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Abstract: This article proposes a method to diminish the horizontal position drift in the absence
of GNSS (Global Navigation Satellite System) signals experienced by the VNS (Visual Navigation
System) installed onboard a UAV (Unmanned Air Vehicle) by supplementing its pose estimation
non-linear optimizations with priors based on the outputs of the INS (Inertial Navigation System).
The method is inspired by a PI (Proportional Integral) control loop, in which the attitude and
altitude inertial outputs act as targets to ensure that the visual estimations do not deviate past
certain thresholds from their inertial counterparts. The resulting IA-VNS (Inertially Assisted Visual
Navigation System) achieves major reductions in the horizontal position drift inherent to the GNSS-
Denied navigation of autonomous UAVs. Stochastic high-fidelity Monte Carlo simulations of two
representative scenarios involving the loss of GNSS signals are employed to evaluate the results
and to analyze their sensitivity to the terrain type overflown by the aircraft. The authors release
the C++ implementation of both the navigation algorithms and the high-fidelity simulation as
open-source software.

Keywords: GNSS-Denied; visual inertial navigation; autonomous navigation; autonomy; UAV;
optimization

1. Mathematical Notation

Any variable with a hat accent < ·̂ > refers to its (inertial) estimated value, and with
a circular accent < ◦· > to its (visual) estimated value. In the case of vectors, which are
displayed in bold (e.g., x), other employed symbols include the wide hat < ·̂ >, which refers
to the skew-symmetric form, the bar < ·̄ >, which represents the vector homogeneous
coordinates, and the double vertical bars < ‖ · ‖ >, which refer to the norm. In the case of
scalars, the vertical bars < | · | > refer to the absolute value. When employing attitudes
and rigid body poses (e.g., q and ζ), the asterisk superindex < ·∗ > refers to the conjugate,
their concatenation and multiplication are represented by ◦ and ⊗, respectively, and ⊕ and
	 refer to the plus and minus operators.

This article includes various non-linear optimizations solved in the spaces of both
rigid body rotations and full motions, instead of Euclidean spaces. Hence, it relies on
the Lie algebra of the special orthogonal group of R3, known as SO(3), and that of the
special Euclidean group of R3, represented by SE(3), in particular what refers to the groups
actions, concatenations, perturbations, and Jacobians, as well as with their tangent spaces
(the rotation vector r and angular velocity ω for rotations, the transform vector τ and twist
ξ for motions). Refs. [1–3] are recommended as references.

Five different reference frames are employed in this article: the ECEF frame FE (cen-
tered at the Earth center of mass OE, with iE

3 pointing towards the geodetic North along
the Earth rotation axis, iE

1 contained in both the Equator and zero longitude planes, and
iE

2 orthogonal to iE
1 and iE

3 forming a right handed system), the NED frame FN (centered at
the aircraft center of mass ON, with axes aligned with the geodetic North, East, and Down
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directions), the body frame FB (centered at the aircraft center of mass OB = ON, with iB
1

contained in the plane of symmetry of the aircraft pointing forward along a fixed direction,
iB

3 contained in the plane of symmetry of the aircraft, normal to iB
1 and pointing downward,

and iB
2 orthogonal to both in such a way that they form a right hand system), the camera

frame FC (centered at the optical center OC, defined in Appendix A, with iC
3 located in the

camera principal axis pointing forward, and iC
1 , iC

2 parallel to the focal plane), and the image
frame FIMG (two-dimensional frame centered at the sensor corner with axes parallel to the
sensor borders). The first three frames are graphically depicted in Figure 1, while FC and
FIMG can be visualized in Appendix A.

Superindexes are employed over vectors to specify the reference frame in which they
are viewed (e.g., vN refers to ground velocity viewed in FN, while vB is the same vector
but viewed in FB). Subindexes may be employed to clarify the meaning of the variable or
vector, such as in vTAS for air velocity instead of the ground velocity v, in which case the
subindex is either an acronym or its meaning is clearly explained when first introduced.
Subindexes may also refer to a given component of a vector, e.g., vN

2 refers to the second
component of vN. In addition, where two reference frames appear as subindexes to a vector,
it means that the vector goes from the first frame to the second. For example, ωB

NB refers to
the angular velocity from the FN frame to the FB frame viewed in FB. Table 1 summarizes
the notation employed in this article.

Table 1. Mathematical notation.

γTAS Aerodynamic path angle g Lie group action (transformation)
δ Error threshold h Geometric altitude
δCNTR Throttle and control surfaces position HP Pressure altitude
δTARGET Control targets I Camera image
∆ Estimation error, increment J Jacobian
∆p Atmospheric pressure offset M SE(3) Lie group element
∆T Atmospheric temperature offset p Point, feature
θ Body pitch angle q Attitude, unit quaternion
λ Longitude r Attitude, rotation vector
ζ Pose, unit dual quaternion R Attitude, rotation matrix
µ Mean or expected value R SO(3) Lie group element
ξ Body bank angle sPX Pixel size
ξ Motion (SE(3)) velocity or twist S Sensor dimension
Π Camera projection t Time
$TUK Tukey error function T Displacement
σ Standard deviation TE,GDT Geodetic coordinates
τ Pose, transform vector v Speed
ϕ Latitude v Velocity
φ Attitude, Euler angles wTUK Tukey weight function
Ø Bearing x Horizontal distance
ψ Heading or body yaw angle x Position
ω Angular (SO(3)) velocity x̂ = xEST Inertial estimated trajectory
EPO Pose optimization error ◦x = xIMG Visual estimated trajectory
Eq Attitude adjustment error xREF Reference objectives
ERP Reprojection error x̃ = xSENSED Sensed trajectory
f Focal length x = xTRUTH Real trajectory

In addition, there exist various indexes that appear as subindexes: n identifies a
discrete time instant (tn) for the inertial estimations, s (ts) refers to the sensor outputs, i
identifies an image or frame (ti), and k is employed for the keyframes used to generate
the map or terrain structure. Other employed subindexes are l for the steps of the various
iteration processes that take place, and j for the features and associated 3D points. With
respect to superindexes, two stars < ·?? > represent the reprojection only solution, while
two circles < ·◦◦ > identify a target.
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Figure 1. ECEF (FE), NED (FN), and body (FB) reference frames.

2. Introduction and Outline

This article focuses on the need to develop navigation systems capable of diminishing
the position drift inherent to the flight in GNSS (Global Navigation Satellite System)-Denied
conditions of an autonomous fixed wing aircraft so it has a higher probability of reaching
the vicinity of a recovery point, from where it can be landed by remote control.

The article proposes a method that employs the inertial navigation outputs to improve
the accuracy of VO (Visual Odometry) algorithms, which rely on the images of the Earth
surface provided by a down looking camera rigidly attached to the aircraft structure,
resulting in major improvements in horizontal position estimation accuracy over what
can be achieved by standalone inertial or visual navigation systems. In contrast with
most visual inertial methods found in the literature, which focus on short term GNSS-
Denied navigation of ground vehicles, robots, and multi-rotors, the proposed algorithms
are primarily intended for the long distance GNSS-Denied navigation of autonomous fixed
wing aircraft.

Section 3 describes the article objectives, novelty, and main applications. When
processing a new image, VO pipelines include a distinct phase known as pose optimization,
pose refinement, or motion-only bundle adjustment, which estimates the camera pose (position
plus attitude) based on previously estimated positions for the identified terrain features,
both as ECEF 3D coordinates, as well as 2D coordinates of their projected location in
the current image. Section 4 reviews the pose optimization algorithm when part of a
standalone visual navigation system that can only rely on periodically generated images,
while Section 5 proposes improvements to take advantage of the availability of aircraft
pose estimations provided by an inertial navigation system.

Section 6 introduces the stochastic high-fidelity simulation employed to evaluate the
navigation results by means of Monte Carlo executions of two scenarios representative
of the challenges of GNSS-Denied navigation. The results obtained when applying the
proposed algorithms to these two GNSS-Denied scenarios are described in Section 7,
comparing them with those achieved by standalone inertial and visual systems. Section 8
discusses the sensitivity of the estimations to the type of terrain overflown by the aircraft,
as the terrain texture (or lack of) and its elevation relief are key factors on the ability of the
visual algorithms to detect and track terrain features. Last, the results are summarized for
convenience in Section 9, while Section 10 provides a short conclusion.

Following a list of acronyms, the article concludes with three appendices. Appendix A
provides a detailed description of the concept of optical flow, which is indispensable for
the pose optimization algorithms of Sections 4 and 5. Appendix B contains an introduction
to GNSS-Denied navigation and its challenges, together with reviews of the state-of-the-
art in two of the most promising routes to diminish its negative effects, such as visual
odometry (VO) and visual inertial odometry (VIO). Last, Appendix C describes the different
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2. Introduction and Outline

This article focuses on the need to develop navigation systems capable of diminishing
the position drift inherent to the flight in GNSS (Global Navigation Satellite System)-Denied
conditions of an autonomous fixed wing aircraft so it has a higher probability of reaching
the vicinity of a recovery point, from where it can be landed by remote control.

The article proposes a method that employs the inertial navigation outputs to improve
the accuracy of VO (Visual Odometry) algorithms, which rely on the images of the Earth
surface provided by a down looking camera rigidly attached to the aircraft structure,
resulting in major improvements in horizontal position estimation accuracy over what
can be achieved by standalone inertial or visual navigation systems. In contrast with
most visual inertial methods found in the literature, which focus on short term GNSS-
Denied navigation of ground vehicles, robots, and multi-rotors, the proposed algorithms
are primarily intended for the long distance GNSS-Denied navigation of autonomous fixed
wing aircraft.

Section 3 describes the article objectives, novelty, and main applications. When
processing a new image, VO pipelines include a distinct phase known as pose optimization,
pose refinement, or motion-only bundle adjustment, which estimates the camera pose (position
plus attitude) based on previously estimated positions for the identified terrain features,
both as ECEF 3D coordinates, as well as 2D coordinates of their projected location in
the current image. Section 4 reviews the pose optimization algorithm when part of a
standalone visual navigation system that can only rely on periodically generated images,
while Section 5 proposes improvements to take advantage of the availability of aircraft
pose estimations provided by an inertial navigation system.

Section 6 introduces the stochastic high-fidelity simulation employed to evaluate the
navigation results by means of Monte Carlo executions of two scenarios representative
of the challenges of GNSS-Denied navigation. The results obtained when applying the
proposed algorithms to these two GNSS-Denied scenarios are described in Section 7,
comparing them with those achieved by standalone inertial and visual systems. Section 8
discusses the sensitivity of the estimations to the type of terrain overflown by the aircraft,
as the terrain texture (or lack of) and its elevation relief are key factors on the ability of the
visual algorithms to detect and track terrain features. Last, the results are summarized for
convenience in Section 9, while Section 10 provides a short conclusion.

Following a list of acronyms, the article concludes with three appendices. Appendix A
provides a detailed description of the concept of optical flow, which is indispensable for
the pose optimization algorithms of Sections 4 and 5. Appendix B contains an introduction
to GNSS-Denied navigation and its challenges, together with reviews of the state-of-the-
art in two of the most promising routes to diminish its negative effects, such as visual
odometry (VO) and visual inertial odometry (VIO). Last, Appendix C describes the different
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algorithms within Semi-Direct Visual Odometry (SVO) [4,5], a publicly available VO
pipeline employed in this article, both by itself in Section 4 when relying exclusively
on the images, and in the proposed improvements of Section 5 taking advantage of the
inertial estimations.

3. Objective, Novelty, and Application

The main objective of this article is to improve the GNSS-Denied navigation capabilities
of autonomous aircraft, so in case GNSS signals become unavailable, they can continue
their mission or safely fly to a predetermined recovery location. To do so, the proposed
approach combines two different navigation algorithms, employing the outputs of an INS
(Inertial Navigation System) specifically designed for the flight without GNSS signals of
an autonomous fixed wing low SWaP (Size, Weight, and Power) aircraft [6] to diminish
the horizontal position drift generated by a VNS (Visual Navigation System) that relies on
an advanced visual odometry pipeline, such as SVO [4,5]. Note that the INS makes use
of all onboard sensors except the camera, while the VNS relies exclusively on the images
provided by the camera.

As shown in Section 7, each of the two systems by itself incurs in unrestricted and
excessive horizontal position drift that renders them inappropriate for long term GNSS-
Denied navigation, but for different reasons: while in the INS the drift is the result of
integrating the bounded ground velocity estimations without absolute position observa-
tions, that of the VNS originates on the slow but continuous accumulation of estimation
errors between consecutive frames. The two systems however differ in their estimations
of the aircraft attitude and altitude, as they are bounded for the INS but also drift in the
case of the VNS. The proposed approach modifies the VNS so in addition to the images
it can also accept as inputs the INS bounded attitude and altitude outputs, converting
it into an Inertially Assisted VNS or IA-VNS with vastly improved horizontal position
estimation capabilities.

The VIO solutions listed in Appendix B are quite generic with respect to the platforms
on which they are mounted, with most applications focused on ground vehicles, indoor
robots, and multi-rotors, as well as with respect to the employed sensors, which are usually
restricted to the gyroscopes and accelerometers, together with one or more cameras. This
article focuses on an specific case (long distance GNSS-Denied turbulent flight of fixed
wing aircraft), and, as such, is simultaneously more restrictive but also takes advantage of
the sensors already present onboard these platforms, such as magnetometers, Pitot tube,
and air vanes. In addition, and unlike the existing VIO packages, the proposed solution
assumes that GNSS signals are present at the beginning of the flight. As described in detail
in [6], these are key to the obtainment of the bounded attitude and altitude INS outputs on
which the proposed IA-VNS relies.

