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Abstract: This study investigates the kinetic modeling of CH4/H2/Air mixture with nanosecond
pulse discharge (NSPD) by varying H2/CH4 ratios from 0 to 20% at ambient pressure and temperature.
A validated version of the plasma and chemical kinetic mechanisms was used. Two numerical tools,
ZDPlasKin and CHEMKIN, were combined to analyze the thermal and kinetic effects of NSPD on
flame speed enhancement. The addition of H2 and plasma excitation increased flame speed. The
highest improvement (35%) was seen with 20% H2 and 1.2 mJ plasma energy input at φ = 1. Without
plasma discharge, a 20% H2 blend only improved flame speed by 14% compared to 100% CH4. The
study found that lean conditions at low flame temperature resulted in significant improvement in
flame speed. With 20% H2 and NSPD, flame speed reached 37 cm/s at flame temperature of 2040 K
at φ = 0.8. Similar results were observed with 0% and 5% H2 and a flame temperature of 2200 K
at φ = 1. Lowering the flame temperature reduced NOx emissions. Combining 20% H2 and NSPD
also increased the flammability limit to φ = 0.35 at a flame temperature of 1350 K, allowing for
self-sustained combustion even at low temperatures.

Keywords: flame propagation; nanosecond plasma discharges; lean burning; ZDPlaskin; CHEMKIN

1. Introduction

Combustion is a crucial factor in air transportation due to the high energy density
of liquid fuels. However, the low efficiency of current aeroengines and the production of
harmful emissions contributing to climate change are pressing issues. To comply with strict
emission regulations set by CAEP (Committee on Aviation Environmental Protection) and
improve fuel efficiency, various international organizations are exploring the concept of
lean combustors.

Lean fuel burning is an effective solution for reducing NOx emissions by lowering
flame temperature. However, these low temperature flames are prone to critical instabilities
that can lead to re-ignition and flame blowout issues [1,2]. To address issues with methane
combustion, the addition of a more reactive and cleaner fuel such as hydrogen could be
a practical solution [3]. Blending methane with hydrogen has been shown to enhance
performance and reduce emissions without modifying existing combustors [4]. Hydrogen
is a carbon-free fuel with low ignition energy, a wide flammability range, fast flame
propagation, and high reactivity [3]. Several studies in the past [3–6] have focused on
the impact of hydrogen on the flame speed of CH4/H2 mixtures. Halter et al. [5] studied
the effect of hydrogen content and inlet pressure on the laminar flame speed of CH4/H2
flames, with results indicating that the laminar flame speed improved with increasing
hydrogen content and decreased with increasing inlet pressure.

Mandilas et al. [6] studied the impact of hydrogen on iso-octane-air and methane
mixtures in both laminar and turbulent conditions. They found that using hydrogen led
to earlier flame instabilities but improved laminar flame speed at lean limits in turbulent
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combustion. Adding hydrogen to methane slightly improved reactivity at lean conditions,
but also increased complexities, safety issues, and thermoacoustic instabilities [3–6]. Flame
speed was slightly better at lean compared to rich conditions [4]. Non-thermal plasma
combustion can improve flame stability, flame speed, and lean blowout limits. NTP
enhances combustion through kinetic, thermal and momentum effects [7]. NTP improves
combustion through three mechanisms: kinetic (creation of active particles from fuel
decomposition), thermal (increased fuel/air mixture temperature), and momentum (ionic
wind and flow motion from electro-hydrodynamic forces) [8].

Among NTP technologies, nanosecond plasma discharge (NSPD) has gained attention
due to its ability to effectively produce excited states and active particles [9,10]. NSPD also
rapidly heats the gas, which accelerates combustion [11,12]. Despite numerous research
studies on NTP combustion [1], commercialization is only possible with the development
of accurate numerical models for plasma chemistry in combustion. Our group [12–15] has
studied CH4/air mixtures with NSPD for flame propagation and ignition enhancement. We
compared ignition delay, flame speed, and flammability limits under different conditions
and found that NSPD improved ignition, flame propagation, and flammability limits due to
the production of neutral radicals and increased mixture temperature. The improvements
were primarily due to NSPD’s kinetic effects. Prior studies on NSPD have individually
considered H2/air and CH4/air mixtures.

