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Abstract: The task assignment issue and the path planning problem of Multiple Unmanned Aerial
Vehicles (Multi-UAV) are collectively referred to as the Mission Planning Problem (MPP). This review
article provides an update on the progress of the MPP on Multi-UAV. Focusing on the burning issue
of task assignment, this paper focuses on the comparison of the characteristics of the mathematical
programming method, heuristic algorithm, negotiation algorithm and neural networks. According
to different constraints, trajectory planning can be divided into 2 dimension coverage, 3 dimension
cooperation, and 4 dimension space-time cooperation. Combined with typical research, common
collaborative guidance methods are introduced, and the key development direction of this field is
prospected. The article shows that, although the MPP has been extensively studied, ongoing research
is required. In particular, it is necessary to pay attention to the timeliness of the task assignment, the
information coupling exists in MPP, and the problems caused by multiple constraints of Multi-UAV
and environmental uncertainty.

Keywords: multiple unmanned aerial vehicles; mission planning problem; task assignment;
path planning

1. Introduction

Over the last decades, Unmanned Aerial Vehicles (UAVs) have increasingly been
widely used in a range of applications, such as surveillance [1,2], agriculture [3,4], pho-
togrammetry [5], civil security [6] and even the military [7]. With the development of
hardware and software that enables higher levels of autonomy, the types of missions that
UAVs handle have become more intelligent. From the perspective of military applications,
smart UAVs can stay on the battlefield for a long time to conduct long-term reconnais-
sance and surveillance. And they can even conduct strike missions, and can rely on the
information-based combat system to resend the striking effect for damage assessment.
At the same time, it is composed of a distributed decentralized network, which is highly re-
placeable and has little impact on the breakdown of the system. It can easily replace various
workloads and is highly adaptable to diverse combat tasks. Compared with manned air-
craft, UAVs have a significant cost-effective advantage, which can consume a large amount
of the enemy’s high-cost air defence force to achieve efficient and cost-effective combat.
In terms of platform design, it has subverted the equipment design idea of the main battle
platform of the previous combat system as the support, focusing on high performance and
large integration. Therefore, intelligent UAVs will definitely become a research hotspot
and further improve their level of automation and intelligence to enhance their role in
various applications.

At present, there are bottlenecks in the detection range, penetration capability and the
striking effect of a single UAV. The trade-off between low-cost and complex functions limits
the development of UAVs. However, through the teamwork of UAVs with simple functions,
the system functions are distributed to multiple individuals and form a scale effect. The ef-
fectiveness can match or even exceed an advanced single UAV. In the foreseeable future,
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complex and changeable missions will require the teamwork of heterogeneous unmanned
system to achieve common objectives. At the same time, Multiple Unmanned Aerial Vehi-
cles (Multi-UAV) improve the robustness of the entire system and are more adaptable to
complex situations. Therefore, the unmanned formation will become the most important
part of the future battlefield, and it will act in the manner of implementing saturated attack
operations, active attrition operations, and distributed attack-defense operations, which
will bring new challenges to the design and integration of UAVs, especially in terms of
autonomy and cooperation [8].

Relying on the network, implementing coordinated attack and defense in the form of
formation through autonomous coordination is the basic combat style of low-cost UAVs. The
decision-making system provides an efficient task assignment strategy that can be imple-
mented by the unmanned system, and the management system ensures the reliable operation
of the formation. The decision-making and management system determines the degree of
autonomy of the formation and the level of forming self-organization management.

In short, task assignment is to divide the tasks of formation members according
to the battlefield situation and effectiveness function, and it is the command input of
path planning [9,10]. Path planning is the executor of the assignment results [11,12].
Therefore, task assignment and path planning are the basis for determining whether the
formation’s comprehensive combat effectiveness can be maximized, and are the key basis
for formation coordination. In practice, however, information coupling naturally exists
in Mission Planning Problem (MPP), since both the implementation of task assignment
and path planning reference the output of each other [13]. Path planning algorithms
must have the ability to replan the trajectories online in complex constraints and dynamic
environments to deal with emergencies. However, the change in the motion path and
the dynamic of the scene also requires the task allocation algorithm to have the ability
of online reassignment. Although it is not necessarily real-time, it must be online. Many
scholars have carried out researches on task assignment, path planning, and their coupling
respectively [14].

The remainder of the paper is organized as follows. In Section 2, the mathematical
model and common algorithms of task assignment are reviewed. In Section 3, several
usual cooperative path planning scenarios and algorithms are introduced. Then the current
challenges and future research directions are discussed in Section 4. Finally, Section 5 draws
the conclusion.

2. Task Assignment of Multi-UAV

The primary problem that unmanned formation needs to solve is the problem of target
assignment. Task assignment refers to assigning one or more targets to one or more aircraft,
according to certain tactical indicators under the given situation and performance, so that
the overall efficiency of the aircraft formation can be optimized [15]. The task assignment
can be divided into pre-assignment and re-assignment. Pre-assignment means offline task
allocation based on known scene information before the execution process, and usually
is applicable to static problems. Re-assignment refers to reassigning tasks according to
new scene information during task execution. The common triggers for reassignment are
summarized below.

