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Abstract: In this paper, a space-time finite element method based on a Galerkin-weighted residual
method is proposed to solve the nonlinear fully intrinsic equations of geometrically exact beam which
are first-order partial differential equations about time and space. Therefore, it is natural to discretize
it in time and space simultaneously. Considering the continuity and intrinsic boundary conditions in
the spatial direction and the continuity and periodic boundary conditions in the time direction, the
boundary value scheme of space-time finite element for solving the full intrinsic equations is derived.
This method has been successfully applied to the static analysis and dynamic response solution of
the fully intrinsic equations of nonlinear geometrically exact beam. The numerical results of several
examples are compared with the analytical solution, existing algorithms, and literature to illustrate
the applicability, accuracy and efficiency of this method.

Keywords: space-time finite method; time finite method; fully intrinsic equations; geometrically
exact beam; rotor dynamic response

1. Introduction

In the field of aircraft, beam structure is widely used as the main load-bearing struc-
ture, and its dynamic problem has always been one of the important topics in the field of
aircraft design. On helicopter rotors in particular, the beam-like blades with high aspect
ratio have strong nonlinear characteristics under medium or large deformation conditions.
In particular, the wide application of composite materials aggravates such nonlinear defor-
mation, which ultimately leads to the complexity of rotor aeroelastic response. Therefore,
the beam theory has always been an unavoidable part of helicopter rotor dynamics analysis.
In many existing studies, with no limits on displacement and rotation, the beam theories of
large deformation with only small strain assumptions have attracted more attention.

The beam theories of large deformation, according to their solution methods, can be
divided into three types: displacement-based [1], mixed form [2,3] and stress-based [4,5].
Displacement-based models often use a high-order truncation method to reduce the com-
plexity of the formula, while the mixed form scheme introduces the generalized velocity
and generalized strain on the basis of displacement, and incorporates the constitutive
relation and kinematic relation into the governing equations by Lagrange multipliers. Dif-
ferent from the previous two schemes, the stress-based model completely eliminates the
generalized displacement variable and leads to the concept of fully intrinsic [6], that is, the
equations are independent of the parameterization of displacement and rotation. In 1977,
Hegemier and Nair put forward the fully intrinsic theory [7]. Later, in the mixed form [2]
proposed by Hodges in 1990, the partial differential equations of motion adopted the
intrinsic scheme, associating the displacement and rotation variables with the generalized
strain and generalized velocity. On this basis, in 2003, Hodges proposed fully intrinsic and
geometrically exact partial differential equations of kinematics and dynamics [4]. These
fully intrinsic equations include only force, moment, linear velocity and angular velocity
as unknown variables. The derived equations are simple and compact, and the order of
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the nonlinear highest order term of the equations is only two. Nevertheless, the equations
contain all the nonlinear components without any truncation. In the past few decades,
the fully intrinsic equations of geometrically exact beam have been widely applied to the
analysis of various beam-like structures [8–12].

The fully intrinsic beam model proposed by Hodges is a set of differential equations
about the first-order partial derivatives of time and space, and the most common solution
is spatiotemporal asynchronous discretization: firstly, the equations of motion were dis-
cretized in the space domain to obtain a set of first-order equations in time domain, and
then discretized in the time domain to obtain a set of algebraic equations ultimately. In
recent years, many research teams have done a lot of work on the discrete solution scheme
of this theory. At present, the four most common spatial discrete methods are: (1) The finite
difference method. Hodges adopted the central difference scheme and discretized the geo-
metrically exact equations by finite difference [2]. (2) The weighted residual method. Based
on the idea of finite element, Patil and Althoff [12] used the Galerkin method of energy
continuity to discretize the fully intrinsic equations in space domain in 2011, and estab-
lished the spatial discrete equations with Legendre polynomials as a unit trial function. The
calculation results show that the Galerkin method is suitable, and more precise solutions
can be obtained with fewer trial functions. In the same year, Patil and Hodges proposed
the concept of variable-order finite element [13], which proved that the third-order finite
element scheme was particularly good at balancing the conflicts between accuracy, compu-
tational efficiency and applicability to general problems. (3) The Chebyshev polynomial
collocation method. Khaneh, Masjedi and Ovesy [14] made a static analysis of the fully
intrinsic equations of the beam based on this method. They found that this method is
very effective for large deformation analysis of geometrically exact beam. (4) Differential
quadrature (DQ). The DQ method [15], proposed by Bellman and Casti in 1971, uses the
weighted linear sum of function values at other discrete points in the whole domain to
approximate the derivative of a function at a specific point. Amoozgar and Shahverdi [16]
first applied the differential quadrature method to the fully intrinsic equations of discrete
geometrically exact beam, then analyzed the modal and static responses. The results show
that compared with the traditional finite element method, the GDQ method can obtain
more accurate results with less computational cost. Chen et al. [17] adopted a DQ-Pade
method with high-order accuracy for the space-time discretization of the fully intrinsic
equations, which has shown outstanding performance in both accuracy and efficiency. For
time discretization, common numerical methods can be used to solve the first-order time
differential equations, such as the finite difference method, the Newmark average velocity
method, the precise integration method, the Runge-Kutta method, etc.