The proposed method represents a novel approach to diminish the pose drift of a VO
pipeline by supplementing its pose estimation non-linear optimizations with priors based
on the bounded attitude and altitude outputs of a GNSS-Denied inertial filter. The method
is inspired in a PI (Proportional Integral) control loop, in which the inertial attitude and
altitude outputs act as targets to ensure that the visual estimations do not deviate in excess
from their inertial counterparts, resulting in major reductions to not only the visual attitude
and altitude estimation errors, but also to the drift in horizontal position.

This article proves that inertial and visual navigation systems can be combined in such
a way that the resulting long term GNSS-Denied horizontal position drift is significantly
smaller than what can be obtained by either system individually. In the case that GNSS
signals become unavailable in mid flight, GNSS-Denied navigation is required for the
platform to complete its mission or return to base without the absolute position and ground
velocity observations provided by GNSS receivers. As shown in the following sections, the
proposed system can significantly increase the possibilities of the aircraft safely reaching the
vicinity of the intended recovery location, from where it can be landed by remote control.
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4. Pose Optimization within Visual Odometry

Visual navigation, also known as visual odometry or VO, relies on images of the
Earth’s surface generated by an onboard camera to incrementally estimate the aircraft pose
(position plus attitude) based on the changes that its motion induces on the images, without
the assistance of image databases or the observations of any other onboard sensors. As
it does not rely on GNSS signals, it is considered an alternative to GNSS-Denied inertial
navigation, although it also incurs in an unrestricted horizontal position drift. Appendix B.2
provides an overview of various VO pipelines within the broader context of the problems
associated to GNSS-Denied navigation and the research paths most likely to diminish them
(Appendix B).

This article employs SVO (Semi-Direct Visual Odometry) [4,5], a state-of-the-art pub-
licly available VO pipeline, as a baseline on which to apply the proposed improvements
based on the availability of inertial estimations of the aircraft pose. Although Appendix C
describes the various threads and processes within SVO, the focus of the proposed im-
provements within Section 5 lies in the pose optimization phase, which is the only one
described in detail in this article. Note that other VO pipelines also make use of similar
pose optimization algorithms.

Graphically depicted in Figure 2, pose optimization is executed for every new frame i
and estimates the pose between the ECEF (FE) and camera (FC) frames (

◦
ζECi). It requires the

following inputs:

• The ECEF terrain 3D coordinates of all features j visible in the image (pE
j ) obtained

by the structure optimization phase (Appendix C) corresponding to the previous
image. These terrain 3D coordinates are known as the terrain map, and constitute a
side product generated by VO pipelines.

• The 2D position of the same features j within the current image i (pIMG
ij ) supplied by

the previous feature alignment phase (Appendix C).
• The rough estimation of the ECEF to camera pose

◦
ζ?ECi for the current frame i provided

by the sparse image alignment phase (Appendix C), which acts as the initial value for
the camera pose (

◦
ζECi0) to be refined by iteration.
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The pose optimization algorithm, also known as pose refinement or motion-only
bundle adjustment, estimates the camera pose by minimizing the reprojection error of the
different features. Pose optimization relies exclusively on the information obtained from
the images generated by the onboard camera, and is described in detail to act as a baseline
on which to apply in Section 5 the proposed improvements enabled by the availability of
additional pose estimations generated by an inertial navigation system or INS.

The reprojection error ERPi, a function of the estimated ECEF to camera pose for image
i (
◦
ζECi), is defined in (1) as the sum for each feature terrain 3D point j of the norm of the
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The pose optimization algorithm, also known as pose refinement or motion-only
bundle adjustment, estimates the camera pose by minimizing the reprojection error of the
different features. Pose optimization relies exclusively on the information obtained from
the images generated by the onboard camera, and is described in detail to act as a baseline
on which to apply in Section 5 the proposed improvements enabled by the availability of
additional pose estimations generated by an inertial navigation system or INS.

The reprojection error ERPi, a function of the estimated ECEF to camera pose for image
i (
◦
ζECi), is defined in (1) as the sum for each feature terrain 3D point j of the norm of the

difference between the camera projection Π of the ECEF coordinates pE
j transformed into

the camera frame and the image coordinates pIMG
j . Note that gζAB

() represents the SE(3)
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transformation of a point from frame B to frame A, as described in [1], and the camera
projection Π is defined in Appendix A.

ERPi

( ◦
ζECi

)
= ∑

j

∥∥∥∥Π
(
g−1
◦
ζECi

(pE
j )
)
− pIMG

ij

∥∥∥∥ (1)

This problem can be solved by means of an iterative Gauss-Newton gradient descent
process [1,7]. Given an initial camera pose estimation

◦
ζECi0 taken from the sparse image

alignment result (
◦
ζ?ECi, Figure 2), each iteration step l minimizes (2) and advances the esti-

mated solution by means of (3) until the step diminution of the reprojection error falls below
a given threshold δRP (ERP,i,l − ERP,i,l+1 < δRP). Note that ∆

◦
τC

ECil represents the estimated
tangent space incremental ECEF to camera pose (transform vector) viewed in the FC camera
frame for image i and iteration l, ⊕ and ◦ represent the SE(3) plus and concatenation op-
erators, and Exp() refers to the SE(3) capitalized exponential function [1,3]. Additionally,
note that, while ERPi and ERPi,l+1 present in (1) and (2) are both positive scalars, the feature
j reprojection error ERPi,l+1,j that appears in (2) is an R3 vector.

ERPi,l+1
(
∆
◦
τC

ECil
)

= ∑
j

∥∥∥∥Π
(
g−1
◦
ζECil ⊕∆

◦
τC

ECil

(pE
j )
)
− pIMG

ij

∥∥∥∥ = ∑
j

∥∥∥ERPi,l+1,j
(
∆
◦
τC

ECil
)∥∥∥ (2)

◦
ζECi,l+1 ←−

◦
ζECil ◦ Exp

(
∆
◦
τC

ECil
)
=
◦
ζECil ⊕∆

◦
τC

ECil (3)

Each ∆
◦
τC

ECil represents the update to the camera pose
◦
ζECil viewed in the local camera

frame FCil, which is obtained by following the process described in [1,7], and results in
(4), where JOF,ilj (5) is the optical flow for image i, iteration step l, and feature j obtained in
Appendix A:

∆
◦
τC

ECil = −
[

∑
j

JOF,ilj
T JOF,ilj

]−1

∑
j

JOF,ilj
T
[
Π
(
g−1
◦
ζECil

(pE
j )
)
− pIMG

ij

]
∈ R6 (4)

JOF,ilj = JOF

(
Π
(
g−1
◦
ζECil

(
pE

j
)))

∈ R2x6 (5)

In order to protect the resulting pose from the possible presence of outliers in either
the feature terrain 3D points pE

j or their image projections pIMG
ij , it is better to replace the

above squared error or mean estimator by a more robust M-estimator, such as the bisquare
or Tukey estimator [8,9]. The error to be minimized in each iteration step is then given by
(6), where the Tukey error function $TUK(x) can be found in [9].

ERPi,l+1
(
∆
◦
τC

ECil
)

= ∑
j

$TUK

([
Π
(
g−1
◦
ζECil ⊕∆

◦
τC

ECil

(pE
j )
)
− pIMG

ij

]T[
Π
(
g−1
◦
ζECil ⊕∆

◦
τC

ECil

(pE
j )
)
− pIMG

ij

])

= ∑
j

$TUK

(
ERPi,l+1,j

T ERPi,l+1,j

)
(6)

A similar process to that employed above leads to the solution (7), where the Tukey
weight function wTUK(x) is also provided by [9]:

∆
◦
τC

ECil = −
[

∑
j

wTUK

(
ERP,ilj

TERP,ilj

)
JOF,ilj

TJOF,ilj

]−1

[
∑

j
wTUK

(
ERP,ilj

TERP,ilj

)
JOF,ilj

TERP,ilj

]
∈ R6 (7)

ERP,ilj = Π
(
g−1
◦
ζECil

(pE
j )
)
− pIMG

ij ∈ R2 (8)
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5. Proposed Pose Optimization within Visual Inertial Odometry

Lacking any absolute references, all visual odometry (VO) pipelines gradually accu-
mulate errors in each of the six dimensions of the estimated ECEF to vehicle body pose

◦
ζEB.

The resulting estimation error drift is described in Section 7 for the specific case of SVO,
which is introduced in Appendix C, and whose pose optimization phase is described in
Section 4.

This article proposes a method to improve the pose estimation capabilities of visual
odometry pipelines by supplementing them with the outputs provided by an inertial
navigation system. Taking the pose optimization algorithm of SVO (Section 4) as a baseline,
this section describes the proposed improvements, while Section 7 explains the results
obtained when applying the algorithms to two scenarios representative of GNSS-Denied
navigation (Section 6).

If accurate estimations of attitude and altitude can be provided by an inertial naviga-
tion system (INS) such as that described in [6], these can be employed to ensure that the
visual estimations for body attitude and vertical position ( ◦qNB and

◦
h, part of the body pose

◦
ζEB) do not deviate in excess from their inertial counterparts q̂NB and ĥ, improving their
accuracy. This process is depicted in Figure 3.
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obtained when applying the algorithms to two scenarios representative of GNSS-Denied
navigation (Section 6).
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how to modify the cost function within the iterative Gauss-Newton gradient descent pose
optimization phase (Section 4) so it can take advantage of the inertial outputs. It is necessary
to remark that, as indicated in Section 6, the inertial estimations (denoted by the subindex
n) operate at a much higher rate than the visual ones (denoted by the subindex i).

5.1. Rationale for the Introduction of Priors

The prior based pose optimization process starts by executing exactly the same pose
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that minimizes the reprojection error ERPi (1). The iterative optimization results in a series
of SE(3) tangent space updates ∆
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iteration step. The camera pose is then advanced per (3) until the step diminution of the
reprojection error falls below a certain threshold δRP.

The resulting ECEF to camera pose,
◦
ζECi, is marked with the superindex ?? to indicate

that it is the reprojection only solution, resulting in
◦
ζ??ECi. Its concatenation with the constant

body to camera pose ζBC results in the reprojected ECEF to body pose
◦
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The inertial estimations (q̂NB, ĥ) should not replace the visual ones ( ◦qNB,
◦
h) within

SVO, as this would destabilize the visual pipeline preventing its convergence, but just
act as anchors so the visual estimations oscillate freely as a result of the multiple SVO
optimizations but without drifting from the vicinity of the anchors. This section shows
how to modify the cost function within the iterative Gauss-Newton gradient descent pose
optimization phase (Section 4) so it can take advantage of the inertial outputs. It is necessary
to remark that, as indicated in Section 6, the inertial estimations (denoted by the subindex
n) operate at a much higher rate than the visual ones (denoted by the subindex i).

5.1. Rationale for the Introduction of Priors

The prior based pose optimization process starts by executing exactly the same pose
optimization described in Section 4, which seeks to obtain the ECEF to camera pose

◦
ζECi

that minimizes the reprojection error ERPi (1). The iterative optimization results in a series
of SE(3) tangent space updates ∆

◦
τC

ECil (7), where i identifies the image and l indicates the
iteration step. The camera pose is then advanced per (3) until the step diminution of the
reprojection error falls below a certain threshold δRP.

The resulting ECEF to camera pose,
◦
ζECi, is marked with the superindex ?? to indicate

that it is the reprojection only solution, resulting in
◦
ζ??ECi. Its concatenation with the constant

body to camera pose ζBC results in the reprojected ECEF to body pose
◦
ζ??EBi (note that a single

asterisk superindex < ·∗ > applied to a pose refers to its conjugate or inverse, and that the
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concatenation ◦ and multiplication ⊗ operators are equivalent for SE(3) rigid body poses):

◦
ζ??EBi =

◦
ζ??ECi ◦ ζ∗BC =

◦
ζ??ECi ⊗ ζ∗BC =

◦
ζ??ECi ⊗ ζCB (9)

The reprojected ECEF to body attitude ◦q??
EBi and Cartesian coordinates

◦
TB??

EBi can then
be readily obtained from

◦
ζ??EBi, which leads on one hand to the reprojected NED to body

attitude ◦q??
NBi, equivalent to the Euler angles

◦
φ??

NBi =
[ ◦
ψ??

i ,
◦
θ??i ,

◦
ξ??i

]T
(yaw, pitch, and bank an-

gles, respectively), and on the other to the geodetic coordinates
◦
TE,GDT??

i =
[ ◦
λ??

i , ◦ϕ??
i ,

◦
h??

i

]T

(longitude, latitude, and altitude) and ECEF to NED rotation ◦q??
ENi.

Let us assume for the time being that the inertially estimated body attitude (q̂NBn)
or altitude (ĥn) [6] enable the navigation system to conclude that it would be preferred
if the visually optimized body attitude were closer to a certain target attitude identified

by the superindex ◦◦, ◦q◦◦NBi, equivalent to the target Euler angles
◦
φ◦◦NBi =

[ ◦
ψ◦◦i ,

◦
θ◦◦i ,

◦
ξ◦◦i

]T
.

Section 5.3 specifies when this assumption can be considered valid, as well as various
alternatives to obtain the target attitude from q̂NBn and ĥn. The target NED to body attitude
◦q◦◦NBi is converted into a target ECEF to camera attitude ◦q◦◦ECi by means of the constant body
to camera rotation qBC and the original reprojected ECEF to NED rotation ◦q??

ENi, incurring in
a negligible error by not considering the attitude change of the NED frame as the iteration
progresses. The concatenation ◦ and multiplication ⊗ operators are equivalent for SO(3)
rigid body rotations:

◦q◦◦ECi =
◦q??