(1) Changes in target quantity or characteristics: The number of targets may vary as
the mission is performed. Some targets may be destroyed, or some new ones may
be detected. And the intelligence gathered earlier about the targets may also be
inaccurate. Depending on the new scenario, tasks need to be reassigned.

(2) Variation in the number or status of UAV formation: During the execution of the
mission, UAVs may be attacked and no longer suitable for the assigned mission.
Sometimes changes in the flight path caused by dynamic scenes make the UAV more
suitable for other tasks. It is necessary to reassign tasks according to the variation.
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Figure 1 shows a typical Multi-UAV combat scenario.

Command and control center

Dynamic and uncertainty

Path conflict and 

coordination

Figure 1. A typical Multi-UAV combat scenario.

In this typical scenario, the intelligence obtained by satellites is used for target pre-
allocation, and the command and control center issues tasks to the manned and unmanned
swarms, and the unmanned swarms carry out task segmentation and plan flight trajectories
through internal negotiation. During the execution of the mission, the no-fly zone is
avoided, and collision avoidance within the formation is carried out at the same time.

And its key technologies are shown in Figure 2.

(1) Formation principle: It can be a single objective function or multiple objective func-
tions. Commonly used functions are time consumption, economic consumption,
the proceeds from performing tasks, etc.

(2) Task assignment algorithm: What calls for special attention is the coupling among
tasks and the robustness in uncertain environments.

(3) Path planning algorithm: The ability of path conflict avoidance is required in cluttered
environment. And the reliability of the cooperative guidance law also deserves attention.

(4) Leave-join formation management: The formation needs to have the ability to resist
disturbance and reconfigure.
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Figure 2. Key technologies in formation cooperative control.

Among them, the task assignment is essentially a constrained integer combinatorial
optimization problem. When the scale of the problem expands, the time cost of solving
the problem will become huge and even unacceptable, so the combinatorial optimization
problem is also called Nondeterminism Polynomial (NP) hard problem.

In the existing studies, most of the Multi-UAV are assumed to be heterogeneous, that is,
there are differences in the nature, function, load quantity and type, and combat capabilities
of the UAVs. At the same time, it is necessary to consider the actual various constraints.
The task assignment mathematical model is usually established as below [16].

F = max
Nu

∑
i=1

(
Nt

∑
j=1

rijxij

)
, xij ∈ {0, 1}, (1)

H = min
Nu

∑
i=1

(
Nt

∑
j=1

cijxij

)
, xij ∈ {0, 1}, (2)

Nt

∑
j=1

xij ≤ Li
t, ∀i ∈ I, (3)

Lmin
j ≤

Nu

∑
i=1

xij ≤ Lmax
j , ∀j ∈ J, (4)

Nu

∑
i=1

Nt

∑
j=1

xij = min

{
Nu

∑
i=1

Li
t, Nt

}
, (5)

In formula (1), xij indicates that target j is assigned to UAV i, and rij represents the
reward obtained. There are Nu UAVs and Nt tasks in total. So formula (1) represents the
need to maximize the proceeds F. In formula (2), cij represents the cost of assigning target
j to UAV i, and this formula aims to minimize the cost of UAV formation H. Formula (3)
manifests that UAV i can only perform Li

t tasks at most, and formula (4) means the number

n of UAVs assigned to task j, n ∈
[

Lmin
j , Lmax

j

]
. Finally, formula (5) ensures that all the tasks

are assigned.



Aerospace 2023, 10, 208 5 of 20

From the perspective of the relationship between UAVs and the ground control cen-
ter, there are three typical formation architectures: centralized architecture, distributed
architecture, and mixed architecture, as shown in Figure 3.

UAV 1 UAV 2 UAV 3

Ground control 

center

Data link

UAV 2

UAV 1

UAV 3

Ground control 

center

Data link

(a) (b)

Formation 2 Formation 1

UAV 2

UAV 1

UAV 3

Ground control 

center

Data link

UAV 2

UAV 1

UAV 3

UAV 4

Data link

(c)

Figure 3. Three typical formation architectures. (a) Centralized architecture; (b) distributed architec-
ture; (c) mixed architecture.

In the Multi-UAV formation target assignment problem, for small-scale formations,
centralized algorithms have been widely studied and applied, which can ensure the global
optimal solution. However, the decision is made at the ground control center, which
puts higher demands on the computing power and communication stability of the ground
station. The robustness of the centralized system is poor, once the ground station is attacked,
the entire system will collapse.

For large-scale clusters, limited by the computing and communication capabilities
of airborne equipment, distributed negotiation algorithms have attracted a widespread
attention. In the distributed architecture, each UAV is equal, and the consensus is reached
through information exchange. This architecture puts more emphasis on the autonomy of
UAV and the scale of the formation is more flexible. But frequent information exchange
is required.

Some researchers researched on hybrid consensus algorithms, adopted the idea of
hierarchical control, combined centralized and distributed, and obtained a favorable effect.
This mixed architecture combines the advantages of the above two structures, and is
suitable for cooperation among multiple clusters, which is the main development direction
in the future.