Since its invention, the finite element method (FEM) has become the most widely
used tool in recent years. When solving the aerodynamic problems of rotor, the traditional
finite element method usually adopts the form of finite element discretization in space
and finite difference discretization in time, which can only give play to the advantages of
finite element in space. Moreover, each time step needs to be carried forward successively,
which generates a large amount of calculation, time, and accumulated errors. In the time
domain, this single-scale finite element method based on semi-discrete scheme lacks the
flexibility of spatial approximation. Meanwhile, the stability and convergence of algorithm
parameters may be further aggravated if we need to change the calculation accuracy of
time direction when solving time-varying problems. However, space-time finite element
method, or time finite element method, is a high-precision and effective method to solve
the problem of the developed time partial differential. Its main feature is the unity of spatial
and temporal variables, that is, the time and space measures are unified into a whole area
for element division, forming an unstructured grid in the sense of space-time. Because its
corresponding theoretical analysis and numerical calculation are consistent for any order of
time and space discretization, the calculation accuracy is high and the calculation amount
is moderate. According to the continuity of state parameters, space-time finite element
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methods (STFEM) can be divided into space-time continuous finite element and space-time
discontinuous finite element.

Hughes et al. [18] used the finite element method for the discrete time domain and
space domain simultaneously in a dynamic study based on the Hamilton principle. In
the same year, Oden [19] et al. presented a universal STFEM for simultaneous discrete
space and time. In 1986, Bajer and Czes [20] et al. gave the space-time finite element
for vibration analysis and structural dynamics. Their research shows that the space-time
finite element is superior to implicit and explicit methods. In 1992, Hulbert [21] developed
a STFEM for structural dynamics equations based on the discontinuous time Galerkin
method, and compared with common finite difference methods, confirmed the necessity
of the time-space finite element method. As the time the domain is also discretized by
the finite element method, each time step solution requires two dimensional continuities,
resulting in the order of the nonlinear equations derived by STFEM being twice that of
the common finite element method. In addition, the coefficient matrix obtained by the
space-time finite element method is characterized by sparsity, asymmetry and non-positive
qualitative. It also means that when solving dynamic problems, the storage capacity of its
geometric growth cannot easily be satisfied by the general storage method [22].

With the deepening of the study of space-time finite element theory, many researchers
have done a lot of work for practical engineering application, and the theory has been
widely used in many fields such as elastic dynamics, wave problems, and established
various types of STFEM. Tezduyar [23] et al. adopted the stable space-time fluid-structure
interaction based on the STFEM to conduct simulation and analysis of medical cerebrovas-
cular. Ye Yang [24] combined the space-time discontinuity Galerkin method and the
extended finite element method to include multiple time-scale features in the space-time
discrete dynamics problems. In 2016, in the numerical simulation of the Biot system,
Bause [25] et al. used the any-order STFEM to conduct discrete simulation of flow sep-
aration and mechanical deformation, which proved the iterative convergence and was
consistent with the theoretical analysis. Based on the Galerkin-Petrov variational formula,
Steinbach [26] applied linear subsections’ finite element to the thermodynamic equation
simultaneously in both space and three or four dimensions of time, and compared it with
the modern algebraic multigrid method. Moore [27] analyzed a new stable space-time
finite element method to gain the numerical solution of the parabolic evolution problem in
a computing domain of moving space. A direct-time integral scheme is an important part
of a finite element simulation of structural dynamics problems. Sharma [28] proposed an
improved time integral scheme based on the time discontinuity Galerkin method.

There are three common methods to construct a space-time finite element: The Gurtin
variational principle, the Hamilton principle and the weighted residual method. Among
them, the weighted residual method is an effective scheme, especially the Galerkin scheme,
which has the advantages of clear concept and flexible application. Johnson [29] estab-
lished the space-time-finite element method of acoustic wave equation by using a space-
continuous and time-discontinuous Galerkin method. Hulbert [21] mentioned that the
time-finite element method accompanied the development of structural dynamics, and
the time-discontinuous Galerkin method provided an effective solution method. Simon
Shaw [30] applied the STFEM of the discontinuous Galerkin scheme in the analysis of the
second-order hyperbolic problem.

From a mathematical point of view, the fully intrinsic model of geometrically exact
beam is the nonlinear partial differential equations, which include the derivatives of space
and time. To solve this problem, a reliable numerical scheme is needed to solve the
equations. Many researchers often focus on the study of its spatial domain discretization,
while ignoring its solution in the time domain. After the spatial discretization of the fully
intrinsic equations, the equations have higher rigidity. Therefore, small steps are often
needed to solve the response, especially when solving the steady-state response of the
rotor aeroelastic, it often requires a time-consuming recursive process. In [2], Hodges tries
to adopt the space-time finite element method based on the central difference scheme,
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discrete in both space and time directions. This discrete scheme satisfies the conservation
of momentum/energy and has second-order accuracy. With the development of computer
technology, the space-time finite element method has excellent characteristics in the analysis
of nonlinear dynamics problems. At present, variable-time separation schemes based on
continuous or discontinuous finite element techniques have been developed to be put into
use. Higher-order methods can be naturally embedded into these schemes and have proven
their significant advantages. The future research prospect of a space-time finite element
method is mainly to propose practical adaptive algorithms and parallel algorithms as well
as the application of nonlinear problems [31].

In this paper, based on Galerkin-weighted residual method, the time-space simultane-
ous discretization of fully intrinsic equations of geometrically exact beams is presented for
the first time. In the process of discretization, considering the intrinsic dynamic boundary
conditions in the spatial direction of the beam and the periodic boundary conditions in the
time direction, a new time-space finite element scheme for solving the steady-state response
of the full intrinsic equations is developed. It is applied to solve different examples in
the literature to show the adaptability and effectiveness of the format in dealing with the
known problems.

