figure 10. When in a row, there may be pairs of itemsets with the same

relationship in time intervals. In order not to lose the mining information, the time infor-

mation is maintained for all relationship pairs.

Figure 7. DiMining Algorithm framework diagram.

4.1. Data Structure

In differential frequent itemset mining, the computation of support is very time
consuming. We design a data structure to store the transaction information and support
degree of each item. The data structure consists of three parts: head node, struct node and

Aerospace 2023, 10, 249 11 of 21

time node. The head node stores the head node and the relationships it may contain. The
struct node stores the nodes that have a relationship with the head node and the number
of T. The time node stores the time period data of the head node and the node in the
relationship. Specific description is as follows.

For each head node i, r(m) = {stidi} collects the set of pointers of its relation pairs. r(m)
is as shown in the head note section in Figure 8, and follows, meets, overlaps, contains, and
matches points to the corresponding link table node respectively.

Aerospace 2023, 10, x FOR PEER REVIEW 12 of 22

DiMining Algorithm

Time database
Continuous Time

Database

 Relational pair
storage data structure

diagram

Relational pair storage data
structure diagram that meets

the support requirements
DiMining Pattern

Figure 7. DiMining Algorithm framework diagram.

4.1. Data Structure

In differential frequent itemset mining, the computation of support is very time con-

suming. We design a data structure to store the transaction information and support de-

gree of each item. The data structure consists of three parts: head node, struct node and

time node. The head node stores the head node and the relationships it may contain. The

struct node stores the nodes that have a relationship with the head node and the number

of T. The time node stores the time period data of the head node and the node in the

relationship. Specific description is as follows.

For each head node i, () { }ir m stid collects the set of pointers of its relation pairs.

()r m is as shown in the head note section in Figure 8, and follows, meets, overlaps, con-

tains, and matches points to the corresponding link table node respectively.

Figure 8. Head node of data structure diagram.

The link table nodes are shown in the struct note section in Figure 9. Transaction link

1 points to the row number where the current pattern appears in dataset 1. Support 1

indicates the support of the current pattern in dataset 1. Transaction link 2 points to the

row number where the current pattern appears in dataset 2. Support 2 indicates the sup-

port of the current pattern in dataset 2.

The time series pattern has a start time and an end time for each item. Therefore, for

a transaction node in a link table node needs to index a time node that indicates the start

and end time of a pair of itemsets under the current relationship, as shown in the time

note section in Figure 10. When in a row, there may be pairs of itemsets with the same

relationship in time intervals. In order not to lose the mining information, the time infor-

mation is maintained for all relationship pairs.

Figure 8. Head node of data structure diagram.

The link table nodes are shown in the struct note section in Figure 9. Transaction
link 1 points to the row number where the current pattern appears in dataset 1. Support 1
indicates the support of the current pattern in dataset 1. Transaction link 2 points to the row
number where the current pattern appears in dataset 2. Support 2 indicates the support of
the current pattern in dataset 2.

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 22

Figure 9. Struct node of data structure diagram.

Figure 10. Time node of data structure diagram.

The data is characterized by temporal intervals, and the sets of items are temporal

and occur multiple times. Therefore, it is necessary to store the temporal information of

each time interval relationship pair, as shown in Figure 11.

A

follows

meets

overlaps

contains

matches

(A,2,4)

1

2

(A,1,5) (A,15,20)

(A,1,5) (A,15,20)

1

2

3

4

(A,7,17)

(A,1,17)

(A,7,17)

(A,1,17)

(A,18,20)

(A,18,20)

(A,18,20)

(A,18,20)

(B,3,0)

B

1

2

3

(A,1,5)

(A,1,8)

(A,1,5)

(B,1,5)

(B,1,8)

(B,1,5)

(C,2,0)

1

2

(A,1,5)

(A,1,8)

(C,1,5)

(C,1,8)

(D,2,0)

1

2

(A,1,5)

(A,1,8)

(D,1,5)

(D,1,8)
follows

meets

overlaps

contains

matches

(C,2,0)

1

2

(B,1,5)

(B,1,8)

(C,1,5)

(C,1,8)

(D,2,0)

1

2

(B,1,5)

(B,1,8)

(D,1,5)

(D,1,8)

Head node Struct node Time node

Figure 11. Partial relational pair storage data structure diagram.

Example 3. The generated partial relational pair storage data structure diagram from Tables 1 and

2, is shown in Figure 11.

Figure 9. Struct node of data structure diagram.

The time series pattern has a start time and an end time for each item. Therefore,
for a transaction node in a link table node needs to index a time node that indicates the
start and end time of a pair of itemsets under the current relationship, as shown in the
time note section in Figure 10. When in a row, there may be pairs of itemsets with the
same relationship in time intervals. In order not to lose the mining information, the time
information is maintained for all relationship pairs.

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 22

Figure 9. Struct node of data structure diagram.

Figure 10. Time node of data structure diagram.

The data is characterized by temporal intervals, and the sets of items are temporal

and occur multiple times. Therefore, it is necessary to store the temporal information of

each time interval relationship pair, as shown in Figure 11.