As shown in Figure 4, task assignments can be broadly categorized into coordinated,
distributed, stochastic, deterministic, evolutionary, and multi-fusion-based algorithms.
In this section, different task assignment algorithms are extensively investigated, comparing
their key features and characteristics.
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Figure 4. Classification of target assignment methods.

2.1. Target Assignment Based on Mathematical Programming Algorithm

The mathematical programming method is also called Exact Algorithm (EA). Com-
monly used methods include the exhaustive method, Branch-and-Bound (B&B) algorithm,
satisficing decision, Hungarian algorithm [17], and so on.

The basic idea of the exhaustive method is to verify all possible solutions one by one.
It is a violent algorithm, also known as the enumeration method. But when the scale of the
problem is enlarged, the time spent on solving the problem is unacceptable [18]. Therefore,
EA is only suitable for solving small-scale problems and problems that do not require high
real-time performance.

The B&B method is a common method for solving integer linear programming prob-
lems. A B&B algorithm consists of a systematic enumeration of candidate solutions by
means of state space search: the set of candidate solutions is considered as a rooted tree.
The algorithm explores the branches of this tree, which represent subsets of the solution
set. Before enumerating a branch, it is checked against the upper and lower bounds and is
discarded if it cannot produce a better solution.

Martin et al. proposed the formulation of a single-task robot, single-robot task, time-
extended assignment, multi-robot task allocation problem with multiple, nonlinear criteria,
and obtain an allocation by the B&B algorithm in low-scale problems [19]. The B&B
algorithm has been proven to be able to obtain the optimal allocation, and it has a faster
calculation speed in the size of the problem does not exceed a certain limit.

Ye et al. proposed a Multi-UAV target allocation method based on satisficing decision,
and apply satisficing decision theory to solve the multi-target allocation problem of Multi-
UAV cooperation [20]. Mills-Tettey et al. presented the dynamic Hungarian algorithm
for the assignment problem with changing costs. The goal is to efficiently recalculate an
optimal assignment when changes in the edge costs occur. And the result is a provably
optimal solution [17].

EA is a classic method for centralized target assignment, which has the characteristics
of simple structure and ensuring global optimality. However, due to the slow computing
speed and the explosive growth of computation and storage requirements, it is not suitable
for large-scale problems.

2.2. Target Assignment Based on Heuristic Algorithm (HA)

For small-scale formations, the EA above can obtain the global optimal solution,
but as the complexity of the problem increases, the amount of calculation is also increasing
explosively, and the traditional EA is no longer applicable. Instead of solving it exactly,
the HA no longer blindly searches the global space but combines random operations with
heuristics to seek a compromise between computing time and optimal performance, while
taking into account both computing efficiency and performance [21].

Many biological groups in nature, especially social animals, eventually exhibit group
intelligent behavior through simple interactions. Thus, Swarm Intelligence (SI) is defined
as the collective behavior of a decentralized or self-organized system [22]. Typical SI



Aerospace 2023, 10, 208 7 of 20

algorithms include ant colony algorithm, Particle Swarm Optimization (PSO) [23], gray
wolf algorithm [24], genetic algorithm [25] and so on. After years of development, SI
algorithms have been widely used in various optimization fields such as path planning
and target assignment.

Zhen et al. presented an intelligent cooperative mission planning scheme for UAV
swarm, to search and attack the time-sensitive moving targets in uncertain dynamic envi-
ronments, by a hybrid artificial potential field and ant colony optimization method [26].
Geng et al. focused on the problem of robot rescue task allocation, and a modified PSO
algorithm is proposed, which is characterized by a flexible assignment decoding scheme
to avoid the generation of unfeasible assignments [27]. Li et al. proposed a distributed
cooperative task allocation strategy based on the algorithm of the improved gray wolf
algorithm to quickly and effectively plan the cooperative task path with a large number of
working task points [28]. Ma et al. proposed a coordinated algorithm combing the genetic
algorithm and cluster algorithm to solve the problem of task assignment and path planning.
The coordinated algorithm can be used to determine the required amount of UAVs and
find the optimal path for every UAV [29].

In the multi-objective optimization solution, it is necessary to take into account each
sub-objective at the same time, but the sub-objectives may conflict with each other, so the
optimal solution is usually not unique but forms a non-inferior solution set, also known
as Pareto optimality. For complex multi-objective optimization problems, multi-objective
heuristic optimization algorithms are usually adopted [30,31].

Zhang et al. proposed a clone selection algorithm-based approach to simultaneously
optimize four objectives in Multi-UAV task allocation, i.e., maximizing the number of
successfully allocated tasks, maximizing the benefits, minimizing resource costs, and min-
imizing time costs [32]. To overcome the two fundamental drawbacks: limited flight
duration and limited loading capacity, an approximate two-phase approach was developed
to find approximate Pareto solutions, which is more computationally inexpensive [33].

However, the application of multi-objective optimization based on the Pareto theory in
high-dimensional space also has limitations, mainly because the Pareto dominant solution
does not work and the diversity maintenance mechanism is far away from the Pareto front in
the sparse area [34]. To achieve multi-objective optimization on task assignments, the deep
Q-learning is introduced to simplify the prioritization of the original task set, and the
modified shift-based density estimation method is proposed to improve the conventional
Pareto algorithm [35].