While initial studies have explored the kinetics of NSPD, a comprehensive understand-
ing of plasma mechanisms for CH4/H2/air mixtures is still lacking. It has been shown that
the evolution of active particles over time provides the most accurate analysis of plasma
kinetics [16,17].

This paper presents a study of CH4/H2/air with nanosecond plasma discharge. There
is currently no numerical study available on methane blended hydrogen plasma-assisted
combustion. Both plasma and combustion kinetics were analyzed using validated mecha-
nisms and compared to previously published experimental data. The impact of NSPD and
hydrogen content on flame propagation and flammability limits in methane/air mixtures
was studied. A comparative analysis of flame speed enhancement with and without plasma
actuation was performed using different methane blended hydrogen ratios.

2. Numerical Procedure and Kinetic Modelling
2.1. Numerical Procedure

Numerical analyses were conducted using two solvers: ZDPlasKin (0D Plasma kinetic
solver) [18] and CHEMKIN (Chemical kinetic solver) [19]. The methodology is shown in
Figure 1 and explained in [13]. ZDPlasKin was used to analyze the kinetic and thermal
effects of NSPD in CH4/H2/Air mixture. BOLSIG+ was linked to ZDPlasKin to predict
the temporal evolution of excitation states and the reactions producing free radicals/active
particles. It has been assumed that the non-equilibrium plasma created from a CH4/H2/air
mixture at atmospheric pressure is uniformly distributed, which is a similar assumption to
what was previously executed in [13]. Although the nanosecond pulsed plasma combustion
process is three-dimensional and not homogeneous, we used a simplified homogeneous
model. To investigate the effects of plasma CH4/H2/air products on flame speed and
flammability limits, we used the plasma products of CH4/H2/air as the inlet domain of
the reactor.
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Figure 1. Flowchart for numerical analysis.

ZDPlasKin boundary conditions were set as ambient temperature and pressure, fixed
EN and electron number density, and initial CH4/H2/Air composition. The simplified
homogeneous model was used as in [20]. ZDPlasKin simulation was performed using
the integral mean value of EN obtained from experiments, about 200 Td over 10−6 s, as
shown in Figure 2. Experimental setup and EN estimation are described in [13]. The gas
temperature was predicted using equations from [18]. The adiabatic gas temperature was
calculated from the energy conservation equation and reallocation of electrical power Pext
to electron translational degree Pelec, gas internal degree Pchem, and gas Pgas:

Pext = Pgas + Pelec + Pchem (1)
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The above equation can be described below.
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+
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Pelec =
3
2
+

d([Ne]Te)
dt

(4)

Pchem =
n

∑
i

Qi +
d[Ni]

dt
(5)

where E is the reduced field, e is the elementary charge, Te is the electron temperature, ve is
the drift velocity of electrons [Ne] is the electron density, N is the total gas density, γ = 1.2 is
the specific gas heat ratio and Qi is the potential energy of species i.

The results gained from the ZDPlaskin solver in terms of neutral and excited species (at
a time of 0.5 ms because the residence time is too short that autoignition chemistry does not
significantly influence the reactants compositions), and the gas temperature of the activated
region were introduced into the CHEMKIN solver to investigate the combustion process.

A 1-D premixed laminar flame speed reactor was employed to analyze combustion
characteristics, considering thermal diffusion and multicomponent diffusion options. The
adaptive mesh parameters were set as CURV = 0.5 and GRAD = 0.05, with absolute and
relative error criteria of ATOL = 1 × 10−9 and RTOL = 1 × 10−5, respectively. The total
number of grid points used was typically 350–400. In this study, we have established that
the calculation domain of the CHEMKIN reactor ranges from −2.0 cm upstream to 4.0 cm
downstream with respect to the reactor and is sufficient to attain adiabatic equilibrium.
Numerical analyses were performed at various fueling conditions based on H2/CH4 ratio
(xH2) with or without plasma actuation. Table 1 shows the mole fraction of CH4, and H2
reactants at equivalence ratio of 1.

Table 1. Reactants mole fraction of CH4/H2/Air flames at plasma on and off conditions.