ENi ◦
◦q◦◦NBi ◦ qBC =

◦q??
ENi ⊗

◦q◦◦NBi ⊗ qBC (10)

Note that the objective is not for the resulting body attitude ◦qNBi to equal the target
◦q◦◦NBi, but to balance both objectives (minimization of the reprojection error of the various
terrain 3D points and minimization of the attitude differences with the targets) without
imposing any hard constraints on the pose (position plus attitude) of the aircraft.

5.2. Prior-Based Pose Optimization

The attitude adjustment error Eq,i, a function of the estimated ECEF to camera attitude
for image i ( ◦qECi), is defined in (11) as the norm of the Euclidean difference between rotation
vectors corresponding to the estimated and target ECEF to camera attitudes ( ◦qECi,

◦q◦◦ECi) [1,3].
Note that Log() refers to the SO(3) capitalized logarithmic function [1,3].

Eq,i
(
Log

( ◦qECi
))

= Eq,i
(◦rECi

)
=
∥∥∥Log

( ◦qECi
)
− Log

( ◦q◦◦ECi
)∥∥∥ =

∥∥∥◦rECi − ◦r◦◦ECi

∥∥∥ (11)

Its minimization can be solved by means of an iterative Gauss-Newton gradient de-
scent process [1,7]. Given an initial rotation vector (attitude) estimation ◦rECi,0 = Log

( ◦qECi,0
)

taken from the initial pose
◦
ζECi0 =

◦
ζ?ECi, each iteration step l minimizes (12) and advances

the estimated solution by means of (13) until the step diminution of the attitude adjustment
error falls below a given threshold δq

(
Eq,i,l − Eq,i,l+1 < δq

)
. Note that ∆

◦rC
ECil represents

the estimated tangent space incremental ECEF to camera attitude (rotation vector) viewed
in the FC camera frame for image i and iteration l, ⊕ and ◦ represent the SO(3) plus and
concatenation operators, and Exp() and Log() refer to the SO(3) capitalized exponential
and logarithmic functions, respectively [1,3].

Eq,i,l+1
(
∆
◦rC

ECil
)

=
∥∥∥Log

( ◦qECil ⊕∆
◦rC

ECil
)
− Log

( ◦q◦◦ECi
)∥∥∥

=
∥∥∥Log

(
Exp

(◦rECil
)
⊕∆

◦rC
ECil
)
− ◦r◦◦ECi

∥∥∥ (12)
◦qECi,l+1 ←− ◦qECil ◦ Exp

(
∆
◦rC

ECil
)
=
◦qECil ⊕∆

◦rC
ECil (13)
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Each ∆
◦rC

ECil represents the update to the camera attitude ◦qECil given by the rotation
vector viewed in the local camera frame FCl, which is obtained by following the process
described in [1,7] (in this process the Jacobian coincides with the identity matrix because
the map f

(◦rECi
)
=
◦rECi coincides with the rotation vector itself), and results in (14), where

JRil (15) is the SO(3) right Jacobian JR(r) for image i and iteration step l provided by [1,3].
These references also provide an expression for the right Jacobian inverse J−1

Ril . Note that
while Eq,i and Eq,i,l+1 present in (11) and (12) are both positive scalars, the adjustment error
Eq,i,l that appears in (14) is an R3 vector.

∆
◦rC

ECil = −
[
J−T

Ril J−1
Ril

]−1
J−T

Ril

[◦rECil − ◦r◦◦ECi
]

= −
[
J−T

Ril J−1
Ril

]−1
J−T

Ril

[
Log

( ◦qECil
)
− Log

( ◦q◦◦ECi
)]

= −
[
J−T

Ril J−1
Ril

]−1
J−T

Ril Eq,il ∈ R3 (14)

JRil = JR
(◦rECil

)
= JR

(
Log

( ◦qECil
))

∈ R3×3 (15)

The prior-based pose adjustment algorithm attempts to obtain the ECEF to camera
pose

◦
ζECi that minimizes the reprojection error ERPi discussed in Appendix C combined

with the weighted attitude adjustment error Eq,i. The specific weight fq is discussed in
Section 5.3. Inspired in [10], the main goal of the optimization algorithm is to minimize the
reprojection error of the different terrain 3D points while simultaneously trying to be close
to the attitude and altitude targets derived from the inertial filter.

EPOi

( ◦
ζECi

)
= ERPi

( ◦
ζECi

)
+ fq · Eq,i

(◦rECi
)

(16)

Although the rotation vector ◦rECi = Log
( ◦qECi

)
can be directly obtained from the pose

◦
ζECi [1,3], merging the two algorithms requires a dimension change in the (15) Jacobian, as
indicated by (17).

J−1
RRil =

[
O3×3 J−1

Ril

]
∈ R3×6 (17)

The application of the iterative process described in [10] results in the following
solution, which combines the contributions from the two different optimization targets:

HPO,il =
[
∑

j
wTUK

(
ERP,ilj

TERP,ilj

)
JOF,ilj

TJOF,ilj

]
+ f2

q ·
[
J−T

RRil J−1
RRil

]
∈ R6×6 (18)

∆
◦
τC

ECil = −H−1
PO,il

[[
∑

j
wTUK

(
ERP,ilj

TERP,ilj

)
JOF,ilj

TERP,ilj

]
+ fq · J−T

RRil Eq,il

]
(19)

◦
ζECi,l+1 ←−

◦
ζECil ◦ Exp

(
∆
◦
τC

ECil
)
=
◦
ζECil ⊕∆

◦
τC

ECil (20)

5.3. PI Control-Inspired Pose Adjustment Activation

Sections 5.1 and 5.2 describe the attitude adjustment and its fusion with the default
reprojection error minimization pose optimization algorithm, but they do not specify the
conditions under which the adjustment is activated, how the ◦q◦◦NBi ≡

◦
φ◦◦NBi target is deter-

mined, or the obtainment of its fq relative weight when applying the (16) joint optimization.
These parameters are determined below in three different cases: an adjustment in which
only pitch is controlled, an adjustment in which both pitch and bank angles are controlled,
and a complete attitude adjustment.

5.3.1. Pitch Adjustment Activation

The attitude adjustment described in (11) through (15) can be converted into a pitch
only (θ) adjustment by forcing the yaw (ψ) and bank (ξ) angle targets to coincide in
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each optimization i with the outputs of the reprojection only optimization. The target
geodetic coordinates (TE,GDT

i ) also coincide with the ones resulting from the reprojection
only optimization.

◦
ψ◦◦i =

◦
ψ??

i (21)
◦
θ◦◦i =

◦
θ??i + ∆

◦
θ◦◦i (22)

◦
ξ◦◦i =

◦
ξ??i (23)

◦
TE,GDT◦◦

i =
◦
TE,GDT??

i =
[ ◦
λ??

i , ◦ϕ??
i ,

◦
h??

i

]T
(24)

When activated as explained below, the new ECEF to body pose target
◦
ζ◦◦EBi only differs

in one out of six dimensions (the pitch) from the reprojection only ERPi optimum pose
◦
ζ??EBi, and the difference is very small as its effects are intended to accumulate over many
successive images. This does not mean however that the other five components do not vary,
as the joint optimization process described in (16) through (20) freely optimizes within
SE(3) with six degrees of freedom to minimize the joint cost function EPOi that not only
considers the reprojection error, but also the resulting pitch target.

The pitch adjustment aims for the visual estimations for altitude
◦
hi and pitch

◦
θi (in this

order) not to deviate in excess from their inertially estimated counterparts ĥn and θ̂n. It is
inspired in a proportional integral (PI) control scheme [11–14] in which the geometric altitude
adjustment error ∆h =

◦
hi − ĥn can be considered as the integral of the pitch adjustment

error ∆θ =
◦
θi − θ̂n in the sense that any difference between adjusted pitch angles (the P

control) slowly accumulate over time generating differences in adjusted altitude (the I
control). In this context, adjustment error is understood as the difference between the visual
and inertial estimations. In addition, the adjustment also depends on the rate of climb
(ROC) adjustment error (to avoid noise, this is smoothed over the last 100 images or 10 s)
∆ROC =

◦
ROCi − ˆROCn, which can be considered a second P control as ROC is the time

derivative of the pressure altitude.
Note that the objective is not for the visual estimations to closely track the inertial ones,

but only to avoid excessive deviations, so there exist lower thresholds ∆hLOW, ∆θLOW, and
∆ROCLOW below which the adjustments are not activated. These thresholds are arbitrary
but have been set taking into account the inertial navigation system (INS) accuracy and
its sources of error, as described in [6]. If the absolute value of a certain adjustment error
(difference between the visual and estimated states) is above its threshold, the visual inertial
system can conclude with a high degree of confidence that the adjustment procedure can
be applied; if below the threshold, the adjustment should not be employed as there is a
significant risk that the true visual error (difference between the visual and actual states)
may have the opposite sign, in which case the adjustment would be counterproductive.

As an example, let us consider a case in which the visual altitude
◦
hi is significantly

higher than the inertial one ĥn, resulting in |∆h| > ∆hLOW; in this case the system concludes
that the aircraft is “high” and applies a negative pitch adjustment to slowly decrease the
body pitch visual estimation

◦
θ over many images, with these accumulating over time into a

lower altitude
◦
h that what would be the case if no adjustment were applied. On the other

hand, if the absolute value of the adjustment error is below the threshold (|∆h| < ∆hLOW),
the adjustment should not be applied as there exists a significant risk that the aircraft is in
fact “low” instead of “high” (when compared with the true altitude ht, not the the inertial
one ĥn), and a negative pitch adjustment would only exacerbate the situation. A similar
reasoning applies for the adjustment pitch error, in which the visual inertial system reacts
or not to correct perceived “nose-up” or “nose-down” visual estimations. The applied
thresholds are displayed in Table 2.
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Table 2. Pitch and bank adjustment settings.

Variable Value Unit Variable Value Unit

∆hLOW 25.0 m ∆
◦
θ◦◦1,MAX 0.0005 ◦

∆θLOW 0.2 ◦
∆
◦
θ◦◦2,MAX 0.0003 ◦

∆ROCLOW 0.01 m/s ∆
◦
ξ◦◦1,MAX 0.0003 ◦

∆ξLOW 0.2 ◦

The
◦
θ◦◦i pitch target to be applied for each image is given by (22), where the obtainment

of the pitch adjustment ∆
◦
θ◦◦i is explained below based on its three components (25):

∆
◦
θ◦◦i = ∆

◦
θ◦◦h + ∆

◦
θ◦◦θ + ∆

◦
θ◦◦ROC (25)

• The pitch adjustment due to altitude, ∆
◦
θ◦◦h , linearly varies between zero when the

adjustment error is below the threshold ∆hLOW to ∆
◦
θ◦◦1,MAX when the error is twice

the threshold, as shown in (26). The adjustment is bounded at this value to avoid
destabilizing SVO with pose adjustments that differ too much from their reprojection
only optimum

◦
ζ??EBi (9).

∆
◦
θ◦◦h =





0 when |∆h| < ∆hLOW

− sign(∆h)∆
◦
θ◦◦1,MAX (|∆h| −∆hLOW)/∆hLOW ∆hLOW ≤ |∆h| ≤ 2 ·∆hLOW

− sign(∆h)∆
◦
θ◦◦1,MAX when |∆h| > 2 ·∆hLOW

(26)

• The pitch adjustment due to pitch, ∆
◦
θ◦◦θ , works similarly but employing ∆θ instead

of ∆h and ∆θLOW instead of ∆hLOW, while also relying on the same limit ∆
◦
θ◦◦1,MAX. In

addition, ∆
◦
θ◦◦θ is set to zero if its sign differs from that of ∆

◦
θ◦◦h , and reduced so the

combined effect of both targets does not exceed the limit (|∆
◦
θ◦◦h + ∆

◦
θ◦◦θ | ≤ ∆

◦
θ◦◦1,MAX).

• The pitch adjustment due to rate of climb, ∆
◦
θ◦◦ROC, also follows a similar scheme but

employing ∆ROC instead of ∆h, ∆ROCLOW instead of ∆hLOW, and ∆
◦
θ◦◦2,MAX instead of

∆
◦
θ◦◦1,MAX. Additionally, it is multiplied by the ratio between ∆

◦
θ◦◦h and ∆

◦
θ◦◦1,MAX to limit

its effects when the altitude estimated error ∆h is small. This adjustment can act in
both directions, imposing bigger pitch adjustments if the altitude error is increasing or
lower one if it is already diminishing.

If activated, the weight value fq required for the (16) joint optimization is determined
by imposing that the weighted attitude error fq · Eq,i

(◦rECi0
)

coincides with the reprojection

error ERPi(
◦
ζECi0) when evaluated before the first iteration, this is, it assigns the same weight

to the two active components of the joint EPOi(
◦
ζECi) cost function (16).

5.3.2. Pitch and Bank Adjustment Activation

The previous scheme can be modified to also make use of the inertially estimated
body bank angle ξ̂n within the framework established by the (11) through (15) attitude
adjustment optimization:

◦
ψ◦◦i =

◦
ψ??

i (27)
◦
θ◦◦i =

◦
θ??i + ∆

◦
θ◦◦i (28)

◦
ξ◦◦i =

◦
ξ??i + ∆

◦
ξ◦◦i (29)

◦
TE,GDT◦◦

i =
◦
TE,GDT??

i =
[ ◦
λ??

i , ◦ϕ??
i ,

◦
h??

i

]T
(30)
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Although the new body pose target
◦
ζ◦◦EBi only differs in two out of six dimensions

(pitch and bank) from the optimum pose
◦
ζ??EBi obtained by minimizing the reprojection

error exclusively, all six degrees of freedom are allowed to vary when minimizing the joint
cost function.