A

follows

meets

overlaps

contains

matches

(A,2,4)

1

2

(A,1,5) (A,15,20)

(A,1,5) (A,15,20)

1

2

3

4

(A,7,17)

(A,1,17)

(A,7,17)

(A,1,17)

(A,18,20)

(A,18,20)

(A,18,20)

(A,18,20)

(B,3,0)

B

1

2

3

(A,1,5)

(A,1,8)

(A,1,5)

(B,1,5)

(B,1,8)

(B,1,5)

(C,2,0)

1

2

(A,1,5)

(A,1,8)

(C,1,5)

(C,1,8)

(D,2,0)

1

2

(A,1,5)

(A,1,8)

(D,1,5)

(D,1,8)
follows

meets

overlaps

contains

matches

(C,2,0)

1

2

(B,1,5)

(B,1,8)

(C,1,5)

(C,1,8)

(D,2,0)

1

2

(B,1,5)

(B,1,8)

(D,1,5)

(D,1,8)

Head node Struct node Time node

Figure 11. Partial relational pair storage data structure diagram.

Example 3. The generated partial relational pair storage data structure diagram from Tables 1 and

2, is shown in Figure 11.

Figure 10. Time node of data structure diagram.

The data is characterized by temporal intervals, and the sets of items are temporal and
occur multiple times. Therefore, it is necessary to store the temporal information of each
time interval relationship pair, as shown in Figure 11.

Aerospace 2023, 10, 249 12 of 21

Aerospace 2023, 10, x FOR PEER REVIEW 13 of 22

Figure 9. Struct node of data structure diagram.

Figure 10. Time node of data structure diagram.

The data is characterized by temporal intervals, and the sets of items are temporal

and occur multiple times. Therefore, it is necessary to store the temporal information of

each time interval relationship pair, as shown in Figure 11.

A

follows

meets

overlaps

contains

matches

(A,2,4)

1

2

(A,1,5) (A,15,20)

(A,1,5) (A,15,20)

1

2

3

4

(A,7,17)

(A,1,17)

(A,7,17)

(A,1,17)

(A,18,20)

(A,18,20)

(A,18,20)

(A,18,20)

(B,3,0)

B

1

2

3

(A,1,5)

(A,1,8)

(A,1,5)

(B,1,5)

(B,1,8)

(B,1,5)

(C,2,0)

1

2

(A,1,5)

(A,1,8)

(C,1,5)

(C,1,8)

(D,2,0)

1

2

(A,1,5)

(A,1,8)

(D,1,5)

(D,1,8)
follows

meets

overlaps

contains

matches

(C,2,0)

1

2

(B,1,5)

(B,1,8)

(C,1,5)

(C,1,8)

(D,2,0)

1

2

(B,1,5)

(B,1,8)

(D,1,5)

(D,1,8)

Head node Struct node Time node

Figure 11. Partial relational pair storage data structure diagram.

Example 3. The generated partial relational pair storage data structure diagram from Tables 1 and

2, is shown in Figure 11.

Figure 11. Partial relational pair storage data structure diagram.

Example 3. The generated partial relational pair storage data structure diagram from Tables 1
and 2, is shown in Figure 11.

According to Definition 5, it is necessary to prune the branches in the relational pair
storage data structure that do not satisfy the differential frequent support threshold.

4.2. Pruning Strategy

After constructing relational pair storage data structure, this algorithm follows a linear
extension for mining.

Example 4. Scanning head node A, AmatchesB is the first extended node, which satisfies the
definition of subspace differential frequent patterns. The potential candidate patterns of AmatchesB
are BmatchesC. After the intersection of two relationship patterns transaction link 1 and transaction
link 2, the values of transaction link 1 are 1 and 2. Transaction link 2 is the empty set, which
satisfies the threshold of variance support. Therefore, AmatchesBmatchesC is a subspace differential
frequent pattern.

For the current extended pattern, according to Definition 5, we need to record the infor-
mation of transaction link 1 and transaction link 2 after the intersection and the maximum
value of the binomial subset in the current extended pattern to facilitate subsequent mining.

Example 5. After recording the information of transaction link 1 and transaction link 2 of Amatch-
esBmatchesC and the maximum value of binomial subset, we find the candidate relationship pairs

Aerospace 2023, 10, 249 13 of 21

of AmatchesBmatchesCmatchesD in a linear expansion way from D is the branch with D as the
head node to find the candidate pairs of AmatchesBmatchesCmatchesD. Since the set of transaction
of the candidate pattern and the set of transaction of AmatchesBmatchesCmatchesD are empty
after intersection. Therefore, AmatchesBmatchesCmatchesD is a subspace differential frequent time
interval pattern and can be output with a differential support of 2/4 = 0.5.

By observation, the complex relationship between each time interval is the main
bottleneck in mining temporal patterns. We propose a pruning strategy to solve this
critical problem.

Lemma 1. For the currently extended pattern P, N is its set of precursor candidates, M is its set of
candidates, and Mi is any candidate pattern in M. For any precursor candidate pattern Nj in N, P
can be pruned if the following strategies are simultaneously satisfied.

(1) The set of transaction link 1 of PMiNj is a subset of the set of transaction link 1 of PNj.
(2) The maximum binomial subset support of PMiNj in dataset 2 is not less than the maximum

binomial subset support of PNj.
(3) PMiNj is also a differential frequent pattern.
(4) For the remaining candidate patterns Mk in M also all satisfy the above three strategies.