2. Fully Intrinsic Beam Equations of Geometrically Exact Beam

Figure 1 describes the geometric relationships of beams with initial bending and
torsion before and after deformation, which was used by Hodges in 1990 [4]. I Is the
inertial coordinate system. bi(i = 1 ∼ 3) is the basis vector of the undeformed reference
coordinate system, and the origin is on the reference axis. b1 is always tangent to the
beam reference axis x1, while b2 and b3 are always in the two-dimensional section of the
beam, tangent to the reference axis of the beam. Bi(i = 1 ∼ 3) is the basis vector of
the deformed reference coordinate system. Generally, the two-dimensional section of the
beam will undergo shear deformation, so B1 is not necessarily still parallel to the reference
axis s of the beam. B2 and B3 are used to represent the translation and rotation of the
two-dimensional beam profile in the coordinate system after deformation. The vector
r represents the initial displacement relative to the inertial coordinate system I. After
deformation, the displacement becomes a vector R. Thus, the actual displacement change
of the beam can be expressed as:

R = r + u (1)
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Combining the weak form of Hamilton’s principle, the constitutive relation of beam
and the kinematic equation, Hodges [1,6] deduced the fully intrinsic equations of beam
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by eliminating the displacement and angle variables through the generalized strain-
displacement and generalized velocity-displacement relations. Therefore, only the intrinsic
quantities are retained in the equations, and the compact and concise equations are obtained
as the following:

F′B + (k̃ + κ̃)FB + fB =
.
PB + Ω̃BPB

M′B + (k̃ + κ̃)MB + (ẽ1 + γ̃)FB + mB =
.

HB + Ω̃BHB + ṼBPB
V′B + (k̃ + κ̃)VB + (ẽ1 + γ̃)ΩB =

.
γB

Ω′B + (k̃ + κ̃)ΩB =
.
κB

(2)

The first two equations of Equation (2) are dynamic partial differential equations,
while the last two are kinematic partial differential equations. Among them, ( )B represents
the observed quantity in the coordinate system after deformation. ( )′ represents the partial
derivative with respect to the reference axis x1 of the beam coordinate system. (.) is the
partial derivative with respect to time. F(x, t), M(x, t), V(x, t) and Ω(x, t) are respectively
the force, moment, linear velocity and angular velocity of the beam section. γ(x, t), κ(x, t),
P(x, t) and H(x, t) respectively represents the generalized force strain, moment strain,
linear momentum and angular momentum of the beam section. f (x, t) and m(x, t) respec-
tively represents the distributed force and the distributed moment acting on the beam.
e1 =

[
1 0 0

]T . k is the initial bending and torsion of the beam in the undeformed

coordinate system, expressed as k(x) =
[
k1(x) k2(x) k3(x)

]T . (̃ ) is the cross product
operator that characterizes the extension of a column matrix to an antisymmetric matrix by
dyadic operation [4], taking k as an example:

k̃ =

 −k3 k2
k3 −k1
−k2 k1

 (3)

Based on the hypothesis of small strain, the constitutive relation of beams is introduced
by Hodges in [6]: {

γ
κ

}
=

[
R S
ST T

]{
F
M

}
(4)

Equation (4) is used to eliminate γ and κ from Equation (2) to retain the intrinsic vari-
able F and M. R(x), T(x), S(x) are the 3 × 3 matrix forms of the cross-sectional flexibilities
of the beam, which can be calculated by finite element software such as VABS [32,33]. For a
prismatic and isotropic beam, these flexibility matrices can be expressed as [1]:

R(x) =

1/EA 0 0
0 1/GK2 0
0 0 1/GK3

 , T(x) =

1/GJ 0 0
0 1/EI2 0
0 0 1/EI3

 , S(x) =

0 0 0
0 0 0
0 0 0

 (5)

Here, EA and GKi(i = 2 ∼ 3) are respectively the tensile and shear stiffness of
the beam section, while GJ and EIi(i = 2 ∼ 3) respectively represent the torsional and
bending stiffness of the beam section.

The generalized velocity-momentum equation of the beam is obtained from the density
per unit length µ(x), section centroid bias ξ(x) and inertia matrix I(x). The profile inertia
coefficient matrix is represented by symbols G, K and I:{

P
H

}
=

[
µ∆ −µξ̃

µξ̃ I

]{
V
Ω

}
=

[
G K

KT I

]{
V
Ω

}
(6)
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In the above, µ is the mass per unit length, ∆ is the identity matrix of 3 × 3. ξ(x) is the
offset of the centroid of the beam profile with respect to the reference axis of the beam, and
x2, x3 are offsets in b2, b3, respectively. I(x) is made up of mass moments of inertia i2, i3:

ξ(x) =
[
0 x2 x3

]T
B, I =

i2 + i3
i2

i3

 (7)

Equation (6) is used to eliminate P and H from Equation (2) to preserve intrinsic
variables V and Ω. Therefore, Equations (2), (4) and (6) form a complete set of first-order
partial equations about time and space.

3. Space-Time Finite Element Method of Fully Intrinsic Equations
3.1. Continuous Energy Weighting Method

It is assumed that beams are discretized into n segments in the spatial direction
L and m segments in the temporal direction T to form a n × m space-time global
grid, as shown in Figure 2, where the unit segment length of each space-time element
Eij(i = 1 ∼ n, j = 1 ∼ m) in the spatial direction is denoted by Li, and the unit seg-
ment length in the time direction is denoted by T j. The intrinsic variables in the spatio-
temporal unit are: F(xi, tj), M(xi, tj), V(xi, tj) and Ω(xi, tj), which can be simplified as Fij,
Mij, Vij, and Ωij.
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Different from the conventional spatial finite element method, the space-time finite ele-
ment method has an additional time dimension, so it needs to establish the continuity equa-
tions in both the space and time domain. According to the difference of space-derivative
parameters and time-derivative parameters of the full intrinsic equations, the space and
time continuity conditions are slightly different. On the spatial scale, consider F, M, V and
Ω continuous:

Fi,j(Li, tj) = Fi + 1,j(0, tj), Mi,j(Li, tj) = Mi + 1,j(0, tj)

Vi,j(Li, tj) = Vi + 1,j(0, tj), Ωi,j(Li, tj) = Ωi + 1,j(0, tj)
(8)

Here, 0 represents the spatial start position and Li represents the spatial end position
of the space-time element. On the time scale, consider γ, κ, P, and H continuous:

γi,j(xi, T j) = γi,j + 1(xi, 0), κi,j(xi, T j) = κi,j + 1(xi, 0)
Pi,j(xi, T j) = Pi,j + 1(xi, 0), Hi,j(xi, T j) = Hi,j + 1(xi, 0)

(9)

Here, 0 represents the beginning time and T j represents the end time of the space-
time element.