The determination of the pitch adjustment ∆
◦
θ◦◦i does not vary with respect to (25),

and that of the bank adjustment ∆
◦
ξ◦◦i relies on a linear adjustment between two values

similar to any of the three components of (25), but relying on the bank angle adjustment
error ∆ξ =

◦
ξi − ξ̂n, as well as a ∆ξLOW threshold and ∆

◦
ξ◦◦1,MAX maximum adjustment whose

values are provided in Table 2. Note that the value of the ∆ξLOW threshold coincides with
that of ∆θLOW as the INS accuracy for both pitch and roll is similar according to [6].

It is important to remark that the combined pitch and bank adjustment activation is
the one employed to generate the results described in Sections 7 and 8.

5.3.3. Attitude Adjustment Activation

The use of the inertially estimated yaw angle ψ̂ is not recommended as the visual
estimation

◦
ψ (without any inertial inputs) is, in general, more accurate than its inertial

counterpart ψ̂, as discussed in Section 7. This can be traced on one side to the bigger
influence that a yaw change has on the resulting optical flow when compared with those
caused by pitch and bank changes, which makes the body yaw angle easier to track by
visual systems when compared to the pitch and bank angles, and on the other to the inertial
system relying on the gravity pointing down to control pitch and bank adjustments versus
the less robust dependence on the Earth magnetic field and associated magnetometer
readings used to estimate the aircraft heading [6].

For this reason, the attitude adjustment process described next has not been imple-
mented, although it is included here as a suggestion for other applications in which the
objective may be to adjust the vehicle attitude as a whole. The process relies on the iner-
tially estimated attitude q̂NBn and the initial estimation ◦q??

NBi provided by the reprojection
only pose optimization process. Its difference is given by ∆

◦rBi,?? = q̂NBn 	
◦q??

NBi, where 	
represents the SO(3) minus operator and the superindex “Bi” indicates that it is viewed
in the pose optimized body frame. This perturbation can be decoupled into a rotating
direction and an angular displacement [1,3], resulting in ∆

◦rBi,?? =
◦nBi,?? ∆

◦
φ??.

Let us now consider that the visual inertial system decides to set an attitude target
that differs by ∆

◦
φ◦◦ from its reprojection only solution ◦q??

NBi, but rotating about the axis that
leads towards its inertial estimation q̂NBn. The target attitude ◦q◦◦NBi can then be obtained
by SO(3) Spherical Linear Interpolation (SLERP) [1,2], where t = ∆

◦
φ◦◦ / ∆

◦
φ?? is the ratio

between the target rotation and the attitude error or estimated angular displacement:

◦q◦◦NBi =
◦q??

NBi ⊗
(
◦q??

NBi
∗ ⊗ q̂NBn

)t
(31)

5.4. Additional Modifications to SVO

In addition to the PI-inspired introduction of priors into the pose optimization phase,
the availability of inertial estimations enable other minor modifications to the original SVO
pipeline described in Appendix C. These include the addition of the current features to the
structure optimization phase (so the pose adjustments introduced by the prior based pose
optimization are not reverted), the replacement of the sparse image alignment phase by an
inertial estimation of the

◦
ζECi0 =

◦
ζ?ECi input to the pose optimization process, and the use

of the GNSS-based inertial distance estimations to obtain more accurate height and path
angle values for the SVO initialization.

6. Testing: High-Fidelity Simulation and Scenarios

To evaluate the performance of the proposed visual navigation algorithms, this article
relies on Monte Carlo simulations consisting of 100 runs each of two different scenarios
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based on the high fidelity stochastic flight simulator graphically depicted in Figure 4.
Described in detail in [15] and with its open source C++ implementation available in [16],
the simulator models the flight in varying weather and turbulent conditions of a fixed wing
piston engine autonomous UAV.

The simulator consists of two distinct processes. The first, represented by the yellow
blocks on the right of Figure 4, models the physics of flight and the interaction between
the aircraft and its surroundings that results in the real aircraft trajectory x = xTRUTH; the
second, represented by the green blocks on the left, contains the aircraft systems in charge of
ensuring that the resulting trajectory adheres as much as possible to the mission objectives.
It includes the different sensors whose output comprise the sensed trajectory x̃ = xSENSED,
the navigation system in charge of filtering it to obtain the estimated trajectory x̂ = xEST,
the guidance system that converts the reference objectives xREF into the control targets
δTARGET, and the control system that adjusts the position of the throttle and aerodynamic
control surfaces δCNTR so the estimated trajectory x̂ = xEST is as close as possible to the
reference objectives xREF. Table 3 provides the working frequencies employed for the
different trajectories shown in Figures 4–7.
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Figure 4. Components of the high-fidelity simulation.

All components of the flight simulator have been modeled with as few simplifications
as possible to increase the realism of the results, as explained in [15,17]. With the exception
of the aircraft performances and its control system, which are deterministic, all other
simulator components are treated as stochastic and hence vary from one execution to the
next, enhancing the significance of the Monte Carlo simulation results.

Table 3. Working frequencies of the different systems and trajectory representations.
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6.1. Camera

The flight simulator has the capability, when provided with the camera pose (the
camera is positioned facing down and rigidly attached to the aircraft structure) with respect
to the Earth at equally spaced time intervals, of generating images that resemble the view
of the Earth surface that the camera would record if located at that particular pose. To do
so, it relies on the Earth Viewer library, a modification to osgEarth [18] (which, in turn,
relies on OpenSceneGraph [19]) capable of generating realistic Earth images as long as the
camera height over the terrain is significantly higher than the vertical relief present in the
image. A more detailed explanation of the image generation process is provided in [17].

It is assumed that the shutter speed is sufficiently high that all images are equally
sharp, and that the image generation process is instantaneous. In addition, the camera ISO
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All components of the flight simulator have been modeled with as few simplifications
as possible to increase the realism of the results, as explained in [15,17]. With the exception
of the aircraft performances and its control system, which are deterministic, all other
simulator components are treated as stochastic and hence vary from one execution to the
next, enhancing the significance of the Monte Carlo simulation results.

Table 3. Working frequencies of the different systems and trajectory representations.

Discrete Time Frequency Period Variables Systems

tt = t ·∆tTRUTH 500 Hz 0.002 s x = xTRUTH Flight physics
ts = s ·∆tSENSED 100 Hz 0.01 s x̃ = xSENSED Sensors
tn = n ·∆tEST 100 Hz 0.01 s x̂ = xEST Inertial navigation
tc = c ·∆tCNTR 50 Hz 0.02 s δTARGET, δCNTR Guidance and control
ti = i ·∆tIMG 10 Hz 0.1 s ◦x = xIMG Visual navigation and camera

6.1. Camera

The flight simulator has the capability, when provided with the camera pose (the
camera is positioned facing down and rigidly attached to the aircraft structure) with respect
to the Earth at equally spaced time intervals, of generating images that resemble the view
of the Earth surface that the camera would record if located at that particular pose. To do
so, it relies on the Earth Viewer library, a modification to osgEarth [18] (which, in turn,
relies on OpenSceneGraph [19]) capable of generating realistic Earth images as long as the
camera height over the terrain is significantly higher than the vertical relief present in the
image. A more detailed explanation of the image generation process is provided in [17].

It is assumed that the shutter speed is sufficiently high that all images are equally
sharp, and that the image generation process is instantaneous. In addition, the camera ISO
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setting remains constant during the flight, and all generated images are noise free. The
simulation also assumes that the visible spectrum radiation reaching all patches of the Earth
surface remains constant, and the terrain is considered Lambertian [20], so its appearance
at any given time does not vary with the viewing direction. The combined use of these
assumptions implies that a given terrain object is represented with the same luminosity
in all images, even as its relative pose (position and attitude) with respect to the camera
varies. Geometrically, the simulation adopts a perspective projection or pinhole camera
model [20], which, in addition, is perfectly calibrated and hence shows no distortion. The
camera has a focal length of 19 mm and a sensor with 768 by 1024 pixels.

6.2. Scenarios

Most visual inertial odometry (VIO) packages discussed in Appendix B include in
their release articles an evaluation when applied to the EuRoC Micro Air Vehicle (MAV)
datasets [21], and so do independent articles, such as [22]. These datasets contain perfectly
synchronized stereo images, Inertial Measurement Unit (IMU) measurements, and ground
truth readings obtained with a laser, for 11 different indoor trajectories flown with a MAV,
each with a duration in the order of two minutes and a total distance in the order of 100 m.
This fact by itself indicates that the target application of exiting VIO implementations
differs significantly from the main focus of this article, which is the long term flight of a
fixed wing UAV in GNSS-Denied conditions, as there may exist accumulating errors that
are completely non discernible after such short periods of time, but that grow non-linearly
and have the capability of inducing significant pose errors when the aircraft remains aloft
for long periods of time.

The algorithms introduced in this article are hence tested through simulation under
two different scenarios designed to analyze the consequences of losing the GNSS signals for
long periods of time. Although a short summary is included below, detailed descriptions
of the mission, weather, and wind field employed in each scenario can be found in [15].
Most parameters comprising the scenario are defined stochastically, resulting in different
values for every execution. Note that all results shown in Sections 7 and 8 are based on
Monte Carlo simulations comprising 100 runs of each scenario, testing the sensitivity of the
proposed navigation algorithms to a wide variety of values in the parameters.

• Scenario #1 has been defined with the objective of adequately representing the chal-
lenges faced by an autonomous fixed wing UAV that suddenly cannot rely on GNSS
and hence changes course to reach a predefined recovery location situated at approxi-
mately one hour of flight time. In the process, in addition to executing an altitude and
airspeed adjustment, the autonomous aircraft faces significant weather and wind field
changes that make its GNSS-Denied navigation even more challenging.
With respect to the mission, the stochastic parameters include the initial airspeed, pres-
sure altitude, and bearing (vTAS,INI, HP,INI, ØINI), their final values (vTAS,END, HP,END, ØEND),
and the time at which each of the three maneuvers is initiated (turns are executed
with a bank angle of ξTURN = ±10 ◦, altitude changes employ an aerodynamic path
angle of γTAS,CLIMB = ±2 ◦, and airspeed modifications are automatically executed by
the control system as set-point changes). The scenario lasts for tEND = 3800 s, while
the GNSS signals are lost at tGNSS = 100 s.
The wind field is also defined stochastically, as its two parameters (speed and bearing) are
constant both at the beginning (vWIND,INI, ØWIND,INI) and conclusion (vWIND,END, ØWIND,END)
of the scenario, with a linear transition in between. The specific times at which the wind
change starts and concludes also vary stochastically among the different simulation runs.
As described in [15], the turbulence remains strong throughout the whole scenario, but its
specific values also vary stochastically from one execution to the next.
A similar linear transition occurs with the temperature and pressure offsets that define
the atmospheric properties [23], as they are constant both at the start (∆TINI, ∆pINI) and
end (∆TEND, ∆pEND) of the flight. In contrast with the wind field, the specific times at
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which the two transitions start and conclude are not only stochastic but also different
from each other.

• Scenario #2 represents the challenges involved in continuing with the original mission
upon the loss of the GNSS signals, executing a series of continuous turn maneuvers
over a relatively short period of time with no atmospheric or wind variations. As
in scenario #1, the GNSS signals are lost at tGNSS = 100 s, but the scenario duration
is shorter (tEND = 500 s). The initial airspeed and pressure altitude (vTAS,INI, HP,INI) are
defined stochastically and do not change throughout the whole scenario; the bearing
however changes a total of eight times between its initial and final values, with all
intermediate bearing values, as well as the time for each turn varying stochastically
from one execution to the next. Although the same turbulence is employed as in
scenario #1, the wind and atmospheric parameters (vWIND,INI, ØWIND,INI, ∆TINI, ∆pINI)
remain constant throughout scenario #2.

7. Results: Navigation System Error in GNSS-Denied Conditions

This section presents the results obtained with the proposed Inertially Assisted Visual
Navigation System or IA-VNS (comprised by SVO, as described in Appendix C and
Section 4, together with the proposed modifications described in Section 5) when executing
Monte Carlo simulations of the two GNSS-Denied scenarios over the MX terrain type
(Section 8 defines various terrain types, and then analyzes their influence on the simulation
results), each consisting of 100 executions. They are compared with the results obtained
with the standalone Visual Navigation System or VNS that relies on the baseline SVO
pipeline (Appendix C and Section 4), and with those of the Inertial Navigation System or
INS described in [6].