Proof. (1) The algorithm uses an extension depth-first mining maximum differential
frequent pattern. If the transaction link 1 set of the current candidate node is a subset of
the transaction link 1 set of a predecessor candidate node, then the transaction link 1 set of
PMiNj must be equal to the transaction link 1 set of PN. That is, the set of transaction link 1
generated by the current candidate node can be generated by that predecessor node.

(2) If the maximum binomial subset support of PMiNj in dataset 2 is not less than
the maximum binomial subset support of PNj, it means that the current candidate node
is added to the current extended node differential frequent pattern, and the maximum
binomial subset support of the newly introduced subset of length 2 in dataset 2 is not the
maximum, and it does not affect the maximum binomial subset of PMiNj in dataset 2.

(3) Candidate and antecedent nodes that satisfy the above two strategies do not
necessarily satisfy the differential frequent support. According to the idea of pruning by
antecedent test, if the current candidate node is pruned, it must be generated by some
antecedent. Therefore, the current extended node must be a differential frequent pattern
with some precursor node.

(4) We use the counterfactual method to prove this rule in two cases. First, assume
that PMi can be pruned when another candidate function Mj of P does not simultaneously
satisfy the above three strategies. That is to say, there does not exist any precursor candidate
Nj such that PMjNj is a differential frequent pattern. Then PMj and PMi may produce
a differential frequent pattern PMjMi. Since the differential frequent support satisfies
the Apriori principle, a precursor candidate Nj must not be found. The precursor candi-
date node Nj can produce a PMjNjMi, then PMjNj is a new differential frequent pattern.
Therefore, PMi should not be pruned, which contradicts the hypothesis. Then, suppose
another candidate node Mj of P satisfies the above three strategies and at the same time is a
precursor candidate Ni distinct from Nj satisfied by Mi. That is to say, PMi can be pruned as
well when Mj and Mi satisfy the above three strategies with different precursor candidates.
Because the differential frequent support satisfies the Apriori principle, at this time PMj
and PMi cannot find the same precursor candidate node satisfying the differential frequent
support. That is to say, PMjNj is a new differential frequent pattern, so PMi should not be
pruned, which contradicts the assumption. In summary, a candidate node can be pruned
only if it satisfies all the above strategies at the same time. �

Example 6. After extending the AmatchesB branch, the current extended pattern P is AmatchesC,
the precursor candidate set N includes AmatchesB, the candidate set M includes CfollowsB, etc.
The transaction link 1 set of AmatchesCfollowsB is a subset of the transaction link 1 set of Amatch-
esBmatchesC. The maximum binomial subset support of AmatchesBmatchesCfollowsB in dataset

Aerospace 2023, 10, 249 14 of 21

2 is not less than the maximum binomial subset support of AmatchesBmatchesC. The differential
frequent support of AmatchesBmatchesCfollowsB is 0.25, which is not a differential frequent pattern,
so AmatchesC cannot be pruned.

Example 7. The current extended pattern P is AmatchesD, the precursor candidate set N includes
AmatchesB, and AmatchesC, the candidate set M includes DfollowsA, DfollowsB, and so on. The
candidate pattern DfollowsA is judged first. The transaction link 1 set of AmatchesDfollowsA is a
subset of the transaction link 1 set of AmatchesBmatchesD. The AmatchesBmatchesDfollowsA in
dataset 2. The maximum binomial subset support is not less than the maximum binomial subset of
AmatchesBmatchesD. AmatchesBmatchesDfollowsA is a differential frequent pattern; then judge the
candidate pattern DfollowsB, DfollowsB satisfies (1)(2) in the Lemma, but the differential frequent
support of AmatchesBmatchesDfollowsA is 0.25, not differential frequent pattern, at this time
AmatchesD cannot be pruned.

4.3. DiMining Algorithm

In this section we describe the general idea of the algorithm and its pseudocode. First,
we introduced the main program steps of the DiMining algorithm in Algorithm 1. Then,
we describe how to get the hidden relationship between time period data in Algorithm 2.
Finally, we describe how to implement our proposed pruning methods in Algorithm 3.

Algorithm 1 outlines the main steps of the DiMining algorithm. First, the dataset
is scanned by the getRelation algorithm to construct the relationship pairs of each item
to store the data structure graph R (lines 1–2), and all branches that do not satisfy the
differential frequent support threshold are removed from R (lines 3–6). The growMSD
algorithm is used to determine whether the current R needs to be pruned (line 7), and if it
does not need to be pruned, the differential frequent time pattern is recorded (lines 8–10),
and it is cycled until all the differential frequent time patterns that meet the requirements
are output (lines 11–12).

Algorithm 1 DiMining Algorithm

Data: D1: high execution efficiency dataset, D2: low execution efficiency dataset , r: current
extended subspace differential frequent pattern, R: relational pairs store data structures,
constraints: predefined constraints ε.
Result: Maximum differential frequent pattern set
1 MSD ← ∅ ; P← ∅ ; r ← ∅ ; r′ ← ∅ ;
2 R← getRelation (D1, D2);
3 for each r∈R do
4 if the SDF of the current relation meets the constraints ε then
5 Store current relation;
6 end if
7 flag← growDiM(R, r, ε);
8 if flag ==0 then
9 MSD←get_result(r);
10 end if
11 end for
12 return DiMining Pattern

Algorithm 2 outlines the main steps of the getRelation algorithm, which is used to
construct the relationship of each item to the stored data structure graph R. Dataset 1 is
used as an example for illustration. First, the items I1 and I2 in database 1 are scanned
and their relationships are determined (lines 1–12). After completing the scan of I1, I1 is
stored into the relationship pair storage data structure graph R until the scan of all items is
completed (lines 13–14). After completing the scan of all items, calculate the tl values of the
items in the storage data structure graph R (lines 15–16).