To sum up, the target assignment based on HA is to search for the optimal solution
by means of group rolling optimization, but the algorithm is prone to precociousness.
At the same time, large computation increases the search time, so it is not suitable for
environments with strong real-time performance and large environmental uncertainties.
That is why HAs are mostly used in static target assignment problems.

2.3. Target Assignment Based on Negotiation Algorithm

Both the EA and HA belong to centralized algorithms. The central node is responsible
for information collection, processing, and task delivery. Higher requirements are placed
on the computing power, reliability, and stability of data interaction. Due to the over-
reliance on the central node, the robustness of the formation is poor. With the development
of intelligence and the expansion of formation scale, distributed control capability is an
inevitable requirement. Compared with the centralized one, the distributed algorithm
distributes the amount of calculation to each UAV, and the UAVs are equal, able to perceive
and make decisions by themselves, and realize situation communication, task coordination,
and assignment through the inter-machine data link. Common negotiation algorithms
include auction algorithm and Contract Net Protocol (CNP).
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The auction algorithm simulates human auction activities to auction, bid, and allocate
targets. De et al. addressed both the decentralized automated guided vehicles control and
the resource management by proposing a decentralized task allocation algorithm based on
sequential single-item auctions, taking into account resource constraints [36].

Choi et al. proposed the Consensus-Based Auction Algorithm (CBAA) and its gener-
alization to the multi-assignment problem, i.e., the Consensus-Based Bundle Algorithm
(CBBA) [37]. Hunt extended CBBA to the Consensus-Based Grouping Algorithm (CBGA),
by introducing the collective decision-making behavior of social animals [38,39]. Bertuc-
celli et al. extended the CBBA to solve the problem of heterogeneous vehicle target assign-
ment and took into account the obstacle region in order to generate a collision-free path
while reducing the sensitivity of the mission planner to the sensor measurement noise [40].

The CNP is a tasking-sharing protocol in multi-agents, proposed by Smith [41], which
consists of multiple nodes that can exchange information with each other. The core idea of
the CNP is to realize the assignment, adjustment, and migration of tasks by imitating the
“bid mechanism” in the real market transaction process, which belongs to a negotiation-
oriented task decision-making and negotiation method.

Zhen et al. proposed an improved CNP scheme to deal with heterogeneous overload-
ing and time sequences problem. Situation-based advantage value is adopted as a principle,
and two improved CNP algorithms are designed for the one-to-many and many-to-one
modes [42].

Compared with traditional methods, CNP has more advantages in dealing with
large-scale task allocation problems due to its strong robustness and dynamism. The
fly in the ointment is that to achieve the best performance, frequent data communication
between UAVs is required, which will undoubtedly increase the risk of exposure for clusters
performing tasks in enemy areas. Therefore, how to reduce the frequency and the data
of communications have become a frontier issue in distributed task planning. Xie et al.
proposed a distributed Multi-UAV task allocation method based on improved CNP to
solve the local cooperative task allocation problem of heterogeneous Multi-UAV in the
communication-constrained environment. The adaptive maximum number setting method
of information transfer times and the information consistency method are proposed to
solve conflicts in the local communication network. And Gini coefficient based resource
consumption allocation algorithm is designed to keep the resource difference within a
reasonable range, in the process of coalition formation. However, there are still many efforts
to be made to further improve negotiation efficiency [43].

2.4. Task Assignment Based on Neural Networks (NN)

Facing the complex and changeable battlefield situation, highly dynamic attack and de-
fense put forward extremely high requirements on the optimality and real-time performance
of decision-making, but the above algorithms are insufficient in terms of computational
efficiency and global optimality. With the development of artificial intelligence technology,
NN has been widely studied in the fields of image recognition, intelligent control, etc.
By virtue of its powerful exploration and optimization capabilities, Reinforcement Learning
(RL) is considered to be the most likely means to achieve “general intelligence”. RL is based
on dynamic programming theory and inspired by behaviorist psychology. By balancing
“exploration” and “exploitation”, it learns optimal strategies by receiving environmen-
tal rewards [44]. In Go and video games, complex RL has reached or exceeded human
performance. RL has also been applied to target assignment and intelligent control [45].

Gao et al. used deep RL for task scheduling and trajectory planning in collaborative
perception detection [46]. Luo proposed a data-driven policy optimization with deep RL for
the adversarial missile-target assignment by designing a comprehensive reward function.
The learned policy can implicitly model the penetration of missiles under an adversarial
environment in a data-driven way [47]. Zhao et al. proposed a Q-learning based fast task
allocation algorithm by developing a Q network that encodes the allocation rules. The pro-
posed algorithm is computationally efficient by offloading the online computation to an
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offline learning procedure and is able to handle the effect of environment uncertainty [48].
Aiming at the coordinated dynamic task allocation in the presence of environment uncer-
tainty, Liu et al. proposed the multi-agent RL-based coordinated network to send requests
and a Q network to determine whether to participate in the dynamic task [49].