Aerospace 2023, 10, 92 7 of 24

Dealing with space-time boundary conditions is the special case of space-time element
continuity. Considering the introduction of intrinsic dynamic boundary conditions in space
direction and steady-state response period conditions in the time direction:

Fn,j(Ln, tj) = FL, Mn,j(Ln, tj) = ML
V1,j(0, tj) = V0, Ω1,j(0, tj) = Ω0

(10)

γi,m(xi, Tm) = γi,1(xi, 0), κi,m(xi, Tm) = κi,1(xi, 0)
Pi,m(xi, Tm) = Pi,1(xi, 0), Hi,m(xi, Tm) = Hi,1(xi, 0)

(11)

The fully intrinsic Equation (2), space-time continuity conditions (8, 9) and space-time
boundary conditions (10, 11) of geometrically exact beam can be assembled in the form of
weighted residual:

∫ T
0

∫ L
0



VT
[ .

P + Ω̃P − F′ − (k̃ + κ̃)F − f
]

+ ΩT
[ .

H + Ω̃H + ṼP − M′ − (k̃ + κ̃)M − (ẽ1 + γ̃)F − m
]

+ FT
[ .
γ − V′ − (k̃ + κ̃)V − (ẽ1 + γ̃)Ω

]
+ MT

[ .
κ − Ω′ − (k̃ + κ̃)Ω

]


dxdt

+
∫ T

0

{
VT(L, t)[F(L, t) − F(0, t)] + ΩT(L, t)[M(L, t) − M(0, t)]
+ FT(0, t)[V(L, t) − V(0, t)] + MT(0, t)[Ω(L, t) − Ω(0, t)]

}
dt

+
∫ L

0

{
VT(x, T)[P(x, T) − P(x, 0)] + ΩT(x, T)[H(x, T) − H(x, 0)]
+ FT(x, T)[γ(x, T) − γ(x, 0)] + MT(x, T)[κ(x, T) − κ(x, 0)]

}
dx

+
∫ T

0

{
VT(L, t)

[
F(L, t) − FL] + ΩT(L, t)

[
M(L, t) − ML]

+ FT(0, t)
[
V0 − V(0, t)

]
+ MT(0, t)

[
Ω0 − Ω(0, t)

] }dt

+
∫ L

0

{
VT(L, 0)[P(x, T) − P(x, 0)] + ΩT(L, 0)[H(x, T) − H(x, 0)]
+ FT(L, 0)[γ(x, T) − γ(x, 0)] + MT(L, 0)[κ(x, T) − κ(x, 0)]

}
dx = 0

(12)

Among them, the first part is the expression of the weighted residual of the fully
intrinsic equations. The second and third parts are the continuity conditions in space and
time directions, respectively. The fourth and fifth parts are the space-boundary conditions
and time-periodic conditions, respectively.

3.2. Legendre Polynomial Interpolation

Legendre interpolation polynomials are common test functions for finite element
discretization, which satisfy the orthogonal relation as follows:∫ 1

0
pi(x)pj(x)dx =

δij

2i + 1
(13)

where, x represents the normalized variable whose domain is [0, 1], and the polynomials of
each order are:

p0(x) = 1, p1(x) = 2x − 1, pi + 1(x) =
(2i + 1)(2x − 1)pi(x) − ipi − 1(x)

i + 1
(14)

In this paper, the linear Legendre interpolation polynomial is used as an example
to derive the space-time finite element discrete equations of linear scheme. Take N to
represent the normalized dimension, use x as the actual physical coordinate, then the first
two-order Legendre interpolation polynomials are:

p0(x) = 1, p1(x) = 2
x
N
− 1 (15)

Since the two dimensions of time and space are independent, the components of the
state parameters related to space and time can be divided into the form of the product of
the two kinds of polynomials:
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Fi,j(xi, tj) =
1
∑

k = 0

1
∑

l = 0
pk
(

xi
)

pl
(

tj
)

f ij,kl , Mi,j(xi, tj) =
1
∑

k = 0

1
∑

l = 0
pk
(

xi
)

pl
(

tj
)

mij,kl

Vi,j(xi, tj) =
1
∑

k = 0

1
∑

l = 0
pk
(

xi
)

pl
(

tj
)

vij,kl , Ωi,j(xi, tj) =
1
∑

k = 0

1
∑

l = 0
pk
(

xi
)

pl
(

tj
)

ωij,kl
(16)

where, f ij,kl , mij,kl , vij,kl and ωij,kl are column vectors of unknown quantities in the equations,
representing the weight coefficients of the k(k = 0, 1)-th-order space scheme and the
l(l = 0, 1)-th order time scheme of the (i, j)-th space-time unit. The number of unknown
variables of a space-time unit is (12 × 2 × 2). The spatial and temporal derivatives of
the intrinsic quantities can be expressed as the spatial and temporal derivatives of the
interpolation polynomial, respectively. That is, the derivative with x respect to pk

(
xi
)

and

the derivative with t respect to pl
(

tj
)

:

F′ i,j(xi, tj) =
1
∑

k = 0

1
∑

l = 0
p′k
(

xi
)

pl
(

tj
)

f ij,kl ,
.
F

i,j
(xi, tj) =

1
∑

k = 0

1
∑

l = 0
pk
(

xi
) .

pl
(

tj
)

f ij,kl

M′ i,j(xi, tj) =
1
∑

k = 0

1
∑

l = 0
p′k
(

xi
)

pl
(

tj
)

mij,kl ,
.