Aerospace 2023, 10, 249 15 of 21

Algorithm 2 getRelation (D1, D2)

Data: D1: high execution efficiency dataset, D2: low execution efficiency dataset.
Result: R: relational pairs store data structures
1 for each I1, I2∈D1(or D2) do
2 if there is follows relationship between I1 and I2 then
3 I1.follows <- I2;
4 else if there is meets relationship between I1 and I2 then
5 I1. meets <- I2;
6 else if there is overlaps relationship between I1 and I2 then
7 I1. overlaps <- I2;
8 else if there is contains relationship between I1 and I2 then
9 I1. contains <- I2;
10 else if there is matches relationship between I1 and I2then
11 I1. matches <- I2;
12 end if
13 R← get_head (I1.follows, I1. meets, I1. overlaps, I1. contains, I1. matches);
14 end for
15 get_tl(R);
16 return R

Algorithm 3 outlines the main steps of the growDiM algorithm, which is used to
determine whether the current extended node r needs to be pruned. The node tl1 > tl2 in
R is used as an example for illustration. First, R is scanned to get the precursor nodes N
and candidate nodes M of the current extended node (lines 1–2). When the translink1 set
of rm is not a subset of the translink1 set of rn, the output flag value is 0 (lines 3–6). Then
get the tl1 value and tl2 value of rmn. When the tl2 value of rmn is smaller than the tl2
value of rn or rmn is not a differential frequent pattern, output flag value as 0 (lines 7–14).
After scanning all precursor nodes and candidate nodes, if none of the above conditions
are satisfied, the output flag value is 1 (lines 15–16).

Algorithm 3 growDiM(R, r, ε)

Data: R: relational pairs store data structures, r: current extended subspace differential frequent
pattern, constraints: predefined constraints ε.
Result: flag: Determine whether the current expansion node needs to continue linear expansion.
1 N←getPrecursornode(R,r);
2 M←getCandidatenode(R,r);
3 if the set of transaction link 1 of PMiNj isn’t a subset of the set of transaction link 1 of PNj then
4 flag=0;
5 return flag
6 end if
7 if the maximum binomial subset support of PMiNj in dataset 2 is less than the maximum
binomial subset support of PNj then
8 flag=0;
9 return flag
10 end if
11 if PMiNj is not a differential frequent pattern then
12 flag=0;
13 return flag
14 end if
15 flag=1;
16 return flag

5. Experiment and Analysis
5.1. Efficiency Comparison

The experiments compare the mining efficiency and results of this paper’s algorithm
with existing algorithms. The hardware environment for the experiments is: the processor

Aerospace 2023, 10, 249 16 of 21

is Intel(R) Core(TM) i5-10300H CPU, 8G RAM, software environment: Microsoft Windows
11 operating system, algorithm programming and running environment is Microsoft Visual
Studio 2015. The experimental data are obtained from clickstream dataset Kosarak and
artificial datasets. According to the characteristics of the dataset, the parameter gap was set
to 10 and minSDF was set to 3%.

(1) Pruning strategy analysis

The artificial dataset was used to compare pruning strategy efficiency. The DiMining
with no pruning, the DiMining containing pruning strategy 1, the DiMining containing
pruning strategy 2, and the DiMining containing pruning strategy 3 were compared in
different size datasets to analyze the effect of the pruning strategy, as shown in Figure 12.
From the figure, it can be seen that the overall running time shows the pattern of ‘DiMin-
ing < DiMining containing pruning strategy 3 < DiMining containing pruning strategy
1 < DiMining containing pruning strategy 2 < DiMining without pruning’. The DiMining
without pruning has the lowest mining efficiency due to repeated mining efforts, while
the DiMining with pruning 3 has the second highest efficiency because pruning strategy
3 greatly simplifies the mining process of linear extension of differential frequent pattern
mining. The mining efficiency of DiMining when the dataset increases to 400 (0.3236 s) is
about twice that of DiMining without pruning (0.6742 s), and the advantage of DiMining
becomes more obvious as the dataset increases, which indicates that the pruning strategy
we designed greatly improves the mining efficiency of the algorithm.

Aerospace 2023, 10, x FOR PEER REVIEW 18 of 22

about twice that of DiMining without pruning (0.6742 s), and the advantage of DiMining

becomes more obvious as the dataset increases, which indicates that the pruning strategy

we designed greatly improves the mining efficiency of the algorithm.

Figure 12. Comparison of pruning strategies.

(2) Efficiency comparison

The DiMining algorithm is compared with the SPM algorithm, the SPM-D algorithm

and the SARA algorithm. The SPM algorithm finds frequent action sequences, and asso-

ciates important action sequences together by association rules, and the SPM-D algorithm

combines the SPM algorithm with multidimensional pattern mining. Unlike the SPM al-

gorithm and the SPM-D algorithm which mine moment data, the DiMining algorithm

mines the duration dataset and can mine continuous patterns of events. The SARA algo-

rithm converts moment dataset into duration dataset and mines event patterns that show

the relationship and time period between each event without any candidate generation.