With the development of multi-agent problems, the combination of RL and Pareto to
solve multi-objective optimization problems has also been studied. Traditional deep RL
methods train neural networks to maximize the single cumulative reward. As an improve-
ment, Multi-Objective Deep Reinforcement Learning (MODRL) algorithms simultaneously
train multiple policies using different reward functions, by sharing environmental informa-
tion across all policies. Sullivan et al. designed a MODRL algorithm based on Proximal
Policy Optimization (PPO) in a shared environment with a multi-objective solution space.
Policies using different reward functions may also learn from each other, resulting in a
more stable and efficient training phase [50].

However, the difference between the simulation environment and the real scene
puts forward higher requirements for generalization ability and robustness. And how to
reconcile the performance-oriented philosophy of RL with the stability focus of application
is still an open question [51].

3. Cooperative Path Planning (CPP) for Multi-UAV

Multi-UAV is coordinated by coordination algorithms with each UAV under the
control of the local guidance law. The coordination variable is the bond that links all UAVs
together. Generally speaking, aiming to introduce coordination strategies into the path
planning of each UAV, CPP is an important way to realize formation [12].

CPP is by no means a simple superposition of single path planning, but a process
of mutual restraint and coordination. For example, it needs to consider: time constraints
in simultaneous arrival or sequential arrival; space constraints in formation flight or all-
around attack, and space-time constraints in time-space coupling problems [52]. CPP
algorithms also require the ability of online re-planning. During the mission execution,
when the scene or mission changes, the UAVs need to re-plan the path according to their
current states. The key to CPP is to deal with the relationship between time, space and
tasks among multiple trajectories.

For the cooperative path planning of Multi-UAV, researchers have conducted suffi-
cient research from both mathematical methods, graph-based path planning, and artificial
intelligence algorithms. This section introduces CPP algorithms from the perspective of
task requirements. Due to the diversity of tasks, CPP problems can be generally divided
into three categories: 2 Dimension (2D) coverage, 3 Dimension (3D) cooperation, and 4
Dimension (4D) space-time cooperation [53,54].

(1) 2D coverage: It means a UAV group conducts a blanket search or surveillance of an
area. In such missions, UAV’s power consumption and the coverage area are limited.
Multi-UAV can complete tasks through the division of labor.

(2) 3D cooperation: Paths are planned in three-dimensional space, usually with time or
line-of-sight angle as the coordinating variable, to achieve simultaneous or sequential
strikes. Commonly used methods to coordinate time are: adjusting flight speed and
adjusting the length of the flight path.

(2) 4D space-time cooperation: Different from the above-mentioned 3D cooperation, 4D
space-time cooperation plans the position of UAVs at each moment, which can more
accurately adjust the arrival time and achieve higher space utilization. However, due
to the increased time degree of freedom, the scale and the difficulty of problem-solving
are higher.

3.1. Path Planning in 2D Coverage Tasks

In area monitoring and surveillance, Multi-UAV cooperate with each other, subdivide
the detection area considering their state and capabilities, and determine the optimal
coverage path [55,56], as shown in Figure 5.
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Figure 5. CPP in Coverage tasks.

In this kind of task, the initial location and sensors of each UAV may be different,
but they all need to plan a path with minimum energy consumption, number of turns and
completion time under the premise of increasing coverage [57]. Ghaddar et al. proposed an
energy-aware path planning algorithm to cover an area by grid-mapping, grid-subdivision,
and area partitioning, which can be applied in scenarios where a single and multiple UAVs
are used [58]. Xin et al. proposed a general multi-robot task model, named multi-point
dynamic aggregation, to formulate the motion planning problem in cooperative multi-area
coverage. And a rule-based heuristic for the distributed motion planning of each single
robot is adopted [59].

Although scholars have done in-depth research, there are still some problems to be
solved. In CPP problems, There are some constraints that need to be considered [53].

(1) Maneuverability constraints: When performing path planning, the UAV’s maneuver-
ability, such as the turning radius, is usually not considered. This will affect the final
coverage. Furthermore, the heterogeneity of UAVs, such as different mobility and
sensing capability should also be taken seriously.

(2) Environmental constraints: When designing the algorithm, not only static no-fly
zones, but also dynamic obstacles in the environment should be considered to avoid
potential danger.

(3) Task constraints: Given the complexity of tasks, some task constraints also need to be
considered, such as certain areas need to be scouted from a specified angle, etc.

3.2. Path Planning in 3D Cooperation

Space coordination can significantly disperse air defense firepower, avoid collisions
within formations, and improve the strike effect, which has high application value. Figure 6
shows a typical scene of Multi-UAV 3D space collaboration.

In this typical scenario, the UAVs bypass the no-fly zones and interception system
according to the assigned mission, and strike or monitor the target simultaneously or
sequentially from different directions. The flight path needs to meet the scene constraints,
the UAV’s maneuverability constraints, and performance indicators.
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Figure 6. Cooperative reconnaissance-strike diagram.

In 3D coordinated path planning, there are usually two coordination variables: arrival
time and line-of-sight angle.