M
i,j
(xi, tj) =

1
∑

k = 0

1
∑

l = 0
pk
(

xi
) .

pl
(

tj
)

mij,kl

V′ i,j(xi, tj) =
1
∑

k = 0

1
∑

l = 0
p′k
(

xi
)

pl
(

tj
)

vij,kl ,
.

V
i,j
(xi, tj) =

1
∑

k = 0

1
∑

l = 0
pk
(

xi
) .

pl
(

tj
)

vij,kl

Ω′ i,j(xi, tj) =
1
∑

k = 0

1
∑

l = 0
p′k
(

xi
)

pl
(

tj
)

ωij,kl ,
.

Ω
i,j
(xi, tj) =

1
∑

k = 0

1
∑

l = 0
pk
(

xi
) .

pl
(

tj
)

ωij,kl

(17)

Therefore, taking ansatzes (15), (16) and (17) into Equation (12), the Galerkin approxi-
mation of the original equation can be obtained. The specific integral equations are given
in Appendix A.

3.3. Constant Cross-Section, Curvature

To facilitate the application of the present method, we assume that the two-dimensional
profile characteristics (R, T, S, G, I, K) and the curvature k remain constant in the space-time
unit. With this assumption, they can be moved out from the integral expressions:

Aαk
x LiBβl

t

(
Gijvij,kl + Kijωij,kl

)
+ Cαkp

x LiCβlq
t T jω̃ij,pq

(
Gijvij,kl + Kijωij,kl

)
− Bαk

x Aβl
t T j f ij,kl − Aαk

x Li Aβl
t T j k̃ij f ij,kl − Cαkp

x LiCβlq
t T j

(
˜

S
T
ij f ij,pq + ˜Tijmij,pq

)
f ij,kl

− Dα
x LiDβ

t T jfij

+
[

pα
x(1)pk

x(1)Aβl
t T j f ij,kl − pα

x(1)pk
x(0)Aβl

t T j f (i + 1)j,kl
]

+

[
Aαk

x Li pβ
t (1)pt

l(1)Gijvij,kl − Aαk
x Li pβ

t (1)pt
l(0)Gi(j + 1)vi(j + 1),kl

+ Aαk
x Li pβ

t (1)pt
l(1)Kijωij,kl − Aαk

x Li pβ
t (1)pt

l(0)Ki(j + 1)ωi(j + 1),kl

]
= 0

(18)

Aαk
x LiBβl

t

(
K

T
ij vij,kl + Iijωij,kl

)
+ Cαkp

x LiCβlq
t T jω̃ij,pq

(
K

T
ij vij,kl + Iijωij,kl

)
+ Cαkp

x LiCβlq
t T jṽij,pq

(
Gijvij,kl + Kijωij,kl

)
− Bαk

x Aβl
t T jmij,kl

− Aαk
x Li Aβl

t T j k̃ijmij,kl − Cαkp
x LiCβlq

t T j

(
˜

S
T
ij f ij,pq + ˜Tijmij,pq

)
mij,kl

− Aαk
x Li Aβl

t T j ẽ1 f ij,kl − Cαkp
x LiCβlq

t T j
(

R̃ij f ij,pq + ˜Sijmij,pq
)

f ij,kl

− Dα
x LiDβ

t T jmij

+
[

pα
x(1)pk

x(1)Aβl
t T jmij,kl − pα

x(1)pk
x(0)Aβl

t T jm(i + 1)j,kl
]

+

[
Aαk

x Li pβ
t (1)pt

l(1)K
T
ij vij,kl − Aαk

x Li pβ
t (1)pt

l(0)K
T
i(j + 1)vi(j + 1),kl

+ Aαk
x Li pβ

t (1)pt
l(1)Iijωij,kl − Aαk

x Li pβ
t (1)pt

l(0)Ii(j + 1)ωi(j + 1),kl

]
= 0

(19)
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Aαk
x LiBβl

t

(
Rij f ij,kl + Sijmij,kl

)
− Bαk

x Aβl
t T jvij,kl

− Aαk
x Li Aβl

t T j k̃ijvij,kl − Cαkp
x LiCβlq

t T j

(
˜

S
T
ij f ij,pq + ˜Tijmij,pq

)
vij,kl

− Aαk
x Li Aβl

t T j ẽ1ωij,kl − Cαkp
x LiCβlq

t T j
(

R̃ij f ij,pq + ˜Sijmij,pq
)

ωij,kl

+
[

pα
x(1)pk

x(1)Aβl
t T jv(i − 1)j,kl − pα

x(1)pk
x(0)Aβl

t T jvij,kl
]

+

[
Aαk

x Li pβ
t (1)pt

l(1)Rij f ij,kl − Aαk
x Li pβ

t (1)pt
l(0)Ri(j + 1) f i(j + 1),kl

+ Aαk
x Li pβ

t (1)pt
l(1)Sijmij,kl − Aαk

x Li pβ
t (1)pt

l(0)Si(j + 1)mi(j + 1),kl

]
= 0

(20)