The SARA algorithm can only mine frequent temporal patterns, while the DiMining algo-

rithm can mine differential frequent temporal patterns.

Figure 13 shows the execution times on the Kosarak dataset, with both the x-axes and

y-axes represented on a logarithmic scale. We use three datasets of different sizes, ar-

ranged in ascending order of the number of sequences. The average item length of these

four datasets is 10, and the minimum support parameter is set to 3%. The execution time

of all algorithms increases as the number of sequences increases. Specifically, DiMining

takes less time compared to the other algorithms. The difference in efficiency between the

algorithms is more pronounced when the size of the dataset is larger.

Figure 12. Comparison of pruning strategies.

(2) Efficiency comparison

The DiMining algorithm is compared with the SPM algorithm, the SPM-D algorithm
and the SARA algorithm. The SPM algorithm finds frequent action sequences, and asso-
ciates important action sequences together by association rules, and the SPM-D algorithm
combines the SPM algorithm with multidimensional pattern mining. Unlike the SPM algo-
rithm and the SPM-D algorithm which mine moment data, the DiMining algorithm mines
the duration dataset and can mine continuous patterns of events. The SARA algorithm
converts moment dataset into duration dataset and mines event patterns that show the
relationship and time period between each event without any candidate generation. The
SARA algorithm can only mine frequent temporal patterns, while the DiMining algorithm
can mine differential frequent temporal patterns.

Figure 13 shows the execution times on the Kosarak dataset, with both the x-axes and
y-axes represented on a logarithmic scale. We use three datasets of different sizes, arranged
in ascending order of the number of sequences. The average item length of these four

Aerospace 2023, 10, 249 17 of 21

datasets is 10, and the minimum support parameter is set to 3%. The execution time of all
algorithms increases as the number of sequences increases. Specifically, DiMining takes less
time compared to the other algorithms. The difference in efficiency between the algorithms
is more pronounced when the size of the dataset is larger.

Aerospace 2023, 10, x FOR PEER REVIEW 19 of 22

Figure 13. Comparison of efficiency of different algorithms.

5.2. Simulation Experiment

How to select the flight unit and mount for the task execution sequence before the

task execution is a difficult decision-making point. The Avionics Cloud system can call

the DiMining algorithm to analyze the past dataset to output an efficient task execution

sequence pattern to assist in decision making after the target demand is known. As shown

in Figure 14, the specific simulation scenario is as follows: UAV formation in a sea 10,000

square nautical miles within the sea stereo detection task, detection target for another

UAV formation, and the experimental data were collected using a simulation scenario

software named Origin, developed by Shareetech. In Figure 14, the blue side represents

our reconnaissance aircraft and the red side represents the target to be detected. The effi-

ciency is judged by the number of detected target clusters under the specified time, and

the 700-field simulation is executed and the task execution results are collected by adjust-

ing the presets such as the task sequence of UAVs in the simulation scenario. Four specific

types of simulation scenarios are used: using electronic jamming to affect the efficiency of

the opponent in detecting us; using UAVs with anti-radiation capabilities for detection;

using UAVs to enter from the side for early detection; and focusing on using high-power

radar for detection.

Figure 14. Task scenario model.

The typical tasks in the simulation scenario are selected for mining analysis in order

to mine the better detection task assignment organization, corresponding to the table

shown in Table 3, for example, the detection task of early warning aircraft radar 1 indicates

Figure 13. Comparison of efficiency of different algorithms.

5.2. Simulation Experiment

How to select the flight unit and mount for the task execution sequence before the
task execution is a difficult decision-making point. The Avionics Cloud system can call
the DiMining algorithm to analyze the past dataset to output an efficient task execution
sequence pattern to assist in decision making after the target demand is known. As
shown in Figure 14, the specific simulation scenario is as follows: UAV formation in a
sea 10,000 square nautical miles within the sea stereo detection task, detection target for
another UAV formation, and the experimental data were collected using a simulation
scenario software named Origin, developed by Shareetech. In Figure 14, the blue side
represents our reconnaissance aircraft and the red side represents the target to be detected.
The efficiency is judged by the number of detected target clusters under the specified time,
and the 700-field simulation is executed and the task execution results are collected by
adjusting the presets such as the task sequence of UAVs in the simulation scenario. Four
specific types of simulation scenarios are used: using electronic jamming to affect the
efficiency of the opponent in detecting us; using UAVs with anti-radiation capabilities for
detection; using UAVs to enter from the side for early detection; and focusing on using
high-power radar for detection.

The typical tasks in the simulation scenario are selected for mining analysis in order to
mine the better detection task assignment organization, corresponding to the table shown
in Table 3, for example, the detection task of early warning aircraft radar 1 indicates the
detection task performed by a certain radar sensor (number 1) of the early warning aircraft.

Aerospace 2023, 10, 249 18 of 21

Aerospace 2023, 10, x FOR PEER REVIEW 19 of 22

Figure 13. Comparison of efficiency of different algorithms.