Tables 4–6 contain the navigation system error or NSE (difference between the real or
true states x and their inertial x̂ or visual ◦x estimations) incurred by the various navigation
systems (and accordingly denoted as INSE, VNSE, and IA-VNSE) at the conclusion of the
two GNSS-Denied scenarios, represented by the mean, standard deviation, and maximum
value of the estimation errors. In addition, the figures shown in this section depict the
variation with time of the NSE mean (solid line) and standard deviation (dashed lines) for
the 100 executions. The following remarks are necessary:

• The results obtained with the INS under the same two GNSS-Denied scenarios are
described in detail in [6], a previous article by the same authors. It proves that it is
possible to take advantage of sensors already present onboard fixed wing aircraft
(accelerometers, gyroscopes, magnetometers, Pitot tube, air vanes, thermometer, and
barometer), the particularities of fixed wing flight, and the atmospheric and wind
estimations that can be obtained before the GNSS signals are lost, to develop an EKF
(Extended Kalman Filter)-based INS that results in bounded (no drift) estimations
for attitude (ensuring that the aircraft can remain aloft in GNSS-Denied conditions
for as long as there is fuel available), altitude (the estimation error depends on the
change in atmospheric pressure offset ∆p [23] from its value at the time the GNSS
signals are lost, which is bounded by atmospheric physics), and ground velocity (the
estimation error depends on the change in wind velocity from its value at the time
the GNSS signals are lost, which is bounded by atmospheric physics), as well as an
unavoidable drift in horizontal position caused by integrating the ground velocity
without absolute observations. Note that of the six SE(3) degrees of freedom or the
aircraft pose (three for attitude, two for horizontal position, one for altitude), the INS
is hence capable of successfully estimating four of them in GNSS-Denied conditions.
Figure 5 graphically depicts that the INS inputs include all sensor measurements
x̃ = xSENSED with the exception of the camera images I.
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• Visual navigation systems (either VNS or IA-VNS) are only necessary to reduce the
estimation error in the two remaining degrees of freedom (the horizontal position).
Although both of them estimate the complete six dimensional aircraft pose, their
attitude and altitude estimations shall only be understood as a means to provide an
accurate horizontal position estimation, which represents their sole objective. Figure 6
shows that the VNS relies exclusively on the images I without the use of any other
sensors; on the other hand, the IA-VNS represented in Figure 7 complements the
images with the x̂ = xEST outputs of the INS.
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• As it does not rely on absolute references, visual navigation slowly accumulates error
(drifts) not only in horizontal position, but also in attitude and altitude. The main focus
of this article is on how the addition of INS based priors enables the IA-VNS to reduce
the drift in all six dimensions, with the resulting horizontal position IA-VNSE being
just a fraction of the INSE. The attitude and altitude IA-VNSEs, although improved
when compared to the VNSEs, are qualitatively inferior to the driftless INSEs, but
note that their purpose is just to enable better horizontal position IA-VNS estimations,
not to replace the attitude and altitude INS outputs.

INERTIAL
NAVIGATION

INERTIALLY ASSISTED
VISUAL NAVIGATION

x̂0

◦x0

x̂(tn) = xEST(tn)

◦x(ti) = xIMG(ti)

x̃(ts) \ I(ti) = xSENSED(ts) \ I(ti)

I(ti) ⊂ xSENSED(ti)

Figure 7. IA-VNS flow diagram.

7.1. Body Attitude Estimation

Table 4 shows the NSE at the conclusion of both scenarios for the three Euler angles
representing the body attitude (yaw ψ, pitch θ, roll ξ), as well as the norm of the rotation
vector between the real body attitude qNB and its estimations, q̂NB by the INS and ◦qNB by the
VNS or IA-VNS. The yaw angle estimation errors respond to ∆ψ̂ = ψ̂− ψ and ∆
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case of the rotation vector, the errors can be formally written as ‖∆r̂B
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or ‖∆◦rB
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Figures 8 and 9 depict the variation with time of the body attitude NSE for both scenarios,
while Figure 10 shows those of each individual Euler angle for scenario #1 exclusively.
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accurate horizontal position estimation, which represents their sole objective. Figure 6
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sensors; on the other hand, the IA-VNS represented in Figure 7 complements the
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• As it does not rely on absolute references, visual navigation slowly accumulates error
(drifts) not only in horizontal position, but also in attitude and altitude. The main focus
of this article is on how the addition of INS based priors enables the IA-VNS to reduce
the drift in all six dimensions, with the resulting horizontal position IA-VNSE being
just a fraction of the INSE. The attitude and altitude IA-VNSEs, although improved
when compared to the VNSEs, are qualitatively inferior to the driftless INSEs, but
note that their purpose is just to enable better horizontal position IA-VNS estimations,
not to replace the attitude and altitude INS outputs.
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7.1. Body Attitude Estimation

Table 4 shows the NSE at the conclusion of both scenarios for the three Euler angles
representing the body attitude (yaw ψ, pitch θ, roll ξ), as well as the norm of the rotation
vector between the real body attitude qNB and its estimations, q̂NB by the INS and ◦qNB by the
VNS or IA-VNS. The yaw angle estimation errors respond to ∆ψ̂ = ψ̂− ψ and ∆
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respectively; those for the body pitch and roll angles are defined accordingly. In the
case of the rotation vector, the errors can be formally written as ‖∆r̂B

NB‖ = ‖q̂NB 	 qNB‖
or ‖∆◦rB

NB‖ = ‖
◦qNB 	 qNB‖ [1], where 	 represents the SO(3) minus operator. In addition,

Figures 8 and 9 depict the variation with time of the body attitude NSE for both scenarios,
while Figure 10 shows those of each individual Euler angle for scenario #1 exclusively.
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• After a short transition period following the introduction of GNSS-Denied conditions
at tGNSS = 100 s, the body attitude inertial navigation system error or INSE (blue lines)
does not experience any drift with time in either scenario, and is bounded by the
quality of the onboard sensors and the inertial navigation algorithms [6].
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Figure 8. Body attitude INSE, VNSE, and IA-VNSE for scenario #1 MX (100 runs).

• With respect to the visual navigation system error or VNSE (red lines), most of the
scenario #1 error is incurred during the turn maneuver at the beginning of the scenario
(refer to tTURN within [15]), with only a slow accumulation during the rest of the
trajectory, composed by a long straight flight with punctual changes in altitude and
speed. Additional error growth would certainly accumulate if more turns were to
occur, although this is not tested in the simulation. This statement seems to contradict
the results obtained with scenario #2, in which the error grows with the initial turns
but then stabilizes during the rest of the scenario, even though the aircraft is executing
continuous turn maneuvers. This lack of error growth occurs because the scenario #2
trajectories are so twisted (refer to [15]) that terrain zones previously mapped reappear
in the camera field of view during the consecutive turns, and are hence employed by
the pose optimization phase as absolute references, resulting in a much better attitude
estimation than what would occur under more spaced turns. A more detailed analysis
(not shown in the figures) shows that the estimation error does not occur during the
whole duration of the turns, but only during the roll-in and final roll-out maneuvers,
where the optical flow is highest and hence more difficult to track by SVO (for the
two evaluated scenarios, the optical flow during the roll-in and roll-out maneuvers
is significantly higher than that induced by straight flight, pull-up, and push-down
maneuvers, and even the turning maneuvers themselves once the bank angle is no
longer changing).
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• With respect to the visual navigation system error or VNSE (red lines), most of the
scenario #1 error is incurred during the turn maneuver at the beginning of the scenario
(refer to tTURN within [15]), with only a slow accumulation during the rest of the trajectory,
composed by a long straight flight with punctual changes in altitude and speed. Addi-
tional error growth would certainly accumulate if more turns were to occur, although this
is not tested in the simulation. This statement seems to contradict the results obtained
with scenario #2, in which the error grows with the initial turns but then stabilizes during
the rest of the scenario, even though the aircraft is executing continuous turn maneuvers.
This lack of error growth occurs because the scenario #2 trajectories are so twisted (re-
fer to [15]) that terrain zones previously mapped reappear in the camera field of view
during the consecutive turns, and are hence employed by the pose optimization phase
as absolute references, resulting in a much better attitude estimation than what would
occur under more spaced turns. A more detailed analysis (not shown in the figures)
shows that the estimation error does not occur during the whole duration of the turns,
but only during the roll-in and final roll-out maneuvers, where the optical flow is highest
and hence more difficult to track by SVO (for the two evaluated scenarios, the optical
flow during the roll-in and roll-out maneuvers is significantly higher than that induced
by straight flight, pull-up, and push-down maneuvers, and even the turning maneuvers
themselves once the bank angle is no longer changing).
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• The inertially assisted VNSE or IA-VNSE results (green lines) show that the introduc-
tion of priors in Section 5 works as intended and there exists a clear benefit for the
use of an IA-VNS when compared to the standalone VNS described in Appendix C.
In spite of IA-VNSE values at the beginning of both scenarios that are nearly double
those of the VNSE (refer to Figures 8 and 9), caused by the initial pitch adjustment
required to improve the fit between the homography output and the inertial estima-
tions (Section 5.4), the balance between both errors quickly flips as soon as the aircraft
starts maneuvering, resulting in body attitude IA-VNSE values significantly lower
than those of the VNSE for the remaining part of both scenarios. This improvement is
more significant in the case of scenario #1, as the prior based pose optimization is by
design a slow adjustment that requires significant time to slowly correct attitude and
altitude deviations between the visual and inertial estimations.

Table 4. Aggregated MX final body attitude INSE, VNSE, and IA-VNSE (100 runs). The most
important metrics appear in bold.

NSE VNSE IA-VNSE
[◦] ∆ψ̂ ∆θ̂ ∆ξ̂ ‖∆r̂B

NB‖ ∆
◦
ψ ∆

◦
θ ∆

◦
ξ ‖∆◦rB

NB‖ ∆
◦
ψ ∆

◦
θ ∆

◦
ξ ‖∆◦rB

NB‖
Scenario #1 MX (tEND)
mean +0.03 −0.03 −0.00 0.158 +0.03 +0.08 +0.00 0.296 +0.03 −0.01 −0.03 0.218
std 0.18 0.05 0.06 0.114 0.13 0.23 0.21 0.158 0.11 0.16 0.14 0.103
max −0.61 −0.27 −0.23 0.611 +0.63 +0.74 +0.78 0.791 +0.55 −0.37 −0.51 0.606

Scenario #2 MX (tEND)
mean −0.02 +0.01 +0.00 0.128 +0.02 −0.02 +0.00 0.253 +0.02 −0.00 +0.01 0.221
std 0.13 0.05 0.05 0.078 0.08 0.21 0.20 0.161 0.08 0.16 0.19 0.137
max +0.33 −0.15 +0.15 0.369 +0.22 −0.65 −0.73 0.730 +0.24 +0.62 +0.74 0.788

Qualitatively, the biggest difference between the three estimations resides in the nature
of the errors. While the attitude INSE is bounded, drift is present in both the VNS and
IA-VNS estimations. The drift resulting from the Monte Carlo simulations may be small,
and so is the attitude estimation error ‖∆◦rB

NB‖, but more challenging conditions with more
drastic maneuvers and a less idealized image generation process than that described in
Section 6 may generate additional drift.

Focusing now on the quantitative results shown in Table 4, aggregated errors for each
individual Euler angle are always unbiased and zero mean for each of the three estimations
(INS, VNS, IA-VNS), as the means tend to zero as the number of runs grows, and are much
smaller than both the standard deviations and the maximum values. With respect to the
attitude error ‖∆r̂B

NB‖ and ‖∆◦rB
NB‖, their aggregated means are not zero (they are norms), but

are nevertheless quite repetitive in all three cases, as the mean is always significantly higher
than the standard deviation, while the maximum values only represent a small multiple of
the means. It is interesting to point out that while in the case of the INSE the contribution
of the yaw error is significantly higher than that of the pitch and roll errors, the opposite
occurs for both the VNSE and the IA-VNSE. This makes sense as the the gravity direction is
employed by the INS as a reference from where the estimated pitch and roll angles can not
deviate, but slow changes in yaw generate larger optical flow variations than those caused
by pitch and roll variations.

These results prove that the algorithms proposed in Section 5 succeed when employing
the inertial pitch and bank angles (θ̂, ξ̂), whose errors are bounded, to limit the drift of
their visual counterparts (

◦
θ,
◦
ξ), as σ

END
◦
θ

and σ
END

◦
ξ

are significantly lower for the IA-VNS

than for the VNS (as the individual Euler angle metrics are unbiased or zero mean, the
benefits of the proposed approach are reflected in the variation of the remaining metrics,
this is, the standard deviation and the maximum value). Remarkably, this is achieved
with no degradation in the body yaw angle, as σ

END
◦
ψ

remains stable. Note that adjusting

the output of certain variables in a minimization algorithm (such as pose optimization)
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usually results in a degradation in the accuracy of the remaining variables as the solution
moves away from the true optimum. In this case, however, the improved fit between the
adjusted aircraft pose and the terrain displayed in the images, results in the SVO pipeline
also slightly improving its body yaw estimation

◦
ψ. Section 7.3 shows how the benefits

of an improved fit between the displayed terrain and the adjusted pose also improve the
horizontal position estimation.
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In the case of a real life scenario based on a more realistic image generation process
than that described in Section 6, the VNS would likely incur in additional body attitude
drift than in the simulations. If this were to occur, the IA-VNS pose adjustment algorithms
described in Section 5 would react more aggressively to counteract the higher pitch and
bank deviations, eliminating most of the extra drift, although it is possible that higher pose
adjustment parameters than those listed in Table 2 would be required. The IA-VNS is hence
more resilient against high drift values than the VNS.

7.2. Vertical Position Estimation

Table 5 contains the vertical position NSE (∆ĥ = ĥ− h, ∆
◦
h =

◦
h− h) at the conclusion

of both scenarios, which can be considered unbiased or zero mean in all six cases (two
scenarios and three estimation methods) as the mean µENDh is always significantly lower
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In the case of a real life scenario based on a more realistic image generation process
than that described in Section 6, the VNS would likely incur in additional body attitude
drift than in the simulations. If this were to occur, the IA-VNS pose adjustment algorithms
described in Section 5 would react more aggressively to counteract the higher pitch and
bank deviations, eliminating most of the extra drift, although it is possible that higher pose
adjustment parameters than those listed in Table 2 would be required. The IA-VNS is hence
more resilient against high drift values than the VNS.