3.2.1. Time-Coordinated Path Planning

When arrival time is adopted as the coordination variable, it is called time-coordinated
path planning. Time coordination means that Multi-UAV coordinates their distance and
speed relative to the target through communication, so that the time of arrival tends to be
consistent. In 2006, Jeon et al. proposed the time-coordinated guidance law for the first
time when they studied the coordinated attack of anti-ship missiles [60]. The simultane-
ous arrival of the missiles can bring greater pressure to the air defense system, thereby
improving the ability of coordinated strike penetration.

When adjusting the speed as a method, it is required that the speed of the UAV
can be changed within a certain range. The acceleration on the line-of-sight direction
is adjusted to make Multi-UAV achieve the arrival time consensus. Li et al. designed
an adaptive fixed-time cooperative guidance law to intercept the maneuvering target
for simultaneous arrival and the convergence analysis indicates that the consensus errors
converge to the origin in the fixed-time interval [61]. For multiple missiles to simultaneously
attack a maneuvering target, Dong et al. designed a fixed-time cooperative guidance
law. The tangential acceleration is calculated from a distributed cooperative protocol to
synchronize the time-to-go of multi-missiles within a fixed time [62].

For the problem of salvo attack with acceleration limitation, the consistency of arrival
time can be achieved by adjusting the length of the flight path. Kang et al. proposed a Model
Predictive Control (MPC)-based cooperative guidance law to perform a salvo attack against
a stationary target, which guarantees that multi-missiles hit the target simultaneously
without explicitly using the time-to-go or its estimate [63]. A modified cooperative guidance
law is presented to avoid singularity existing in the guidance law proposed by Jeon. A sign
function is adopted to mitigate the effect of the small leading angle, and the convergence
of times-to-go is guaranteed by the Lyapunov stability analysis [64]. The problem of
cooperative path planning where UAVs should arrive at the target simultaneously or
sequentially is also addressed by adjusting the Dubins curve, while minimizing the total
mission time. Sequential arrival is realized by sorting the flight paths and prolonging
them if necessary to accomplish the desired time delays [65]. The application of artificial
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intelligence algorithms directly maps the situation information into cooperative guidance
instructions, giving the UAV the ability to perceive and replan in real time. Luo et al.
studied the problem of Multi-UAV cooperative penetration and designed a penetration
strategy based on the deep deterministic policy gradient, which enables Mutli-UAV to
break through the interception and reach the target area simultaneously [66]. Yu et al.
investigated the cooperative guidance strategy for multiple hypersonic gliding vehicles.
Under the premise of ensuring the coordination of the attack angles, the angle of attack
curve is optimized to achieve different jump maneuvers, and then the arrival time is
coordinated [67]. Song et al. proposed a time cooperative guidance law based on a Long
Short-Term Memory (LSTM) network and a modified artificial potential field for multi-
hypersonic vehicles. The novel time potential field is developed to adjust the flight time,
according to the time-to-go predicted by LSTM [68].

However, most researches focus on the static or low-speed target, the impact time is set
before the mission rather than coordinated during the mission execution [69]. In addition,
some complex constraints need also to be considered, such as heat flow, overload, and dy-
namic pressure for hypersonic vehicles. And how to estimate the time-to-go quickly and
accurately is also the key to the time cooperative guidance law [68]. Furthermore, in the
actual battlefield, the complex weather, and electromagnetic environment require UAVs
to have higher reliability, and the fault information will also be propagated in the UAV
formation [70,71]. Therefore, how to isolate the fault information, manage the departure
and entry of the faulty aircraft, and develop a robust cooperative guidance law has also
attracted much attention [72,73].

3.2.2. Space-Coordinated Path Planning

When the line-of-sight angle is adopted as coordination variable, it is called space-
coordinated path planning. Space coordination refers to the coordination of Multi-UAV
through communication to obtain the desired line-of-sight angle, and then fly to the target
from different directions. Based on a large number of randomly generated direction lines,
Babel et al. proposed a path planning algorithm that allows arbitrary flight directions
arbitrary turn angles. The method can also be applied for quick in-flight replanning of
flight paths during the mission [74].

For cooperative attack, time coordination refers to the coordination of multiple aircraft
in the line of sight direction, while space coordination refers to the coordination in the
direction of the normal line of sight. In the line-of-sight direction, the time convergence
of the coordinated attack is ensured by introducing the remaining time. On the normal
line-of-sight, the acceleration of the aircraft is controlled to ensure that the attack angle
converges to the desired angle to achieve spatial coordination.

Usually, space-coordinated path planning is not used alone, but combined with time-
coordinated path planning to carry out the 3D space-time coordinated guidance. Song et al.
proposed a finite-time cooperative guidance law, which is continuous and requires no infor-
mation on target maneuvers. The acceleration command on the line-of-sight direction was
designed to guarantee that all missiles reach the target simultaneously, and the acceleration
command in the normal direction was developed to ensure the finite-time convergence of
the line-of-sight angular rate and angle [69]. To improve the robustness of the cooperative
guidance system, an appointed-time extended state observer is developed by Zhang et al.
for compensating the guidance commands [75]. Based on finite-time consensus theory
and the super-twisting control algorithm, the cooperative guidance law in the direction of
the line of sight is derived. Then angle cooperation is guaranteed by adopting finite-time
sliding mode control and the super-twisting control algorithm [76].