5.2. Simulation Experiment

How to select the flight unit and mount for the task execution sequence before the

task execution is a difficult decision-making point. The Avionics Cloud system can call

the DiMining algorithm to analyze the past dataset to output an efficient task execution

sequence pattern to assist in decision making after the target demand is known. As shown

in Figure 14, the specific simulation scenario is as follows: UAV formation in a sea 10,000

square nautical miles within the sea stereo detection task, detection target for another

UAV formation, and the experimental data were collected using a simulation scenario

software named Origin, developed by Shareetech. In Figure 14, the blue side represents

our reconnaissance aircraft and the red side represents the target to be detected. The effi-

ciency is judged by the number of detected target clusters under the specified time, and

the 700-field simulation is executed and the task execution results are collected by adjust-

ing the presets such as the task sequence of UAVs in the simulation scenario. Four specific

types of simulation scenarios are used: using electronic jamming to affect the efficiency of

the opponent in detecting us; using UAVs with anti-radiation capabilities for detection;

using UAVs to enter from the side for early detection; and focusing on using high-power

radar for detection.

Figure 14. Task scenario model.

The typical tasks in the simulation scenario are selected for mining analysis in order

to mine the better detection task assignment organization, corresponding to the table

shown in Table 3, for example, the detection task of early warning aircraft radar 1 indicates

Figure 14. Task scenario model.

Table 3. Task correspondence table.

Task Number Task Name

F1 UAV anti-radiation Task
F2 Early Warning Aircraft Radar 1 Detection Task
F3 Early Warning Aircraft Radar 2 Detection Task
F4 UAV Radar 1 Detection Task
F5 UAV Radar 2 Detection Task
F6 UAV Radar 3 Detection Task
F7 UAV Radar 4 Detection Task

The DiMining algorithm was used to mine the dataset of 350 high-efficiency running
scenes and 350 low-efficiency running scenes, and the final results are shown in Table 4.
Where F1-F7 denote the task numbers as shown in Table 3. f, m, o, c, a denote the relationship
between events follows, meets, overlaps, contains, matches, respectively. Taking “F1 f F2
o F4” as an example, the combination of tasks is indicated as follows: first, the UAV
anti-radiation task is performed. After that, the AWACS radar 1 turns on to perform the
detection task. During the detection task of the early warning aircraft radar 1, the UAV
radar 1 is turned on for the detection task. A higher detection efficiency will be obtained
under this task execution sequence. It is because detection time can be effectively shortened
by ‘jamming the opponent’s sensors by performing anti-radiation tasks first, and switching
on the early warning aircraft radar with a larger detection range first, and then switching
on the UAV radar after the early warning aircraft has reduced its detection range’.

Table 4. Part of Mining results.

Number Result

1 F1 f F2 o F4
2 F2 f F2 o F4
3 F4 f F5 o F5
4 F4 f F5
5 F4 m F7
6 F4 a F2 o F4
7 F5 c F5

The optimized simulation model is obtained by adjusting the task configuration in the
simulation scenario according to the mining results. In this step, the task resource allocation
algorithm (DiMining algorithm) is used in the simulated Avionics Cloud to optimize the
execution task sequence of the existing scene. The optimized model is simulated 100 times
to get the optimized data. The number of detected target clusters is normalized to compare

Aerospace 2023, 10, 249 19 of 21

the data before and after the optimization, when the number of detections is larger, the
higher the indicator value, the indicator value range is 0 to 100, set the detection time for
2 h, when no target clusters are detected the indicator value is 0, when all the target clusters
are detected the indicator value is 100. The indicators’ results obtained before and after
simulation are sorted in descending order, which is convenient to see the difference before
and after optimization, as shown in Figure 15. The optimized result is more reasonable in
the task execution sequence, so the detection range of confrontation can be significantly
increased. The purpose of this experiment is to simulate the process of the DiMining
algorithm in Avionics Cloud assisted decision making, and verify the effectiveness of the
algorithm by comparing the efficiency before and after the application of the algorithm.
It can be seen that using the DiMining algorithm to assist in Avionics Cloud decision-
making can significantly improve the efficiency of the cluster co-detection function. The
DiMining algorithm is used to deep mine the generated high/low-efficiency task dataset
to identify key task combination patterns related to improving detection efficiency, to
adjust the scheduling rules of the task resource pool in detection and achieve intelligent
resource scheduling.

Aerospace 2023, 10, x FOR PEER REVIEW 21 of 22

of the algorithm. It can be seen that using the DiMining algorithm to assist in Avionics

Cloud decision-making can significantly improve the efficiency of the cluster co-detection

function. The DiMining algorithm is used to deep mine the generated high/low-efficiency

task dataset to identify key task combination patterns related to improving detection effi-

ciency, to adjust the scheduling rules of the task resource pool in detection and achieve

intelligent resource scheduling.

Figure 15. Performance comparison before and after optimization.

6. Conclusions

In this paper, we have studied a research method for UAV cluster task assignment in

Avionics Cloud architecture based on the DiMining algorithm. We propose a new algo-

rithm, the DiMining algorithm, which utilizes a memory efficient data structure and a

new chain table pruning method for analyzing efficient task matching patterns between

units in the task scenario dataset. The DiMining algorithm mines the differential dataset,

uses a relational pair storage data structure to store the raw data, and uses multiple prun-

ing strategies to mine the differential frequent time interval patterns to ensure that the

two differential time interval patterns with high and low execution efficiency are mined

at one time, avoiding the loss caused by secondary mining and improving the mining

efficiency. The efficiency of the proposed algorithm and pruning method is verified by

comparison toother algorithms.