Aαk
x LiBβl

t

(
S

T
ij f ij,kl + Tijmij,kl

)
− Bαk

x Aβl
t T jωij,kl

− Aαk
x Li Aβl

t T j k̃ijωij,kl − Cαkp
x LiCβlq

t T j

(
˜

S
T
ij f ij,pq + ˜Tijmij,pq

)
ωij,kl

+
[

pα
x(1)pk

x(1)Aβl
t T jω(i − 1)j,kl − pα

x(1)pk
x(0)Aβl

t T jωij,kl
]

+

[
Aαk

x Li pβ
t (1)pt

l(1)S
T
ij f ij,kl − Aαk

x Li pβ
t (1)pt

l(0)S
T
i(j + 1) f i(j + 1),kl

+ Aαk
x Li pβ

t (1)pt
l(1)Tijmij,kl − Aαk

x Li pβ
t (1)pt

l(0)Ti(j + 1)mi(j + 1),kl

]
= 0

(21)

where the coefficients Aαk
x , Aβl

t , Bαk
x , Bβl

t , Cαkp
x , Cβlq

t , Dα
x , and Dβ

t are dimensionless integral
operators, respectively:

Aαk
x =

∫ 1
0 pα(x)pk(x)dx, Aβl

t =
∫ 1

0 pβ
(
t
)

pl(t)dt
Bαk

x =
∫ 1

0 pα(x)p′k(x)dx, Bβl
t =

∫ 1
0 pβ

(
t
) .

pl(t)dt
Cαkp

x =
∫ 1

0 pα(x)pk(x)pp(x)dx, Cβlq
t =

∫ 1
0 pβ

(
t
)

pl(t)pq(t)dt
Dα

x =
∫ 1

0 pα(x)dx, Dβ
t =

∫ 1
0 pβ

(
t
)
dt

(22)

Therefore, the above equations can be succinctly expressed as:

Bele · qele + Hsele · qsele + Htele · qtele + Cele(qele) · qele + Dele = 0 (23)

Among these, Bele is the linear array of the space-time element, Hsele and Htele represent
the connection matrix of the space-time element in space and time, respectively. Cele
characterizes the degree of nonlinearity of the element, and Dele is the constant vector.
Besides, qsele contains degrees of freedom of the preceding space-time unit (i − 1, j), the
current space-time unit, and the next space-time unit (i + 1, j). qtele contains degrees of
freedom of the preceding space-time unit (i, j − 1), the current space-time unit and the
next space-time unit. qele is the unknown quantity of the current space-time unit (i, j), and
its arrangement is as follows:

qele(xi, tj) =

{
v00 v01 v10 v11 w00 w01 w10 w11

. . . f 00 f 01 f 10 f 11 m00 m01 m10 m11

}T

(24)

3.4. Matrix Assembly

Due to the two-dimensional property of simultaneous discrete space-time, two direc-
tions of space and time should be considered in the matrix assembly. This paper adopts
the assembly schedule of first space and then time. For a beam divided into n spatial
structural units, the space-time array derived above is assembled successively in the order
of structural units, as shown in expressions (25) and (26). Bj is the linear structure matrix of
the space element group under the first time node, the main diagonal element is the linear
matrix of each space element (1, 2, · · · , n) under the j-th time node, and the off-diagonal
element represents the connection matrix of adjacent space elements, shown as Appendix B.
Cj and Dj correspond to nonlinear matrix and constant vector, respectively.
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Bj =



B1
ele Hsele2

Hsele1 B2
ele Hsele2

Hsele1 B3
ele

. . .

Hsele1
. . . Hsele2
. . . Bn − 1

ele Hsele2
Hsele1 Bn

ele


(25)

Cj =



C1
ele

C2
ele

C3
ele

. . .
Cn − 1

ele
Cn

ele


, Dj =



D1
ele

D2
ele

D3
ele
...

Dn − 1
ele
Dn

ele


(26)

In the time domain, m time units are divided, and the operation is similar to that
of space, which is gradually superimposed with the order of time units, as shown in
expressions (27) and (28), where Htele is the connection array of adjacent time units, shown
as Appendix C. It is worth noting that the upper right corner of expression (27) represents
periodic boundary conditions.

Btotal =



B1 Htele
Htele B2

Htele
. . .
. . . Bm − 1

Htele Bm

 (27)

Ctotal =


C1

C2

. . .
Cm − 1

Cm

 , Dtotal =



D1

D2

...
Dm − 1

Dm


(28)

Therefore, the full intrinsic equations of a geometrically accurate beam can be written
in the following form after simultaneous discretization of space and time:

Btotalqtotal + Ctotal(qtotal) · qtotal + Dtotal = 0 (29)

Here, Btotal is the space-time discrete linear array, Ctotal is the space-time discrete
nonlinear array, Dtotal is the constant vector, qtotal is all the unknowns in the space and
time domain. It is obvious that this is a set of nonlinear algebraic equations, so nonlinear
iteration is needed to solve them.

3.5. Post Process

Since the fully intrinsic equations do not contain the displacement and rotation vari-
ables, it is necessary to obtain the displacement variables through additional post process.
Sotoudeh [11] et al., gave an expression for calculating the cosine matrix of displacement
and direction at any point: {

r′i = Cibe1
(ri + ui)

′ = CiB(e1 + γ){
(Cbi)

′
= −k̃Cbi

(CBi)′ = −(k̃ + κ̃)CBi

(30)
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3.6. Process of Simulation

In this paper, the organization process of the algorithm is summarized below, using
the weighted margin method and the Galerkin integral, to solve the fully intrinsic equations
of a geometrically exact beam in both time and space, as shown in Figure 3. It is mainly
divided into three parts: energy consistent weighting, space-time element discretization
and equations solving. The concrete steps are described as follows:
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(1) For a single space-time unit, consider the continuity of F, M, V, and Ω in space.
Meanwhile, consider the continuity of γ, κ, P and H in time. The unit needs special
continuity operation at the space-time boundary conditions, see Formulas (8) and (10),
and Formulas (9) and (11).