Case No. H2 (%) CH4 H2 O2 N2 Plasma (ON/OFF)

1 0 0.0950 / 0.1900 0.7149 OFF
2 5 0.0935 0.0049 0.1894 0.7122 OFF
3 10 0.0917 0.0101 0.1885 0.7094 OFF
4 20 0.0879 0.0219 0.1869 0.7031 OFF
5 0 0.0950 / 0.1900 0.7149 ON
6 5 0.0935 0.0049 0.1894 0.7122 ON
7 10 0.0917 0.0101 0.1885 0.7094 ON
8 20 0.0879 0.0219 0.1869 0.7031 ON

2.2. Plasma Kinetic Model

A comprehensive literature review was conducted to develop an extended plasma
kinetic mechanism for CH4/H2/Air mixture. It consists of 161 species and 1382 plasma
and gas-phase reactions, and includes ionization reactions, charged transfer reactions, dis-
sociation reactions, excited species reactions, recombination reactions, relaxation reactions,
and three-body recombination reactions. The mechanism also included 38 exciting species
and 35 charged species. The relevant reactions were taken from [21–24]. The collision
cross-sectional data were taken from the LXCat data source [13]. Further information can
be found in the previously published study [13].

2.3. Combustion Kinetic Model

The NSPD generated kinetic effects (neutral radicals, active particles, excited species)
and thermal effects were used to study the effect on flame speed in a CHEMKIN combus-
tion model. The CH4/H2/Air combustion kinetic model was created with an expanded
version of the combustion mechanism, incorporating thermodynamics and transport data.
The mechanism was updated from GRI-Mech v3.08 with ozone reactions [25] and up-
dated hydrogen combustion mechanism including the excited species O(1D), OH(2+),
O2(a1g) [26]. A sub-model of the excited species OH* and CH* has also been added [27].
Furthermore, the reaction mechanism of ions and excited species of CH4/Air mixture was
also considered [28].
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3. Validation of Kinetic Models

The plasma kinetic model was validated using an experimental study in [29] by
comparing the mole fraction of the decay process of O atoms. The plasma kinetic model
was validated using an experimental study in [13]. The model accurately predicts the O
atom mole fraction, in good agreement with experimental data.

The combustion kinetic model was validated using experiments by Coppens [30],
Hermanns [31], the Konnov mechanism [32], and the San Diego mechanism [33]. The
combustion kinetic mechanism was tested with H2 and CH4 fractions equal xH2 = 0.05
and xCH4 = 0.95CH4 at different equivalence ratios. Figure 3 shows the validation results
for burning velocities of CH4/H2/Air mixture with 5%, 30%, and 40%. H2 content. The
model shows good agreement with experimental data compared to other mechanisms,
with slightly lower values at rich burning conditions as seen in [30,31].
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4. Results and Discussions

The present analysis was conducted under fixed plasma conditions: EN = 200 Td,
repetition frequency equal to 1000 Hz, and electron number density equal to 107 cm−3. The
effect of varying H2 contents (xH2 from 0 to 0.2) on active particle production was studied
in methane/air. Figure 4 shows the temporal evolution of active particles (H, OH, CH,
and CH3) as predicted by ZDPlaskin simulations under fixed plasma actuation conditions,
only changing the H2 content in the methane/air mixture. An increase in H2 concentration
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led to a significant improvement in the mole fraction of active species. The improvement
in active particles production was linearly proportional to the rise in H2 content, with
the maximum concentration observed at 20% H2. The rapid decomposition of H2

+ into
H, (E + H2

+ => H + H) due to its simple molecular structure and high reactivity and the
subsequent reactions with other intermediate species, led to increased concentration of
active particles. The maximum mole fraction of H was 0.00704 (Figure 4a), which was
almost twice the OH species equal to 0.0038 (Figure 4b). The maximum mole fraction
of CH3 was 0.006 (Figure 4c), slightly less than H but two orders higher than the molar
fraction of CH (0.000041, Figure 4d).
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The H atoms were produced during the decomposition process when electrons reacted
with the ions of CH+, CH2

+, CH3
+, CH4

+, and H3O+. The primary reactions contributing
to the production of H, CH, and CH3 were E + CH4

+ = CH3 + H and E + CH3
+ = CH + H

+ H (reaction rates: 1020 and 1021 cm3 s−1, respectively). The OH radicals were produced
through the reaction O(1D) + CH4 = CH3 + OH (reaction rate: 1024 cm3 s−1).