7.2. Vertical Position Estimation

Table 5 contains the vertical position NSE (∆ĥ = ĥ− h, ∆
◦
h =

◦
h− h) at the conclusion

of both scenarios, which can be considered unbiased or zero mean in all six cases (two
scenarios and three estimation methods) as the mean µENDh is always significantly lower
than both the standard deviation σENDh or the maximum value ζEND|h|. The NSE evolution
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with time is depicted in Figures 11 and 12, which also include (magenta lines) those Monte
Carlo executions that result in the highest IA-VNSEs.

• The geometric altitude INSE (blue lines) is bounded by the change in atmospheric
pressure offset since the time the GNSS signals are lost. Refer to [6] for additional in-
formation.

• The VNS estimation of the geometric altitude (red lines) is worse than that by the INS
both qualitatively and quantitatively, even with the results being optimistic because of
the ideal image generation process employed in the simulation. A continuous drift or
error growth with time is present, and results in final errors much higher than those
obtained with the GNSS-Denied inertial filter. These errors are logically bigger for
scenario #1 because of its much longer duration.

Table 5. Aggregated MX final vertical position INSE, VNSE, and IA-VNSE (100 runs). The most
important metrics appear in bold.

Scenario MX (tEND) INSE VNSE IA-VNSE
[m] ∆ĥ ∆

◦
h ∆

◦
h

#1
mean −4.18 +82.91 +22.86
std 25.78 287.58 49.17
max −70.49 +838.32 +175.76

#2
mean +0.76 +3.45 +3.59
std 7.55 20.56 13.01
max −19.86 +72.69 +71.64

A small percentage of this drift can be attributed to the slow accumulation of error
inherent to the SVO motion thread algorithms introduced in Appendix C, but most of
it results from adding the estimated relative pose between two consecutive images
to a pose (that of the previous image) with an attitude that already possesses a small
pitch error (refer to the attitude estimation analysis in Section 7.1). Note that even a
fraction of a degree deviation in pitch can result in hundreds of meters in vertical error
when applied to the total distance flown in scenario #1, as SVO can be very precise
when estimating pose changes between consecutive images, but lacks any absolute
reference to avoid slowly accumulating these errors over time. This fact is precisely
the reason why the vertical position VNSE grows more slowly in the second half of
scenario #2, as shown in Figure 12. As explained in Section 7.1 above, continuous turn
maneuvers cause previously mapped terrain points to reappear in the camera field of
view, stopping the growth in the attitude error (pitch included), which indirectly has
the effect of slowing the growth in altitude estimation error.
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• The benefits of introducing priors to limit the differences between the visual and
inertial altitude estimations are reflected in the IA-VNSE (green lines). The error
reduction is drastic in the case of the scenario #1, where its extended duration allows
the pose optimization small pitch adjustments to accumulate into significant altitude
corrections over time, and less pronounced but nevertheless significant for scenario #2,
where the VNSE (an hence also the IA-VNSE) results already benefit from previously
mapped terrain points reappearing in the aircraft field of view as a result of the
continuous maneuvers. It is necessary to remark the amount of the improvement, as
the final standard deviation σENDh diminishes from 287.58 to 49.17 m for scenario #1,
and from 20.56 to 13.01 m for scenario #2.

The benefits of the prior based pose optimization algorithm can be clearly observed in
the case of the scenario #1 execution with the worst final altitude estimation error, whose
error variation with time is depicted in Figure 11 (magenta line). After a rapid growth in
the first third of the scenario following a particularly negative estimation during the initial
turn, the altitude error reaches a maximum of +233.05 m at 2007.5 s. Attitude adjustment
has become active long before, lowering the estimated pitch angle to first diminish the
growth of the altitude error and then being able to reduce the error itself, reaching a final
value of +175.76 m at tEND. As soon as the differences between the visual pitch, bank, or
altitude estimations (

◦
θ,
◦
ξ,
◦
h) and their inertial counterparts (θ̂, ξ̂, ĥ) exceed certain limits

(Section 5), the attitude adjustment comes into play and slowly adjusts the aircraft pitch to
prevent the visual altitude from deviating in excess from the inertial one. This behavior not
only improves the IA-VNS altitude estimation accuracy when compared to that of the VNS,
but also its resilience, as the system actively opposes elevated altitude errors.
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Significantly better altitude estimation errors (closer to the inertial ones) could be
obtained if more aggressive settings were employed for ∆

◦
θ◦◦1,MAX and ∆

◦
θ◦◦2,MAX within Table 2,

as the selected values are far from the level at which the pose optimization convergence is
compromised. This would result in more aggressive adjustments and important accuracy
improvements for those cases in which altitude error growth is highest. The settings
employed in this article are modest, as the final objective is not to obtain the smallest
possible attitude or vertical position IA-VNSE (as they are always bigger than their INSE
counterparts), but to limit them to acceptable levels so SVO can build a more accurate
terrain map, improving the fit between the multiple terrain 3D points displayed in the
images and the estimated aircraft pose. To do so it is mandatory to balance the pitch and
bank angle adjustments with the need to stick to solutions close to those that minimize
the reprojection error, as explained in Section 5. Higher ∆

◦
θ◦◦1,MAX and ∆

◦
θ◦◦2,MAX accelerate

the adjustments but may decrease the quality of the map. It is expected that a better
rendition of the real 3D position of the features detected in the keyframes as they are
tracked along successive images will lower the incremental horizontal displacement errors,
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Significantly better altitude estimation errors (closer to the inertial ones) could be
obtained if more aggressive settings were employed for ∆

◦
θ◦◦1,MAX and ∆

◦
θ◦◦2,MAX within Table 2,

as the selected values are far from the level at which the pose optimization convergence is
compromised. This would result in more aggressive adjustments and important accuracy
improvements for those cases in which altitude error growth is highest. The settings
employed in this article are modest, as the final objective is not to obtain the smallest
possible attitude or vertical position IA-VNSE (as they are always bigger than their INSE
counterparts), but to limit them to acceptable levels so SVO can build a more accurate
terrain map, improving the fit between the multiple terrain 3D points displayed in the
images and the estimated aircraft pose. To do so it is mandatory to balance the pitch and
bank angle adjustments with the need to stick to solutions close to those that minimize
the reprojection error, as explained in Section 5. Higher ∆

◦
θ◦◦1,MAX and ∆

◦
θ◦◦2,MAX accelerate

the adjustments but may decrease the quality of the map. It is expected that a better
rendition of the real 3D position of the features detected in the keyframes as they are
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tracked along successive images will lower the incremental horizontal displacement errors,
and, hence, result in a lower horizontal position IA-VNSE, which is the real objective for
the introduction of the priors.

The IA-VNS altitude estimation improvements over those of the VNS are not only
quantitative. Figure 11 shows no increment in σ◦

hn
(green lines) in the second half of

scenario #1 (once on average the deviation has activated the attitude adjustment feature).
The altitude estimation by the IA-VNS can hence also be described as bounded and driftless,
which represents a qualitative and not only quantitative improvement over that of the VNS.
The bounds are obviously bigger for the IA-VNS than for the INS. In the case of scenario
#2, Figure 12 shows a slow but steady σ◦

hn
growth with time, but this is only because the

error amount on average is not yet significant enough to activate the attitude adjustment
feature within pose optimization.

7.3. Horizontal Position Estimation

The horizontal position estimation capabilities of the INS, VNS, and IA-VNS share
the fact that all of them exhibit an unrestrained drift or growth with time, as shown in
Figures 13 and 14. The errors obtained at the end of both scenarios are shown in Table 6,
following the same scheme as in previous sections. While the approximately linear INS drift
appears when integrating the bounded ground velocity errors [6], the visual drifts (both
VNS and IA-VNS) originate in the slow accumulation of errors caused by the concatenation
of the relative poses between consecutive images without absolute references, but also
show a direct relationship with the scale error committed when estimating the aircraft
height over the terrain during the initial homography (Appendix C).

Table 6. Aggregated MX final horizontal position INSE, VNSE, and IA-VNSE (100 runs). The most
important metrics appear in bold.

Scenario MX (tEND) INSE VNSE IA-VNSE
Distance ∆x̂HOR ∆

◦xHOR ∆
◦xHOR

[m] [m] [%] [m] [%] [m] [%]

#1
mean 107,873 7276 7.10 4179 3.82 488 0.46
std 19,756 4880 5.69 3308 2.73 350 0.31
max 172,842 25,288 32.38 21,924 14.22 1957 1.48

#2
mean 14,198 216 1.52 251 1.77 33 0.23
std 1176 119 0.86 210 1.48 26 0.18
max 18,253 586 4.38 954 7.08 130 0.98

In the case of the VNS (red lines), its scenario #1 horizontal position estimations appear
to be significantly more accurate than those of the INS (blue lines). Note, however, that the
ideal image generation process discussed in Section 6 implies that the simulation results
should be treated as a best case only, and that the results obtained in real world conditions
would likely imply a higher horizontal position drift. The drift experienced by the VNS
in Figure 14 (scenario #2) also shows the same diminution in its slope in the second half
of the scenario discussed in previous sections, which is attributed to previously mapped
terrain points reappearing in the camera field of view as a consequence of the continuous
turns present in scenario #2. Additionally, notice how the VNSE starts growing at the
beginning of the scenario, while the INSE only starts doing so after the GNSS signals are
lost at tGNSS = 100 s [6].

The IA-VNS (green lines) results in major horizontal position estimation improvements
over the VNS. The final horizontal position error mean µ

END∆
◦
xHOR

diminishes from 3.82
to 0.46% for scenario #1, and from 1.77 to 0.23% for scenario #2. The repeatability of the
results also improves, as the final standard deviation σ

END∆
◦
xHOR

falls from 2.73 to 0.31% and
from 1.48 to 0.18% for both scenarios. Note that although these results may be slightly
optimistic due to the optimized image generation process, they are much more accurate



Aerospace 2023, 10, 220 23 of 37

than those obtained with the INS, for which the error mean and standard deviation amount
to 7.10 and 5.69% for scenario #1, and 1.52 and 0.86% in case of scenario #2.
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The IA-VNS (green lines) results in major horizontal position estimation improvements
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and from 1.48 to 0.18 % for both scenarios. Note that although these results may be slightly
optimistic due to the optimized image generation process, they are much more accurate
than those obtained with the INS, for which the error mean and standard deviation amount
to 7.10 and 5.69 % for scenario #1, and 1.52 and 0.86 % in case of scenario #2.

It is interesting to remark how the prior based pose optimization described in Section 5,
an algorithm that adjusts the aircraft pitch and bank angles based on deviations between
the visually estimated pitch angle, bank angle, and geometric altitude, and their inertially
estimated counterparts, is capable of not only improving the visual estimations of those
three variables, but doing so with a minor improvement in the body yaw estimation and
an extreme reduction in the horizontal position error. When the cost function within an
optimization algorithm is modified to adjust certain target components, the expected result
is that this can be achieved only at the expense of the accuracy in the remaining target
components, not in addition to it. The reason why in this case all target components
improve lies in that the adjustment creates a better fit between the ground terrain and
associated 3D points depicted in the images on one side, and the estimated aircraft pose
indicating the position and attitude from where the images are taken on the other.
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8. Influence of Terrain Type

The type of terrain overflown by the aircraft has a significant influence on the per-
formance of the visual navigation algorithms, which can not operate unless the feature
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It is interesting to remark how the prior based pose optimization described in Section 5,
an algorithm that adjusts the aircraft pitch and bank angles based on deviations between
the visually estimated pitch angle, bank angle, and geometric altitude, and their inertially
estimated counterparts, is capable of not only improving the visual estimations of those
three variables, but doing so with a minor improvement in the body yaw estimation and
an extreme reduction in the horizontal position error. When the cost function within an
optimization algorithm is modified to adjust certain target components, the expected result
is that this can be achieved only at the expense of the accuracy in the remaining target
components, not in addition to it. The reason why in this case all target components
improve lies in that the adjustment creates a better fit between the ground terrain and
associated 3D points depicted in the images on one side, and the estimated aircraft pose
indicating the position and attitude from where the images are taken on the other.
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formance of the visual navigation algorithms, which can not operate unless the feature

Figure 14. Horizontal position INSE, VNSE, and IA-VNSE for scenario #2 MX (100 runs).

8. Influence of Terrain Type

The type of terrain overflown by the aircraft has a significant influence on the per-
formance of the visual navigation algorithms, which can not operate unless the feature
detector is capable of periodically locating features in the various keyframes, and which
also requires the depth filter to correctly estimate the 3D terrain coordinates of each feature
(Appendix C). The terrain texture (or lack of) and its elevation relief are, hence, the two
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most important characteristics in this regard. To evaluate its influence, each of the scenario
#1 100 Monte Carlo runs are executed flying above four different zones or types of terrain,
intended to represent a wide array of conditions; images representative of each zone as
viewed by the onboard camera are included below. The use of terrains that differ in both
their texture and vertical relief is intended to provide a more complete validation of the
proposed algorithms. Note that the only variation among the different simulations is
the terrain type, as all other parameters defining each scenario (mission, aircraft, sensors,
weather, wind, turbulence, geophysics, initial estimations) are exactly the same for all
simulation runs.

• The “desert” (DS) zone (left image within Figure 15) is located in the Sonoran desert
of southern Arizona (USA) and northern Mexico. It is characterized by a combination
of bajadas (broad slopes of debris) and isolated very steep mountain ranges. There is
virtually no human infrastructure or flat terrain, as the bajadas have sustained slopes
of up to 7◦. The altitude of the bajadas ranges from 300 to 800 m above MSL, and
the mountains reach up to 800 m above the surrounding terrain. Texture is abundant
because of the cacti and the vegetation along the dry creeks.