(2) Combined with the constitutive relation, momentum-velocity relation and continuity
condition, a set of energy balance equations in the form of a double integral of
time and space is derived from the full intrinsic equations by using the weighted
margin technique.

(3) In the process of integral, the Legendre interpolation polynomial is used as a discrete
function of intrinsic quantity. The specific expressions of linear matrix, nonlinear
matrix, time-connected matrix, spatial connected matrix, and constant vector of single
space-time element are derived based on the Galerkin approximation.

(4) In the dimensionality of space and time, the coefficient matrix of a single space-time
unit derived in the previous step can be assembled into a total coefficient matrix. Thus,
the final discrete equations will be expressed as Btotalq + Ctotal(q) · q + Dtotal = 0.

(5) For the derivation of nonlinear algebraic equations, solve equation of Btotalq + Dtotal = 0
as the iteration start value. Then the Newton iteration method was used to get the
convergent solution.

(6) After obtaining the convergence solution, in addition to extracting the intrinsic quan-
tity, the displacement response at any point can be obtained by applying its general-
ized strain through the post-processing process.

4. Numerical Results

In order to verify the applicability of the time-space discretization scheme derived
in this paper for solving the fully intrinsic equations, three cases are considered. The first
example analyzes the large deformation trajectories of the cantilever beam under different
follower moments. The second example calculates the large deformation geometries of the
cantilever beam under different following forces. The first two cases verify the effectiveness
of space-time discrete format in dealing with static problems by calculating the following
force and moment of cantilever beam. The last case considers the dynamic response of the
rotating cantilever beam and compares it with other existing discrete schemes to verify the
accuracy and efficiency.

4.1. Static Analysis and Modal Calculation of the Cantilever Beam

Consider applying a following moment to the tip of a cantilever beam to analyze the
large deformation it experiences. Bending stiffness of cantilever beam EI = 9000 lb-ft2,
beam length L = 20 ft. In [34], the analytical expression of the beam displacement
was presented:

rx = ρ sin
s
ρ

, ry = ρ(1 − cos
s
ρ
) (31)

where, rx and ry is any point on the beam deformation curve. ρ is the radius of curvature.
ρ = EI/ML = 18 ft, when the follower moment ML = 500 ft-lb. When the moment

is increased to 2500 ft-lb, the radius of curvature becomes 3.6 ft. Different numbers of
space-time elements are used to calculate the displacement of the beam at the tip, as shown
in Table 1. When the tip moment is 500 ft-lb, even if two space-time elements are used for
calculation, the relative error magnitude of displacement still reaches 4.74× 10−8 The RCAS
model in [34] uses 20 elements, and the error magnitude reaches 6.00 × 10−4. The accuracy
of this method is still four orders of magnitude higher when using smaller computational
cost. When the tip bending moment is 2500 ft-lb, the accuracy of this method is lower than
that of 500 ft-lb. This is because the deformation of the beam is large and more time-space
elements are needed for discretization. Nevertheless, the error magnitude of this method
is still maintained at 1.00 × 10−5, which is better than 1.98 × 10−4 of RCAS. When the
number of space-time elements is increased to 20, the error magnitude can be reduced to
4.39 × 10−7. Figure 4 shows the deformed configuration of the cantilever beam under
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various follower moments. It can be seen from the figure that the discrete solution calculated
by this method is in good agreement with the analytical solution. When a periodic follower
moment 2500 sin(t) ft-lb is applied to the tip, the large deformed configuration of the beam
in the whole period is shown in Figure 5. The configuration is upswing-return-downswing-
return, just like a person waving a rope up and down. The two blue dashed lines in the
figure represent the trajectories of the node at 5 ft and 20 ft in the whole period.
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Table 1. The results of tip displacement under various follower moments (unit: ft).

ML No. of Units 2 3 4 5 10 20

500 N.m

Exact 10.01401161

STFEM 10.01401208 10.01401181 10.01401166 10.01401158 10.01401158 10.01401158
Error 4.74 × 10−8 2.00 × 10−8 0.50 × 10−8 0.26 × 10−8 0.26 × 10−8 0.26 × 10−8

2500 N.m
Exact 0.91168936

STFEM 0.91174717 0.91165092 0.91167167 0.91168341 0.91168634 0.91168896
Error 6.34 × 10−5 4.22 × 10−5 1.94 × 10−5 0.65 × 10−5 0.33 × 10−5 4.39 × 10−7

Combined with Figure 6, it can be clearly seen that the closer the node is to the tip of
the beam, the higher the position its movement can reach. At the same time, nodes can
pass through this highest position more times throughout the period. This also means that
the closer the node is to the tip, the more abundant the harmonic components of the node’s
response are contained.
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4.2. Cantilever Subjected to a Follower Force at the Tip

Consider applying a following force to the tip of the cantilever to analyze its de-
formed configuration. The length of the beam L = 100cm, the moment of inertia
I22 = 1.666667cm4, Young’s modulus E = 2.1 × 107 N/cm2.