Then, we used simulation software to simulate the UAV and unmanned ship collab-

orative detection scenarios, and analyzed and mined the data obtained from the simula-

tion of 350 high-efficiency and 350 low-efficiency operation scenarios. The generated high-

efficiency dataset and the low-efficiency dataset are mined by the DiMining algorithm to

identify the key task execution patterns related to efficiency. According to the mining re-

sults, the task execution sequence is adjusted, and the scene is simulated again to realize

the function of the resource allocation algorithm in the Avionics Cloud. By comparing the

efficiency of two simulations, the effectiveness of the DiMining algorithm in Avionics

Cloud decision-making is verified. In conclusion, we can say that the proposed DiMining

algorithm is a promising method for aided decision-making of task execution sequences

under Avionics Clouds.

Author Contributions: Conceptualization, M.W. and G.W.; methodology, L.P.; software, X.D.; val-

idation, X.D.; formal analysis, X.D.; investigation, X.D.; resources, X.D.; data curation, X.W.; writ-

ing—original draft preparation, X.D.; writing—review and editing, M.W.; visualization, X.D.; su-

pervision, M.W.; project administration, X.W.; funding acquisition, M.W. All authors have read and

agreed to the published version of the manuscript.

Funding: This study was funded by Natural Science Foundation of Shanghai (20ZR1427800), New

945 Young Teachers Launch Program of Shanghai Jiao Tong University (20X100040036).

Figure 15. Performance comparison before and after optimization.

6. Conclusions

In this paper, we have studied a research method for UAV cluster task assignment
in Avionics Cloud architecture based on the DiMining algorithm. We propose a new
algorithm, the DiMining algorithm, which utilizes a memory efficient data structure and a
new chain table pruning method for analyzing efficient task matching patterns between
units in the task scenario dataset. The DiMining algorithm mines the differential dataset,
uses a relational pair storage data structure to store the raw data, and uses multiple pruning
strategies to mine the differential frequent time interval patterns to ensure that the two
differential time interval patterns with high and low execution efficiency are mined at one
time, avoiding the loss caused by secondary mining and improving the mining efficiency.
The efficiency of the proposed algorithm and pruning method is verified by comparison
toother algorithms.

Then, we used simulation software to simulate the UAV and unmanned ship collabo-
rative detection scenarios, and analyzed and mined the data obtained from the simulation
of 350 high-efficiency and 350 low-efficiency operation scenarios. The generated high-
efficiency dataset and the low-efficiency dataset are mined by the DiMining algorithm
to identify the key task execution patterns related to efficiency. According to the mining
results, the task execution sequence is adjusted, and the scene is simulated again to realize
the function of the resource allocation algorithm in the Avionics Cloud. By comparing
the efficiency of two simulations, the effectiveness of the DiMining algorithm in Avionics
Cloud decision-making is verified. In conclusion, we can say that the proposed DiMining

Aerospace 2023, 10, 249 20 of 21

algorithm is a promising method for aided decision-making of task execution sequences
under Avionics Clouds.

Author Contributions: Conceptualization, M.W. and G.W.; methodology, L.P.; software, X.D.;
validation, X.D.; formal analysis, X.D.; investigation, X.D.; resources, X.D.; data curation, X.W.;
writing—original draft preparation, X.D.; writing—review and editing, M.W.; visualization, X.D.;
supervision, M.W.; project administration, X.W.; funding acquisition, M.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was funded by Natural Science Foundation of Shanghai (20ZR1427800), New
945 Young Teachers Launch Program of Shanghai Jiao Tong University (20X100040036).

Data Availability Statement: “Clickstream dataset Kosarak” at https://www.philippe-fournier-
viger.com/spmf/index.php, accessed on 1 December 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mark, H.; George, V.; Gregary, B.P. A comparison of open architecture standards for the development of complex military

systems: GRA, FACE, SCA NeXT (4.0). In Proceedings of the MILCOM 2012–2012 IEEE Military Communications Conference,
Orlando, FL, USA, 29 October–1 November 2012.

2. Guertin, N. How the navy is using open systems architecture to revolutionize capability acquisition. In Proceedings of the 12th
Annual Acquisition Research Symposium, Monterey, CA, USA, 13–14 May 2015.

3. Du, X.; Du, C.; Chen, J.; Liu, Y. An energy-aware resource allocation method for avionics systems based on improved ant colony
optimization algorithm. Comput. Electr. Eng. 2023, 105, 108515. [CrossRef]

4. Elkholy, W.; El-Menshawy, M.; Bentahar, J.; Elqortobi, M.; Laarej, A.; Dssouli, R. Model checking intelligent avionics systems for
test cases generation using multi-agent systems. Expert Syst. Appl. 2020, 156, 113458. [CrossRef]

5. Kabashkin, I.; Filippov, V. Reliability of Software Applications in Integrated Modular Avionics. Transp. Res. Procedia 2020, 51,
75–81. [CrossRef]

6. The Open Group. Technical Standard for Future Airborne Capability Environment (FACETM). Edition 2.1. Available online:
http://www.opengroup.org/bookstore (accessed on 20 November 2019).