As shown in Figure 5, the mole fraction of active species was significantly improved
with an increase in H2 content in the methane/air mixture. The highest mole fraction of O
atoms was observed at a 20% H2 content (xH2 = 0.2) with a value of 0.0158 (Figure 5b). This
was due to the decomposition of excited O2 species when reacting with H atoms and H2O
molecules, which increased in concentration due to the presence of H2 molecules in the
methane/air mixture. The dominant reaction path was H + O2(V4) => O + OH (reaction
rate: 1023 cm3/s). The O atoms produced began to reduce after 10−4 s, likely due to the
short reactive time of O atoms leading to their consumption during recombination and
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intermediate reactions. Similarly, ozone concentration improved as shown in Figure 5c,
with a mole fraction of 0.00729, close to that of H atoms (0.00704) at a 20% H2 content.
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of H2 in methane/air mixture using fixed plasma actuation conditions.

Ozone is primarily generated through the reaction of O atoms with molecular oxygen
or with excited species of oxygen. The most significant reaction is O + O2 + N2 = O3 + N2,
as it has a reaction rate of about 1023 cm3/s. Nitrogen acts as a third body, removing excess
energy. Ozone can also improve combustion analysis as it increases flame speed [25]. The
temporal evolution of ammonia was also found to improve when nitrogen seed particle
was added to methane-blended hydrogen.

The kinetic and thermal effects predicted by ZDPlasKin were introduced into Chemkin
to investigate the flame speed and maximum flame temperature. The reactant mole fraction
of active particles and excited species predicted by ZDPlasKin were added to Chemkin to
account for kinetic effects. This was executed with a 0.5 ms residence time, which is too
short to affect the autoignition chemistry and the reactant composition. The flame speed and
peak flame temperature were investigated using a pre-mixed laminar flame speed reactor
at different methane-blended hydrogen mixture compositions with or without NSPD.

Figure 6a showed that flame speed improved with increasing hydrogen content
and plasma excitation. At stoichiometric mixture, adding hydrogen (xH2 = 0.2) to the
methane/air mixture resulted in a 14% increase in flame speed (∆sL). A further improve-
ment of 35% was achieved with plasma discharge. At leaner condition (φ = 0.6) and same
H2 fraction, ∆sL was 16.7% without and 52% with plasma actuation. However, the same
flame speed was observed for both cases of xH2 = 0.2 and xH2 = 0.05 with PAC at lean and
stoichiometric conditions, similarly in case of xH2 = 0.1 and xH2 = 0 with PAC. It means
the same range of flame speed could be reached by varying both hydrogen fraction and
plasma discharge.
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Figure 6. Comparison of (a) flame speed and (b) flame temperature at various equivalence ratios
using different H2 contents with or without NSPD.

Figure 6b shows the predicted peak flame temperature Tf with or without plasma for
various H2 fractions. The results showed that increasing H2 did not affect Tf without plasma
discharges. However, with plasma, Tf was affected by H2 at fixed operating conditions,
especially for the rich mixture (Φ > 1). A slightly increase in Tf was found at lean and
stoichiometric conditions.

The study found that lean conditions at low flame temperature resulted in significant
improvement in flame speed. With 20% H2 and NSPD, flame speed reached 37 cm/s at
flame temperature of 2040 K at φ = 0.8. Similar results were observed with 0% and 5% H2
and a flame temperature of 2200 K at φ = 1. It was observed that the same flame speed can
be achieved at lean conditions by reducing Tf, leading to reduced NOx emissions.