Cooperative guidance law against maneuvering target is practical but difficult to
design [77]. To estimate and compensate for the unknown target acceleration, Dong et al
added a fixed-time observer in the guidance law [62]. Zhang et al. designed a fixed-time
cooperative guidance law. In line-of-sight direction, a consensus protocol is designed based
on the fixed-time differentiator and the bi-limit homogeneity theory. In normal direction,
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two continuous adaptive fixed-time guidance laws are designed to guarantee line-of-sight
angular rates achieve convergence [78]. Teng et al. designed a distributed finite-time
cooperative guidance law in the line-of-sight direction to guarantee the consensus of impact
times. In the vertical direction, a nonlinear disturbance observer is adopted to estimate
the target’s acceleration in finite time [79]. Chen et al. studied the problem of cooperative
interception of strong maneuvering targets by multiple missiles with weaker maneuver-
ability in three-dimensional space, proposed a guidance law based on the cooperative
coverage strategy, and proved that the cooperative interception of targets can be achieved
under the acceleration limit. The relations among the number of missiles, the initial array
position of terminal guidance, and the coverage area of the target’s large maneuver were
also analyzed [80].

However, there is a certain similarity in the flight paths planned by the cooperative
guidance law, which will increase the probability of collisions between UAV formations.
Therefore, the path conflict avoidance problem needs to be considered in the design of the
space-time cooperative guidance law. Liu et al. designed a generalized conflict graph that
encodes the traveling time and possible path conflicts. At the same time, for the real-time
requirements of large-scale system computing, a greedy algorithm is proposed. The solu-
tion has approximately optimal performance, but can greatly reduce the computational
complexity [81]. But this problem becomes more prominent in the crowded environment,
and how to use airspace more efficiently will also become a future research direction.

3.3. Path Planning in 4D Space-Time Cooperation

With the development of unmanned technology, the tasks performed by UAV clusters
are becoming more and more complex, and the number of drones in the formation is
also increasing. In complex missions, the area where the formation is located maybe
full of obstacles. UAVs should fly through the desired waypoints without any collision
as well as complete the assigned tasks [82]. However, for high-speed moving UAVs,
avoiding obstacles and other UAVs requires strong environmental awareness. In recent
years, scholars consider the problem of collision avoidance when planning trajectories,
and four-dimensional coordinated path planning algorithms are proposed, where time
variable is taken into account. However, due to the increased time degree of freedom,
the difficulty of solving the problem is higher than that of 3D path planning.

Liu et al. designed a spatial refined voting mechanism for PSO in the four-dimensional
CPP problem and the objective function is designed by considering not only the obstacle
and threat area, but also the arrival time and other constraints [83]. Although the current air
traffic management architectures are widely used in commercial aviation, they have strictly
constrained configuration options that limit their ability to manage the traffic demand.
Vitale et al. developed a novel framework to optimize 4D trajectories for UAVs, while
maximizing the available capacity. A network manager is designed to consider UAV
requests and a linear-Gaussian system is adopted to address mobility uncertainties [84].
Dai et al. proposed a conflict-free A* algorithm based on the first-come-first-served scheme.
A novel design of heuristic function a conflict detection and resolution strategy is contained
in the algorithm [85].

Integrating collision avoidance requirements into the CPP problem forms a 4D trajec-
tory planning problem, which can achieve more precise space-time control and improve
airspace utilization. However, how to solve this complex optimization problem to meet
real-time requirements remains to be further studied.

4. The Key Issues

At present, the target allocation and collaborative trajectory planning in the Multi-
UAV formation have achieved phased outcomes and have obtained a certain degree of
application. UAV swarms such as “Gremlins” and “Coyote” in the United States, Rus-
sia’s “Thunder” and “Lightning”, and ”Mosquito” in the United Kingdom have initially
possessed the ability to coordinate reconnaissance and strike.
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Although the target allocation and cooperative guidance of Multi-UAVs have achieved
fruitful results, there are still problems in simple and ideal research scenarios and simplified
constraints and there are many challenges in practical applications, which are summarized
in Table 1.

Table 1. Issues to be considered in practical applications

Task Assignment Path Planning

Constraints
• number and capabilities of UAVs
• characteristics of tasks
• time window and precedence

• scene constraints (no-fly zones etc.)
• maneuverability of UAVs

Evaluation metrics

• the proceeds received or the value of
destroyed targets

• fuel or time consumption
• loss of UAVs

• degree of task completion
• safety of UAVs
• time or energy efficiency

Challenges

• high time complexity
• task re-assignment
• coupling among tasks
• uncertainty of environment

• high time complexity
• collision avoidance
• environmental uncertainty
• internal or external distractions

4.1. Online Target Assignment in Dynamic Environment

Most of the existing research on target assignment focuses on off-line task planning
based on known situation information before task execution. However, in the face of
complex and changeable battlefield environments, it is more practical to assign online
targets based on real-time reconnaissance information. Some scholars have carried out
work on the problem of target assignment in dynamic environments. Yang et al. studied the
problem of distributed UAVs task reassignment in dynamic environments, and proposed a
distributed method to reduce the burden of computing and communication [86]. How to
improve the solution efficiency and stability of complex optimization problems still needs
further research.