7. Turiak, M.; Sedláčková, A.N.; Novak, A. Portable electronic devices on board of airplanes and their safety impact. In Telematics-
Support for Transport, Proceedings of the 14th International Conference on Transport Systems Telematics, TST 2014, Katowice/Kraków/Ustroń,
Poland, 22–25 October 2014; Springer: Berlin/Heidelberg, Germany, 2014. [CrossRef]

8. Yang, H.; Sun, Y. A combination method for integrated modular avionics safety analysis. Aircr. Eng. Aerosp. Technol. 2022, 95,
345–357. [CrossRef]

9. Dong, X.; Wang, M.; Liu, Y.; Xiao, G.; Huang, D.; Wang, G. An Efficient Spatial High Utility Occupancy Frequent Item Mining
Algorithm for Task System Integration Architecture Design using MBSE Method. Aerosp. Syst. 2022, 5, 377–392. [CrossRef]

10. Li, Z.; Li, Q.; Xiong, H. Avionics clouds: A generic scheme for future avionics systems. In Proceedings of the 2012 IEEE/AIAA
31st Digital Avionics Systems Conference (DASC), Williamsburg, VA, USA, 14–18 October 2012; pp. 6E4-1–6E4-10. [CrossRef]

11. Nguyen, A.-Q.; Amrhar, A.; Landry, R. Direct RF Sampling Avionics Architecture for future multi-system integrated Avionics.
In Proceedings of the 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS), Montreal, QC, Canada,
24–27 June 2018; pp. 61–65. [CrossRef]

12. Jianchun, X.; Zhonghua, W.; Yahui, L. The Distributed Computing Framework Research for Avionics Cloud. In Proceedings of the
2018 International Conference on Networking and Network Applications (NaNA), Xi’an, China, 12–15 October 2018; pp. 390–393.
[CrossRef]

13. Ma, X.; Jiang, C.; Huang, C. Cloud Task Optimization Scheduling based on Three-branch clustering. Comput. Sci. 2022, 49,
875–881.

14. Ye, F.; Shen, W. Task scheduling algorithm based on depth of reinforcement learning to improve. J. Comput. Age 2022, 11,
58+55–64.

15. Wang, S.; Sun, J.; Wang, P.; Yang, A. Cloud and synergy of resource scheduling optimization. J. Telecom Sci. 2022, 12, 1–9.
16. Fournier-Viger, P.; Nkambou, R.; Mephu Nguifo, E. A Knowledge Discovery Framework for Learning Task Models from User

Interactions in Intelligent Tutoring Systems. In Proceedings of the 7th Mexican International Conference on Artificial Intelligence
(MICAI 2008), Atizapan de Zaragoza, Mexico, 27–31 October 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 765–778.

17. Huang, J.-W.; Jaysawal, B.P.; Chen, K.-Y.; Wu, Y.-B. Mining frequent and top-K High Utility Time Interval-based Events with
Duration patterns. Knowl. Inf. Syst. 2019, 61, 1331–1359. [CrossRef]

18. Ritika; Gupta, S. K. HUFTI-SPM: High-utility and frequent time-interval sequential pattern mining from transactional databases.
Int. J. Data Sci. Anal. 2022, 13, 239–250. [CrossRef]

19. Mordvanyuk, N.; Lopez, B.; Bifet, A. vertTIRP: Robust and efficient vertical frequent time interval-related pattern mining. Expert
Syst. Appl. 2021, 168, 114276. [CrossRef]

https://www.philippe-fournier-viger.com/spmf/index.php
https://www.philippe-fournier-viger.com/spmf/index.php
http://doi.org/10.1016/j.compeleceng.2022.108515
http://doi.org/10.1016/j.eswa.2020.113458
http://doi.org/10.1016/j.trpro.2020.11.010
http://www.opengroup.org/bookstore
http://doi.org/10.1007/978-3-662-45317-9_4
http://doi.org/10.1108/AEAT-07-2021-0210
http://doi.org/10.1007/s42401-021-00126-6
http://doi.org/10.1109/DASC.2012.6382402
http://doi.org/10.1109/NEWCAS.2018.8585695
http://doi.org/10.1109/NANA.2018.8648728
http://doi.org/10.1007/s10115-019-01333-6
http://doi.org/10.1007/s41060-021-00297-7
http://doi.org/10.1016/j.eswa.2020.114276

Aerospace 2023, 10, 249 21 of 21

20. Lee, Z.; Lindgren, T.; Papapetrou, P. Z-Miner: An Efficient Method for Mining Frequent Arrangements of Event Intervals. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ‘20), New York,
NY, USA, 6–10 July 2020; pp. 524–534.

21. Fang, G.; Kuang, R.; Pandey, G.; Steinbach, M.; Myers, C.L.; Kumar, V. Subspace Differential Co-expression Analysis: Problem
Definition and A General Approach. In Proceedings of the 15th Pacific Symposium on Biocomputing (PSB), Kamuela, HI, USA,
4–8 January 2010; Volume 15, pp. 145–156.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Avionics Cloud Architecture
	Avionics Cloud Organizational Structure
	Avionics Cloud Logical Architecture

	Problem Description
	Algorithm Description
	Data Structure
	Pruning Strategy
	DiMining Algorithm

	Experiment and Analysis
	Efficiency Comparison
	Simulation Experiment

	Conclusions
	References

