using SymPy
𝜃=symbols("𝜃")
αd=symbols("α_D")
#αdw=symbols("Δα")
αm=symbols("α_m")
αn=symbols("α_n")
alo=symbols("a_l_o")
Wog=symbols("W_og")
Do=symbols("D_o")
R=symbols("R")
V=symbols("V")
Vt=symbols("V_t")
Ho=symbols("H_o")
Htr=symbols("H_TR")
𝜆h=symbols("𝜆_h")
𝜆i=symbols("𝜆_i")
vi=symbols("v_i")
𝜇c=symbols("𝜇_c")
A=symbols("A")
B=symbols("B")
n=symbols("n")
δ0=symbols("δ_0")
δ1=symbols("δ_1")
δ2=symbols("δ_2")
δ3=symbols("δ_3")
ρ=symbols("ρ")
σ=symbols("σ")
fec=symbols("f_e_c")
fel=symbols("f_e_l")
fecm=symbols("f_e_cm")
as=symbols("a_s") # speed of sound
Pi=symbols("π")
"Equation (S1) {Mr≤0.8, 0≤(-αF)≤15}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f11*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=alo/sqrt(1-Mr^2)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S1=T1h-T2v
print(Equation_S1)
"Equation (S2) {Mr≤0.8, 15°<(-αF)≤22.5°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f12*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=alo/sqrt(1-Mr^2)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S2=T1h-T2v
print(Equation_S2);
"Equation (S3) {Mr≤0.8, 22.5°<(-αF)≤30°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f13*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=alo/sqrt(1-Mr^2)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S3=T1h-T2v
print(Equation_S3);
"Equation (S4) {Mr≤0.8, (-αF)>30°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=0
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=alo/sqrt(1-Mr^2)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S4=T1h-T2v
print(Equation_S4);
"Equation (S5) {0.8<Mr≤0.9, 0≤(-αF)≤15}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f11*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=alo/sqrt(1-Mr^2)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3+0.4*(Mr-0.8)
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S5=T1h-T2v
print(Equation_S5);
"Equation (S6) {0.8<Mr≤0.9, 15°<(-αF)≤22.5°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f12*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=alo/sqrt(1-Mr^2)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3+0.4*(Mr-0.8)
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S6=T1h-T2v
print(Equation_S6);
"Equation (S7) {0.8<Mr≤0.9, 22.5°<(-αF)≤30°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f13*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=alo/sqrt(1-Mr^2)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3+0.4*(Mr-0.8)
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S7=T1h-T2v
print(Equation_S7);
"Equation (S8) {0.8<Mr≤0.9, (-αF)>30°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=0
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=alo/sqrt(1-Mr^2)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3+0.4*(Mr-0.8)
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S8=T1h-T2v
print(Equation_S8);
"Equation (S9) {0.9<Mr≤1.0, 0≤(-αF)≤15}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f11*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=57.3*0.055*(0.26*Mr^2)^(-1/3)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3+0.4*(Mr-0.8)
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S9=T1h-T2v
print(Equation_S9);
"Equation (S10) {0.9<Mr≤1.0, 15°<(-αF)≤22.5°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f12*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=57.3*0.055*(0.26*Mr^2)^(-1/3)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3+0.4*(Mr-0.8)
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S10=T1h-T2v
print(Equation_S10);
"Equation (S11) {0.9<Mr≤1.0, 22.5°<(-αF)≤30°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f13*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=57.3*0.055*(0.26*Mr^2)^(-1/3)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3+0.4*(Mr-0.8)
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S11=T1h-T2v
print(Equation_S11);
"Equation (S12) {0.9<Mr≤1.0, (-αF)>30°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=0
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=57.3*0.055*(0.26*Mr^2)^(-1/3)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=δ0+δ1*αl+δ2*αl^2+δ3*αl^3+0.4*(Mr-0.8)
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S12=T1h-T2v
print(Equation_S12);
"Equation (S13) {Mr>1.0, 0≤(-αF)≤15}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f11*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=57.3*0.055*(0.26*Mr^2)^(-1/3)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=1
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S13=T1h-T2v
print(Equation_S13);
"Equation (S14) {Mr>1.0, 15°<(-αF)≤22.5°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f12*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=57.3*0.055*(0.26*Mr^2)^(-1/3)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=1
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S14=T1h-T2v
print(Equation_S14);
"Equation (S15) {Mr>1.0, 22.5°<(-αF)≤30°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=-(f13*q)
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=57.3*0.055*(0.26*Mr^2)^(-1/3)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=1
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S15=T1h-T2v
print(Equation_S15);
"Equation (S16) {Mr>1.0, (-αF)>30°}"
𝜇=𝜇c*cos(αd)
𝜇z=𝜇*tan(αd)
Vf=sqrt(V^2+2*vi*V*sin(αd)+vi*vi)
q=0.5*Vf*Vf*ρ
αdw=atan((𝜆i*cos(αd))/(𝜇c+𝜆i*sin(αd)))
αf=(αd+αdw-αm)
αF=-αf*180/pi
f11=0.113*fel*αF-0.282*fel
f12=0.0133333*fel*αF-1.7*fel
f13=-2*fel
Lf=0
fe=fec*(A+B*(sin(αf))^n)
D=q*fe
T=Wog*cos(αd)+D*sin(αd+αdw)+Lf*cos(αd+αdw)+Htr*sin(αd)
Ct=T/(ρ*pi*R^2*Vt^2)
Mr=(V*cos(αd)+0.75*Vt)/as
al=57.3*0.055*(0.26*Mr^2)^(-1/3)
Clav=(6*Ct/σ)*(1/(1+1.5*𝜇^2))
αl=Clav/al+αn
cd=1
Hc=Ho*cd
H=Hc*cos(αd)
T1h=(H*cos(αd)+D*cos(αdw)+Htr-Lf*sin(αdw))/sin(αd)
T2v=(Wog+D*sin(αdw)+Lf*cos(αdw)-H*sin(αd))/cos(αd)
Equation_S16=T1h-T2v
print(Equation_S16);
l=symbols("lambda") lh=symbols("lambda_h") mi=symbols("mi") f=-lh^2/sqrt(1)