Figure 7 compares the improvement in flame speed (%) at lean, stochiometric, and rich
conditions with xH2 = 0.2 with or without NSPD. It was observed that the improvement
trend was φ = 1.4 > φ = 0.6 > φ = 1. At lean conditions (φ = 0.6), adding xH2 = 0.2 improved
flame speed by 15%, however, using both xH2 = 0.2 and plasma resulted in a more than
50% improvement. At rich conditions, the largest improvement was seen with plasma due
to the increased fuel causing more active particles to be produced during NSPD”.
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Figure 7. Comparative behavior of flame speed improvements (%) at lean, stoichiometric, and
rich conditions.

Literature [26] showed that the molecular excited species oxygen O2(1∆) increased
burning velocity by 1% without plasma. The reaction path H2 + O2(1∆) = H + HO2 was



Aerospace 2023, 10, 224 9 of 15

found to play a significant role. More than 5% of O2 was converted to O2(1∆) in the presence
of electric discharge at ambient pressure [34]. Thus, plasma discharge could produce
significant amounts of O2(1∆). Figure 8 analyzed the role of O2(1∆) using hydrogen blends
with or without plasma discharge. The results showed no change in O2(1∆) production
with hydrogen blends alone at various equivalence ratios. However, with the use of plasma
discharge, there was a significant rise in excited species production, especially at higher
hydrogen content.
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Figure 8. Comparison of molecular excited species O2(1∆) at various equivalence ratios using
different H2 contents with or without NSPD.

Impact of atomic excited species O(1D) on flame speed was studied using plasma
and hydrogen blends (Figure 9). Results showed low O(1D) concentration increased with
hydrogen and plasma, but still had minimal effect on combustion. However, it could be
increased with the increase in plasma amplitude.
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Figure 9. Comparison of atomic excited species O(1D) at various equivalence ratios using different
H2 contents with NSPD.

Free radicals such as O, H, and OH are active due to unpaired electrons and short
lived in combustion [35]. They initiate chain reactions and branching. Figure 10a–d show
mole fraction profiles of O, H, OH, and CH3 using hydrogen blends with/without plasma
discharge. Adding hydrogen increased O, H, and OH mole fractions, but decreased CH3
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slightly (Figure 10d). Using NSPD in hydrogen blends raised O, H, and OH concen-
trations and moved the reaction region upstream. CH3 mole fraction was also slightly
increased with plasma discharge. OH particles had the highest concentration at 0.009 mole
fraction. Main reactions producing O, H, and OH particles are described as follows in
Equations (6) and (7).

OH + H2 = H + H2O (6)

H + O2 = O + OH (7)
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Figure 10. Mole fraction profiles of (a) H, (b) O, (c) OH, and (d) CH3 with different blends of hydrogen
without or with NSPD.

Figure 11 shows the production rate of Equations (6) and (7) with xH2 = 0 and xH2 = 0.2
with/without NSPD. The rate increased and the peak shifted upstream with hydrogen
addition, but with xH2 = 0.2 and plasma, a significant impact was seen.

H2 and O2 mole fractions change with hydrogen blends and NSPD, shown in Figure 12.
H2 transforms from intermediate species to initial reactant in methane flames with xH2 ≥ 0.2
and NSPD. H2 starts reacting upstream in xH2 = 0.2, confirmed by [36]. H2 promotes
combustion and moves the reaction region towards upstream due to its higher reactivity
than CH4.
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Figure 12. Mole fraction profiles of H2 and O2 with different blends of hydrogen without or with NSPD.

Figure 13a illustrates the mole fractions of CH4 in different H2 blends with or without
the NSPD. The addition of H2 and NSPD leads to a decrease in CH4 mole fraction, possibly
due to the high reactivity of H2 and lower CH4 concentration. The oxidation of CH4
greatly increased and its profiles were shifted towards the upstream sides. CH4 was mainly
consumed by reactions with active particles O, H, and OH. The dominant CH4 consumption
reactions are listed below.

OH + CH4 = CH3 + H2O (8)

H + CH4 = CH3 + H2 (9)

O + CH4 = OH + CH3 (10)
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The rate of production of Equations (8)–(10) using hydrogen contents xH2 = 0 and
xH2 = 0.2 with or without NSPD is shown in Figure 13b. CH4 consumption was increased
for reaction Equations (8)–(10) and the peak of the reaction region was shifted towards
the upstream with the addition of hydrogen contents with or without plasma. However,
when combining the H2 blends of xH2 = 0.2 with NSPD, a noticeable impact was observed.
It was because hydrogen is more reactive, which promoted methane combustion. The
concentration of active particles O, H, and OH were increased when methane was blended
with hydrogen, mainly due to the chemical effects. Moreover, the NSPD further improved
the combustion process due to the thermal (moderate gas heating) and kinetic effects
(excitation, ionization and decomposition of fuel and air molecules occurred, which resulted
in the production of intermediate fuel fragments and active particles).