• The “farm” (FM) zone (right image within Figure 15) is located in the fertile farmland
of southeastern Illinois and southwestern Indiana (USA). A significant percentage of
the terrain is made of regular plots of farmland, but there also exists some woodland,
farm houses, rivers, lots of little towns, and roads. It is mostly flat with an altitude
above MSL between 100 and 200 m, and altitude changes are mostly restricted to the
few forested areas. Texture is non-existent in the farmlands, where extracting features
is often impossible.

Figure 15. Typical “desert” (DS) and “farm” (FM) terrain views.

• The “forest” (FR) zone (left image within Figure 16) is located in the deciduous
forestlands of Vermont and New Hampshire (USA). The terrain is made up of forests
and woodland, with some clearcuts, small towns, and roads. There are virtually no
flat areas, as the land is made up by hills and small to medium size mountains that are
never very steep. The valleys range from 100 to 300 m above MSL, while the tops of
the mountains reach 500 to 900 m. Features are plentiful in the woodlands.

• The “mix” (MX) zone (right image within Figure 16) is located in northern Mississippi
and extreme southwestern Tennessee (USA). Approximately half of the land consists
of woodland in the hills, and the other half is made up by farmland in the valleys,
with a few small towns and roads. Altitude changes are always present and the terrain
is never flat, but they are smaller than in the DS and FR zones, with the altitude
oscillating between 100 and 200 m above MSL.
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Figure 16. Typical “forest” (FR) and “mix” (MX) terrain views.

The short duration and continuous maneuvering of scenario #2 enables the use of
two additional terrain types. These two zones are not employed in scenario #1 because
the authors could not locate wide enough areas with a prevalence of this type of terrain
(note that scenario #1 trajectories can conclude up to 125 km in any direction from its initial
coordinates, but only 12 km for scenario #2).

• The “prairie” (PR) zone (left image within Figure 17) is located in the Everglades
floodlands of southern Florida (USA). It consists of flat grasslands, swamps, and tree
islands located a few meters above MSL, with the only human infrastructure being
a few dirt roads and landing strips, but no settlements. Features may be difficult to
obtain in some areas due to the lack of texture.

• The “urban” (UR) zone (right image within Figure 17) is located in the Los Angeles
metropolitan area (California, USA). It is composed by a combination of single family
houses and commercial buildings separated by freeways and streets. There is some
vegetation but no natural landscapes, and the terrain is flat and close to MSL.

Figure 17. Typical “prairie” (PR) and “urban” (UR) terrain views.

The MX terrain zone is considered the most generic and hence employed to evaluate
the visual algorithms in Section 7. Although scenario #2 also makes use of the four terrain
types listed for scenario #1 (DS, FM, FR, and MX), it is worth noting that the variability
of the terrain is significantly higher for scenario #1 because of the bigger land extension
covered. The altitude relief, abundance or scarcity of features, land use diversity, and
presence of rivers and mountains is, hence, more varied when executing a given run of
scenario #1 over a certain type of terrain, than when executing the same run for scenario #2.
From the point of view of the influence of the terrain on the visual navigation algorithms,
scenario #1 should theoretically be more challenging than #2.

Table 7 and Figure 18 show the horizontal position IA-NVSE for scenario #1 and all
terrain types. Table 8 and Figure 19 do the same for scenario #2.
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Table 7. Influence of terrain type on final horizontal position IA-VNSE for scenario #1 (100 runs). The
most important metrics appear in bold.

Scenario #1 Zone MX FR FM DS
∆
◦xHOR(tEND) [m] [%] [m] [%] [m] [%] [m] [%]

IA-VNSE
mean 488 0.46 566 0.53 489 0.45 514 0.48
std 350 0.31 406 0.38 322 0.28 352 0.31
max 1957 1.48 2058 1.71 1783 1.34 1667 1.37

The influence of the terrain type on the horizontal position IA-VNSE is very small, with
slim differences among the various evaluated terrains. The only terrain type that clearly
deviates from the others is FR, with slight but consistently worse horizontal position estima-
tions for both scenarios. This behavior stands out as the abundant texture and continuous
smooth vertical relief of the FR terrain is a priori beneficial for the visual algorithms.
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Although beneficial for the SVO pipeline, the more pronounced vertical relief of the FR
terrain type breaches the flat terrain assumption of the initial homography (Appendix C),
hampering its accuracy, and, hence, results in less precise initial estimations, including that
of the scale. The IA-VNS has no means to compensate the initial scale errors, which remain
approximately equal (percentage wise) for the full duration of both scenarios.
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slim differences among the various evaluated terrains. The only terrain type that clearly
deviates from the others is FR, with slight but consistently worse horizontal position estima-
tions for both scenarios. This behavior stands out as the abundant texture and continuous
smooth vertical relief of the FR terrain is a priori beneficial for the visual algorithms.
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Although beneficial for the SVO pipeline, the more pronounced vertical relief of the FR
terrain type breaches the flat terrain assumption of the initial homography (Appendix C),
hampering its accuracy, and, hence, results in less precise initial estimations, including that
of the scale. The IA-VNS has no means to compensate the initial scale errors, which remain
approximately equal (percentage wise) for the full duration of both scenarios.

Figure 19. Influence of terrain type on horizontal position IA-VNSE for scenario #2 (100 runs).

Although beneficial for the SVO pipeline, the more pronounced vertical relief of the FR
terrain type breaches the flat terrain assumption of the initial homography (Appendix C),
hampering its accuracy, and, hence, results in less precise initial estimations, including that
of the scale. The IA-VNS has no means to compensate the initial scale errors, which remain
approximately equal (percentage wise) for the full duration of both scenarios.
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Table 8. Influence of terrain type on final horizontal position IA-VNSE for scenario #2 (100 runs). The
most important metrics appear in bold.

Scenario #2 Zone MX FR FM DS UR PR
∆
◦xHOR(tEND) [m] [%] [m] [%] [m] [%] [m] [%] [m] [%] [m] [%]

IA-VNSE
mean 33 0.23 40 0.28 33 0.23 31 0.22 32 0.23 31 0.22
std 26 0.18 35 0.24 24 0.17 24 0.17 25 0.18 25 0.17
max 130 0.98 188 1.29 117 0.85 114 0.86 128 0.96 119 0.90

A similar but opposite reasoning is applicable to the FM type and in a lesser degree
to the UR and PR types. Although a flat terrain in which all terrain features are located
at a similar altitude is detrimental to the overall accuracy of SVO, and results in slightly
worse body attitude and vertical position estimations, it is beneficial for the homography
initialization and the scale determination, resulting in consistently more accurate horizontal
position estimations.

9. Summary of Results

This article proposes a Semi-Direct Visual Odometry (SVO)-based Inertially Assisted
Visual Navigation System (IA-VNS) installed onboard a fixed wing autonomous UAV
that takes advantage of the GNSS-Denied estimations provided by an Inertial Navigation
System (INS) to assist the visual pose optimization algorithms. The method is inspired in a
Proportional Integral (PI) control loop, in which the inertial attitude and altitude outputs
act as targets to ensure that the visual estimations do not deviate in excess from their inertial
counterparts, resulting in major improvements when estimating the aircraft horizontal
position without the use of GNSS signals. The results obtained when applying the proposed
algorithms to high fidelity Monte Carlo simulations of two scenarios representative of the
challenges of GNSS-Denied navigation indicate the following:

• The body attitude estimation shows significant quantitative improvements over a
standalone Visual Navigation System (VNS) in both pitch and bank angle estimations,
with no negative influence on the yaw angle estimations. A small amount of drift
with time is present, and can not be fully eliminated. Body pitch and bank angle
estimations do not deviate in excess from their INS counterparts, while the body yaw
angle visual estimation is significantly more accurate than that obtained by the INS.

• The vertical position estimation shows major improvements over that of a standalone
VNS, not only quantitatively but also qualitatively, as drift is fully eliminated. The
visual estimation does not deviate in excess from the inertial one, which is bounded
by atmospheric physics.

• The horizontal position estimation, whose improvement is the main objective of the
proposed algorithm, shows major gains when compared to either the standalone VNS
or the INS, although drift is still present.

In addition, although the terrain texture (or lack of) and its elevation relief are key
factors for the visual odometry algorithms, their influence on the aircraft pose estimation
results are slim, and the accuracy of the IA-VNS does not vary significantly among the
various evaluated terrain types.

10. Conclusions

The proposed inertially assisted VNS (IA-VNS), which in addition to the images
taken by an onboard camera also relies on the outputs of an INS specifically designed
for the challenges faced by autonomous fixed wing aircraft that encounter GNSS-Denied
conditions, possesses significant advantages in both accuracy and resilience when compared
with a standalone VNS, the most important of which is a major reduction in its horizontal
position drift independently of the terrain type overflown by the aircraft. The proposed
IA-VNS can significantly increase the possibilities of the aircraft safely reaching the vicinity
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of the intended recovery location upon the loss of GNSS signals, from where it can be
landed by remote control.
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Abbreviations
The following abbreviations are used in this manuscript:

BRIEF Binary Robust Independent Elementary Features
DS DeSert terrain type
DSO Direct Sparse Odometry
ECEF Earth Centered Earth Fixed
EKF Extended Kalman Filter
FAST Features from Accelerated Segment Test
FM FarM terrain type
FR FoRest terrain type
GNSS Global Navigation Satellite System
IA-VNS Inertially Assisted VNS
IA-VNSE Inertially Assisted Visual Navigation System Error
IMU Inertial Measurement Unit
INS Inertial Navigation System
INSE Inertial Navigation System Error
iSAM Incremental Smoothing And Mapping
ISO International Organization for Standardization
LSD Large Scale Direct
MAV Micro Air Vehicle
MSCKF Multi State Constraint Kalman Filter
MSF Multi-Sensor Fusion
MSL Mean Sea Level
MX MiX terrain type
NED North East Down
NSE Navigation System Error
OKVIS Open Keyframe Visual Inertial SLAM
ORB Oriented FAST and Rotated BRIEF
PI Proportional Integral
PR Praire terrain type
RANSAC Random SAmple Consensus
ROC Rate Of Climb
ROVIO Robust Visual Inertial Odometry



Aerospace 2023, 10, 220 29 of 37

SLAM Simultaneous Localization And Mapping
SLERP Spherical linear interpolation
SVO Semi direct Visual Odometry
SWaP Size, Weight, and Power
TAS True Air Speed
UAV Unmanned Aerial Vehicle
UR Urban terrain type
USA United States of America
VINS Visual Inertial Navigation System
VIO Visual Inertial Odometry
VNS Visual Navigation System
VNSE Visual Navigation System Error
VO Visual Odometry
WGS84 World Geodetic System 1984

Appendix A. Optical Flow

Consider a pinhole camera [24] (one that adopts an ideal perspective projection) such
as that depicted in Figure A1. The image frame FIMG is a two-dimensional Cartesian reference
frame FIMG = {OIMG, iIMG

1 , iIMG
2 } whose axes are parallel to those of the FC camera frame

(iIMG
1 ‖ iC

1 , iIMG
2 ‖ iC

2), and whose origin OIMG is located on the focal plane displaced a distance
cIMG from the principal point so the FIMG coordinates pIMG

1 and pIMG
2 of any point in the image

domain Ω are always positive. The perspective projection map pIMG = Π
(
pC
)

that converts
points viewed in FC into FIMG is hence the following:
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Consider also that the camera is moving with respect to the Earth while maintaining
within its field of view a given point p fixed to the Earth surface. The composition of
positions and its time derivation, considering ECEF as FE, the camera frame as FC, and a
frame FP with its origin in the terrain point p that does not move with respect to FE, results
in the following expression when viewed in FC:
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Note that (A6) connects the point coordinates as viewed from the camera TC
CP = pC

and their time derivative vC
CP = ṗC with the twist ξC

EC of the motion of the camera with
respect to the Earth viewed in the FC or local frame, which is composed by its linear and
angular velocities vC

EC and ωC
EC [3].

vC
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EC = REC ω̂C
EC TC

CP + REC ṪC
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Figure A1. Frontal pinhole camera model.
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coordinates:

Figure A1. Frontal pinhole camera model.

The homogeneous camera coordinates p̄C are defined as the ratio between the camera
coordinates pC and its third coordinate or depth pC

3 , and represent an alternative view to
pIMG = Π

(
pC
)

of how the point is projected in the image. Its time derivative is hence:

p̄C =
pC

pC
3
−→ ˙̄pC =

[
p̄C

1 , p̄C
2 , 1
]T

=
pC

3 ṗC − ṗC
3 pC

pC 2
3

(A8)

Substituting both pC and pC
3 within (A7) into (A8), rearranging terms, and considering

the (A1, A2) relationship between the image and the homogeneous camera coordinates,
leads to the following expression for the optical flow [25] or variation of the point image
coordinates:
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Considering that the twist ξ is the time derivative of the transform vector τ [3], the
optical flow JOF is defined as the derivative of the local frame ideal perspective projection
of a point fixed to the spatial frame with respect to the SE(3) element M caused by a
perturbation ∆τ in its local tangent space:

JOF
(
Π(gM(p))

)
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∆τ→0

Π
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)
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∆τ
∈ R2x6 (A10)
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)
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]
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Less formally, the optical flow Jacobian represents how the projection of a fixed point
moves within the image as the camera pose varies. Note that the Jacobian only depends
on the point camera (local) coordinates and the camera focal length, and that as all terms
multiplying the linear twist component are divided by the image depth pC

3 , the effect on
the image of a bigger linear velocity can not be distinguished from that of a smaller depth.