At the same time, the high dynamics and uncertainty of the environment will also affect
the target allocation, which requires higher robustness and the capability of reassignment
of the mission planner. At this point, target allocation and trajectory planning are no longer
decoupled, and the coupling between them must be considered.

In addition, in the human-machine collaborative environment, not only the external
environment will affect the overall situation, but also human decision-making will affect
the situational awareness of the unmanned formation. Mahadevan et al. researched on
the cooperative stacking problem between manipulators and humans. The manipulator
can perform online target assignments according to human actions, to achieve the purpose
of human-machine collaborative work [87]. However, the human-in-the-loop mission
planning problem has not been thoroughly studied. At the same time, the difference
in perception and decision-making ability between humans and machines also makes it
imperative to improve the technology of UAV sensing and decision-making [88].

4.2. Coupling among Missions

Most of the researches on target assignment at this stage assumes that each task is
independent of the other, and whether a certain task is completed or not has no effect on
the execution of other tasks. However, different tasks are often given different priorities
due to their urgency and importance [89]. In addition, certain tasks need to be executed in
strict order, such as reconnaissance-strike-assessment, etc. In this case, the UAVs are also
required to meet the sequential constraints. Ye et al. developed an extended CBBA to solve
the multi-task assignment problem with task coupling constraints in the heterogeneous
Multi-UAV system [90]. The task coupling constraints usually include the following aspects:

(1) Order constraints: In some scenarios, tasks have different priorities and need to be
executed simultaneously or sequentially.
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(2) Time window constraints: In practical application, some missions need to be com-
pleted within a certain time window.

4.3. Collision Avoidance between UAVs

Generating collision-free trajectories is a necessary condition for the Multi-UAV to
perform missions safely. However, this will become challenging when a large number of
high-speed maneuvering aircraft are moving in a crowded space [91]. In previous studies,
most of the collision avoidance algorithms were placed on the logic of the formation flight
control algorithm, but this will inevitably affect the accuracy of path tracking. Therefore,
the direct generation of collision-free paths has also attracted the attention of scholars.

Qing et al. proposed offline and online solutions to deal with a collision-free trajectory
generation problem for UAV swarm formation rendezvous. First, a geometric path based
on improved ant colony optimization is found. Then incorporate the zeroing control
barrier function constraints and the previous trajectories into the optimal problem to meet
safety-critical requirement [92].

However, the optimization algorithm cannot guarantee global explicit feasibility,
and there may still be singularities that cause the system to fall into a deadlock. Therefore,
some researchers have developed a rule-based adaptive deadlock solution to ensure global
feasibility [93]. 4D path planning algorithms are also getting more and more attention.
However, facing the increased time dimension, how to efficiently and quickly solve the
problem of path conflicts among multiple UAVs remains to be further studied.

4.4. Strong Robust Cooperative Guidance Law

Most of the existing studies on the cooperative guidance of Multi-UAV focus on
the ideal situation, without considering the reliability of the cooperative guidance law.
Communication delays, measurement noise, and aircraft failures all place high demands
on the robustness of the guidance law. If some aircraft in the formation is intercepted
or damaged, the entire cooperative mission will be affected. Hu et al. aimed to develop
a fault-tolerant cooperation framework for networked UAVs. A cooperative navigation
strategy based on network graph theory was proposed to coordinate all the connected
UAVs in the swarm, and in the case of damage to the actuators of some UAVs during the
mission, a decentralized task reassignment algorithm is then applied [94].

However, only actuator faults are considered, many other external disturbances are
not concerned. Therefore, it is necessary to carry out research on a robust cooperative
guidance law, and cooperate with the management mechanism of departure and entry to
achieve reliable mission coordination [95].

5. Conclusions

UAVs play an important role in various industries and cooperation between Multi-
UAV has become a research hotspot. This paper reviews the target assignment and path
planning of Multi-UAV. Investigated and analyzed the research status, and summarized
the existing research results and the challenges faced. The computation time grows ex-
ponentially with the problem size. Awareness of the dynamic environment affects the
optimality of decision-making. The coupling between target allocation and trajectory plan-
ning compounds the problem. And in crowded environments, unmanned swarms are
prone to collisions. All these challenges limit the practical application of Multi-UAV. Finally,
this paper makes a prospect for the future. In the face of Multi-UAV mission planning,
researchers should focus on the problem of target allocation in dynamic uncertain environ-
ments, coupling among missions, collision avoidance between UAVs, and the design of
robust cooperative path planning.
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CPP Cooperative path planning
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MPC Model Predictive Control
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Symbols
I aggregation of UAVs
J aggregation of tasks
xij task assignment flag
rij the reward obtained
Nu numbers of UAVs
Nt numbers of tasks
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Li
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