Finally, the lean flammability limit is discussed as the minimum equivalence ratio for
flame propagation. Figure 14 shows the lean flammability limit using hydrogen contents
XH2 = 0 and XH2 = 0.2 with or without NSPD. The flammability limit remained at φ = 0.6
without H2 and plasma but improved to φ = 0.5 with the addition of XH2 = 0.2. Plasma
discharge had a significant impact on the flammability limits, with φ = 0.45 at flame
temperature about 1500 K.
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Combining XH2 = 0.2 and NSPD increased the flammability limit to φ = 0.35 at
1350 K, allowing self-sustained combustion at lower flame temperatures and reduced NOx
emissions. The improved flammability limits reduce fuel consumption due to the enhanced
reactivity and chemical effects of H2 and thermal and kinetic effects of NSPD.

5. Conclusions

This paper investigated the impact of NSPD on enhancing the flame propagation of
CH4/H2/air mixture under ambient temperature and pressure. A reduced electric field
experimentally estimated was used for numerical investigation. An extended version of
the plasma and combustion kinetic mechanism was applied and validated using available
experimental and numerical data. ZDPlasKin was used to predict the temporal evolution
of active particles and the results were integrated into CHEMKIN to enhance the flame
speed. The numerical study was carried out with varying H2 contents from 0 to 20% in
methane/air with or without plasma actuation. It was noticed that with the enrichment of
H2 concentration in the methane/air mixture at fixed plasma, the mole fraction of active
species was significantly improved. However, the improvements in the production of active
particles were linearly increased with the increase in H2 contents. The highest improvement
in flame propagation was observed at 20% H2/Plasma reaching 35%.

Flame speed improvement was significantly higher at lean conditions and low flame
temperatures. For instance, at an equivalence ratio of 0.8, 20% H2/Plasma resulted in a
flame speed of 37 cm/s at a flame temperature of around 2040 K. This same flame speed was
also observed in the case of 0% and 5% H2 with a flame temperature close to 2200 K, mean-
ing that high flame speed can be achieved at lean conditions and low flame temperatures,
reducing NOx emissions. Figure 7 shows the comparison of flame speed improvement
at lean, stoichiometric, and rich conditions with xH2 = 0.2 with or without NSPD. The
improvement in flame speed was higher at lean conditions (equivalence ratio of 0.6) with
the addition of xH2 = 0.2, reaching 15%. Combining xH2 = 0.2 with plasma discharge
significantly increased flame speed by more than 50%. Furthermore, the combination of H2
blend (xH2 = 0.2) and NSPD improved the flammability limit to equivalence ratio 0.35 at a
flame temperature of 1350 K, allowing for reduced fuel consumption.

Author Contributions: Conceptualization, M.G.D.G.; Methodology, M.G.D.G. and G.M.; Software,
G.M.; Validation, G.M.; Formal analysis, G.M.; Investigation, G.M. and S.B.; Data curation, G.M., G.C.,
Z.A.S. and S.B.; Writing—original draft preparation, G.M.; Writing—review and editing, M.G.D.G.;
Supervision, M.G.D.G. and A.F.; Project administration, M.G.D.G. and A.F.; Funding acquisition,
G.M. All authors have read and agreed to the published version of the manuscript.
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in Capitale Umano” Azione I.1 “Dottorati Innovativi con caratterizzazione industriale”—Corso di
Dottorato in “Ingegneria dei Sistemi Complessi” XXXV ciclo—Università degli Studi del Salento”—
Borsa Codice: DOT1312193 no. 3. This project is also received funding from the Clean Sky 2 Joint
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from the European Union’s Horizon 2020 research and innovation program and the Clean Sky 2 JU
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