Appendix B. Introduction to GNSS-Denied Navigation

The number, variety, and applications of UAVs (Unmanned Air Vehicles) have grown
exponentially in the last few years, and the trend is expected to continue in the future [26,27].
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This is particularly true in the case of low SWaP (Size, Weight, and Power) vehicles because
their reduced cost makes them suitable for a wide range of applications, both civil and mili-
tary. Ref [28] presents a comprehensive review of low SWaP UAV navigation systems and
the problems they face, including the degradation or absence of GNSS (Global Navigation
Satellite System) signals.

Aircraft navigation has traditionally relied on the measurements provided by ac-
celerometers, gyroscopes, and magnetometers, incurring in an slow but unbounded posi-
tion drift that could only be stopped by triangulation with the use of external navigation
(radio) aids. More recently, the introduction of satellite navigation (GNSS) has completely
removed the position drift and enabled autonomous inertial navigation in low SWaP plat-
forms [29–31]. On the negative side, inertial navigation exhibits an extreme dependency
on the availability of GNSS signals. If the signals are not present or can not be employed,
inertial systems rely on dead reckoning, which results in position drift, with the aircraft
slowly but steadily deviating from its intended route [32]. The availability of GNSS sig-
nals cannot be guaranteed; a throughout analysis of GNSS threats and reasons for signal
degradation is presented in [33]. In GNSS-Denied conditions, the vehicle is unable to fly its
intended route or even return to a safe recovery location, which leads to the uncontrolled
loss of the airframe if the GNSS signals are not recovered before the aircraft runs out of fuel
(or battery in case of electric vehicles).

The extreme dependency on GNSS availability is not only one of the main impediments
for the introduction of autonomous UAVs in civil airspace, where it is not acceptable to
have uncontrolled vehicles causing personal or material damage, but it also presents a
significant drawback for military applications, as a single hull loss may compromise the
onboard technology. At this time there are no comprehensive solutions to the operation
of low SWaP autonomous UAVs in GNSS-Denied scenarios, although the use of onboard
cameras seems to be one of the most promising routes. Bigger and more expensive UAVs,
this is, with less stringent SWaP requirements, can rely to some degree on more accurate
accelerometers and gyroscopes (at the expense of SWaP) and additional communications
equipment to overcome this problem, but for most autonomous UAVs, the permanent loss
of the GNSS signals is equivalent to losing the airframe in an uncontrolled way.

Appendix B.1. Possible Approaches to GNSS-Denied Navigation

Inertial navigation employs the periodic readings provided by the Inertial Measurement
Unit or IMU (accelerometers and gyroscopes) to estimate the pose of a moving object by
means of dead reckoning or integration. On aircraft, inertial sensors are complemented
by magnetometers and a barometer to add robustness to the inertial solution. Fixed wing
aircraft are also equipped with a Pitot tube and air vanes required by their control system,
although their measurements are usually not employed for navigation. Absolute references,
such as those provided by navigation radio aids or GNSS receivers, are required to remove
the position drift inherent to inertial navigation.

Low SWaP autonomous aircraft are too small to incorporate navigation aid receivers,
which in any case are not available over vast regions of the Earth, exhibiting an extreme
dependency on the availability of GNSS signals. A summary of the challenges of GNSS-
Denied navigation and the research efforts intended to improve its performance is provided
by [34]. There exist various approaches to mitigate this problem, with detailed reviews
provided by [6,35]. Two promising techniques for completely eliminating the position drift
are the use of signals of opportunity (existing signals originally intended for other purposes,
such as those of television and cellular networks, can be employed to triangulate the aircraft
position) [36–38], and georegistration (the position drift can be eliminated by matching
landmarks or terrain features as viewed from the aircraft to preloaded data) [39–42], also
known as image registration.
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Appendix B.2. Visual Navigation

Visual Odometry (VO) consists of employing the ground images generated by one
or more onboard cameras without the use of prerecorded image databases or any other
sensors, incrementally estimating the vehicle pose based on the changes that its motion
induces on the images [43–45]. It requires sufficient illumination, dominance of static scene,
enough texture, and scene overlap between consecutive images or frames. It can rely on
a single camera (monocular vision), in which case the motion can only be recovered up
to a scale factor, or on various cameras (stereo vision), where the differences among the
simultaneous images taken with the different cameras are employed to determine the scale.
It has been employed for navigation of ground robots, road vehicles, and multi-rotors
flying both indoors and outdoors.

The incremental concatenation of relative poses results in a slow but unbounded
pose drift, which can only be eliminated if aided by Simultaneous Localization and Mapping
(SLAM) [46,47], a particular case of VO in which the map of the already viewed terrain
is stored and employed for loop closure in case it is revisited by the vehicle during its
motion. In this sense, VO only uses the map to improve the local consistency of the
solution, while SLAM is more concerned with its global consistency [43]. The result is that
SLAM is potentially more accurate, but also slower, computationally more expensive, and
less robust.

Modern standalone algorithms, such as Semi Direct Visual Odometry (SVO) [4,5],
Direct Sparse Odometry (DSO) [48], Large Scale Direct SLAM (LSD-SLAM) [49], and large
scale feature based SLAM (ORB-SLAM) [50–52], are robust and exhibit a limited drift.

A typical VO algorithm includes steps to obtain the images, detect and extract its
features, either match or track those features (VO algorithms can be divided into feature-
based or matching methods and direct or tracking methods [45]), estimate the relative
motion between consecutive frames, concatenate them to obtain the full camera pose
trajectory, and finally perform some local optimization (bundle adjustment) [43].

Appendix B.3. Visual Inertial Navigation

Estimating the aircraft pose based on both IMUs and cameras represents the most
promising solution to GNSS-Denied navigation, in what is known as Visual Inertial Odometry
(VIO) [53,54], which can also be combined with image registration to fully eliminate the
remaining pose drift. Current VIO implementations are also primarily intended for ground
robots, multi-rotors, and road vehicles, and, hence, rely exclusively on the vehicle IMU
readings and the images taken by the onboard cameras, but do not use other sensors
commonly found onboard fixed wing aircraft. VIO has matured significantly in the last
few years, with detailed reviews available in [53–57].

VIO currently appears to represent the state of the art in GNSS-Denied navigation
for low SWaP UAVs [28]. There exist several open source VIO packages, such as the
Multi State Constraint Kalman Filter (MSCKF) [58], the Open Keyframe Visual Inertial
SLAM (OKVIS) [59,60], the Robust Visual Inertial Odometry (ROVIO) [61], the monocular
Visual Inertial Navigation System (VINS-Mono) [62], SVO combined with Multi-Sensor
Fusion (MSF) [4,5,63,64], and SVO combined with Incremental Smoothing and Mapping
(iSAM) [4,5,65,66]. All these open source pipelines are compared in [53], and their results
when applied to the EuRoC MAV datasets [21] are discussed in [22]. There also exist various
other published VIO pipelines with implementations that are not publicly available [67–73],
and there are also others that remain fully proprietary.

The existing VIO schemes can be broadly grouped into two paradigms: loosely coupled
pipelines process the measurements separately, resulting in independent visual and inertial
pose estimations, which are then fused to get the final estimate; on the other hand, tightly
coupled methods compute the final pose estimation directly from the tracked image features
and the IMU outputs [53,54]. Tightly coupled approaches usually result in higher accuracy,
as they use all the information available and take advantage of the IMU integration to
predict the feature locations in the next frame. Loosely coupled methods, although less
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complex and more computationally efficient, lose information by decoupling the visual and
inertial constraints, and are incapable of correcting the drift present in the visual estimator.

A different classification involves the number of images involved in each estima-
tion [53,54,74], which is directly related with the resulting accuracy and computing de-
mands. Batch algorithms, also known as smoothers, estimate multiple states simultaneously
by solving a large non-linear optimization problem or bundle adjustment, resulting in
the highest possible accuracy. Valid techniques to limit the required computing resources
include the reliance on a subset of the available frames (known as keyframes), the separa-
tion of tracking and mapping into different threads, and the development of incremental
smoothing techniques based on factor graphs [66]. Although employing all available states
(full smoothing) is sometimes feasible for very short trajectories, most pipelines rely on
sliding window or fixed lag smoothing, in which the optimization relies exclusively on the
measurements associated to the last few keyframes, discarding both the old keyframes,
as well as all other frames that have not been cataloged as keyframes. On the other hand,
filtering algorithms restrict the estimation process to the latest state; they require less re-
sources but suffer from permanently dropping all previous information and a much harder
identification and removal of outliers, both of which lead to error accumulation or drift.

The success of any VIO approach relies on an accurate calibration of the pose and time
offsets between the IMU and the camera [53,54]. Additional challenges applicable to all
pipelines include the different working frequencies of IMUs and cameras, as well as the
initialization requirements to bootstrap the algorithms.

Appendix C. Semi-Direct Visual Odometry

Semi-Direct Visual Odometry (SVO) [4,5] is a publicly available advanced combination
of feature-based and direct VO techniques primarily intended towards the navigation
of land robots, road vehicles, and multi-rotors, holding various advantages in terms of
accuracy and speed over traditional VO algorithms. By combining the best characteristics of
both approaches while avoiding their weaknesses, it obtains high accuracy and robustness
with a limited computational budget. This section provides a short summary of the SVO
pipeline, although the interested reader should refer to [4,5] for a more detailed description;
the pose optimization phase is however described in depth (Section 4), as it is the focus of
the proposed modifications described in Section 5.

SVO initializes like a feature-based monocular method, requiring the height over the
terrain to provide the scale (initialization), and using feature matching and RANSAC [75]
based triangulation (initial homography) to obtain a first estimation of the terrain 3D
position of the identified features. After initialization, the SVO pipeline for each new image
can be divided into two different threads: the mapping thread, which generates terrain 3D
points, and the motion thread, which estimates the camera motion (Figure A2).

Once initialized, the expensive feature detection process (mapping thread) that obtains
the features does not occur in every frame but only once a sufficiently large motion has
occurred since the last feature extraction. When processing each new frame, SVO initially
behaves like a direct method, discarding the feature descriptors and skipping the matching
process, and employing the luminosity values of small patches centered around every
feature to (i) obtain a rough estimation of the camera pose (sparse image alignment, motion
thread), followed by (ii) a relaxation of the epipolar restrictions to achieve a better estimation
of the different features sub-pixel location in the new frame (feature alignment, motion
thread), which introduces a reprojection residual that is exploited in the next steps. At
this point, SVO once again behaves like a feature-based method, refining (iii) the camera
pose (pose optimization, motion thread) and (iv) the terrain coordinates of the 3D points
associated to each feature (structure optimization, motion thread) based on non-linear
minimization of the reprojection error.
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In this way, SVO is capable of obtaining the accuracy of direct methods at a very high
computational speed, due to only extracting features in selected frames, avoiding (for the
most part) robust algorithms when tracking features, and only reconstructing the structure
sparsely. The accuracy of SVO improves if the pixel displacement between consecutive
frames is reduced (high frame rate), which is generally possible as the computational
expenses associated to each frame are low.

None of the motion thread four non-linear optimization processes listed above makes use
of RANSAC, and pose optimization is the only one that employs a robust M-estimator [8,9]
instead of the traditional mean or squared error estimator. This has profound benefits in terms
of computational speed but leaves the whole process vulnerable to the presence of outliers
in either the features terrain or image positions. To prevent this, once a feature is detected
in a given frame (note that the extraction process obtains pixel coordinates, not terrain 3D
ones), it is immediately assigned with a depth filter (mapping thread) initialized with a large
enough uncertainty around the average depth in the scene; in each subsequent frame, the
feature 3D position is estimated by reprojection and the depth filter uncertainty reduced.
Once the feature depth filter has converged, the detected feature and its associated 3D point
become a map candidate, which it is not yet employed in the motion thread optimizations
required to estimate the camera pose. The feature alignment process is however applied in
the background to the map candidates, and it is only after several successful reprojections that
a candidate is upgraded to a map 3D point and, hence, allowed to influence the motion result.
This two step verification process that requires depth filter convergence and various successful
reprojections before a 3D point is employed in the (mostly) non-robust optimizations is key to
prevent outliers from contaminating the solution and reducing its accuracy.
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In this way, SVO is capable of obtaining the accuracy of direct methods at a very high
computational speed, due to only extracting features in selected frames, avoiding (for the
most part) robust algorithms when tracking features, and only reconstructing the structure
sparsely. The accuracy of SVO improves if the pixel displacement between consecutive
frames is reduced (high frame rate), which is generally possible as the computational
expenses associated to each frame are low.

None of the motion thread four non-linear optimization processes listed above makes use
of RANSAC, and pose optimization is the only one that employs a robust M-estimator [8,9]
instead of the traditional mean or squared error estimator. This has profound benefits in terms
of computational speed but leaves the whole process vulnerable to the presence of outliers
in either the features terrain or image positions. To prevent this, once a feature is detected
in a given frame (note that the extraction process obtains pixel coordinates, not terrain 3D
ones), it is immediately assigned with a depth filter (mapping thread) initialized with a large
enough uncertainty around the average depth in the scene; in each subsequent frame, the
feature 3D position is estimated by reprojection and the depth filter uncertainty reduced.
Once the feature depth filter has converged, the detected feature and its associated 3D point
become a map candidate, which it is not yet employed in the motion thread optimizations
required to estimate the camera pose. The feature alignment process is however applied in
the background to the map candidates, and it is only after several successful reprojections that
a candidate is upgraded to a map 3D point and, hence, allowed to influence the motion result.
This two step verification process that requires depth filter convergence and various successful
reprojections before a 3D point is employed in the (mostly) non-robust optimizations is key to
prevent outliers from contaminating the solution and reducing its accuracy.
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