Figure 7 shows the load-displacement diagram at the free end, and the trajectory of
the highly nonlinear deformation experienced by the beam can be obtained in Figure 8. It
can be seen from Figure 7 that the calculation results of the present method are in good
agreement with those calculated by Argyris in [35]. Except for the curve of u1, when FL is
around [20, 40] KN, the calculation results of this paper are quite different from those of
the literature. Observing Figure 8 and Figure 6.4.3 in [35], it can be seen that when FL is
39.3 KN, u1 is negative, and −u1/L in the corresponding Figure 7 must be greater than 1.
Therefore, compared with the calculation results of the literature, the calculation results of
this present method are more reasonable.
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4.3. The Rotating Cantilever Subjected to a Periodic Follower Force at the Tip

The steady-state dynamic response calculation of a rotating cantilever beam is con-
sidered. The length of the beam L = 1 m, the rotating speed Ω = 70 rad/s. In [14], the
researchers gave the material properties of the beam, as shown in Table 2.

Table 2. Material properties of the beam.

Parameter Value

Mass per unit length 0.2 (kg / m)
Moment of inertia per unit length Ixx 10−4 (kg · m)
Moment of inertia per unit length Iyy 10−6 (kg · m)
Moment of inertia per unit length Izz 10−4 (kg · m)

Extensional rigidity K11 106 N
Shear rigidity K22 1020 N
Shear rigidity K33 1020 N

Torsional rigidity K44 50 N ·m2

Bending rigidity K55 50 N ·m2

Bending rigidity (chordwise) K66 1000 N ·m2

A periodic follower force F3 = 150 + 10 sin(70t) + 5 sin(2 · 70t) + 2 sin(3 · 70t) N
is applied to the tip of the beam. A similar situation was calculated in [18] and the
results were in good agreement with the multibody dynamics software Dymore and Euler
method. Therefore, this paper uses the calculation results of its algorithm (DQ-Pade) as
a comparison, which chooses 30 points in space and 72 points (M8/N9 scheme in [18])
in time direction. The central difference space-time element method (CDM) proposed by
Hodges [4] is compared with the space-time finite element method derived in this paper.
Furthermore, in order to test the characteristics of the proposed algorithm, the calculation
results of the second-order space-time element are also given here.

In order to ensure the fairness of the comparison, the steady-state dynamic response
of the rotating beam needs to be calculated under the same calculation cost. For the
linear space-time element, 15 space-time elements are divided in space and 36 space-
time elements are divided in time. For the second-order space-time element, it is nec-
essary to divide 10 elements in the spatial direction and 24 elements in the time di-
rection, so that the total number of discrete points in the time-space direction of the
beam is 15 × 36 × (2 ∗ 2) = 2160 = 10 × 24 × (3 × 3). For CDM, the same space-
time step as the linear space-time element is used to recursively solve both in time and
space directions until convergence. Figures 9 and 10 show the steady-state periodic curves
of forces and moments at the root of the beam. Figures 11 and 12 show the changing curves
of section forces and moments along the spanwise direction of beam at t = 0. It can be seen
from these figures that the second-order space-time element performs best under the same
computational cost among the three algorithms, followed by the linear space-time element,
and the CDM has a certain gap in accuracy with the first two. If we continue to subdivide
the linear space-time finite element, we mainly consider the refinement in the time direction
(the reason is that this is a periodic problem first, and then due to the centrifugal force of
the rotating beam. In addition to the λ = F

K55
< 4 in this example, the maximum rotation

angle of the beam does not exceed 90◦, and the placement of 15 space-time elements in the
spatial direction is sufficient).

Table 3 gives the calculation results of the vertical shear force at the root of the beam
calculated by different linear space-time finite element schemes. When the linear space-
time finite element uses the scheme of 15 × 72, the ideal accuracy can be obtained, and
the calculation time is also greatly increased. When using the second-order format, the
relative error will decrease rapidly. In the face of the final nonlinear algebraic equations,
this paper has adopted the techniques of sparse matrix storage and inversion to reduce
the time consumption. However, due to its huge global matrix scale, its calculation time
consumption still has much room for improvement. Introducing parallel computing tech-
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nology into the space-time simultaneous discretization algorithm can effectively reduce the
time consumption [31], which is also the next work direction of the authors. Nevertheless,
the computational efficiency of this method is still higher than that of CDM, which uses the
same time-space step to recursively solve the periodic convergence (the relative error of
periodic boundary condition is less than 10−2), which takes 261.88 s.
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Table 3. Accuracy and efficiency of different algorithms.

DQ-Pade
Second-Order

Format Linear Format (Space × Time)

10 × 24 15 × 36 15 × 48 15 × 60 15 × 72

130.1947 130.7331 113.8371 122.1947 127.3349 129.8467
Error 0.41% 12.56% 6.14% 2.19% 0.26%

CPU time/s 68.63 21.76 37.90 77.17 162.20
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In addition to obtaining the steady-state response of the intrinsic variables (V, Ω, F, M),
the obtained convergence solution is post-processed to obtain the displacement variables, as
shown in Figures 13 and 14. It can be seen from the diagram that the flapping displacement
of the beam at its tip can even reach 40% of the beam length, which is far beyond the normal
range of the flapping deformation of the rotor blade. Under this dynamic large deformation
of the beam, the curve of the space-time finite element method derived in this paper is
more consistent with the DQ-Pade method than the CDM.
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5. Conclusions

Based on the Galerkin weighted residual method, this paper presents a space-time
finite element method for solving the fully intrinsic equations of a geometrically exact
beam. This method is applied to the static analysis of a flexible beam under following loads,
and the results are in good agreement with the analytical solution and the results of the
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literature. In addition, the method is applied to calculate the steady-state periodic response
of the rotating beam. The results show that the space-time finite element method is superior
to the existing CDM space-time element method under the same computational cost. At
the same time, increasing the interpolation order of space-time elements or increasing the
number of space-time elements can effectively improve the calculation accuracy. However,
the algorithm proposed in this paper still has shortcomings. For example, there is still room
for improvement in computational efficiency and the derivation process is cumbersome,
which can be processed by numerical processing in subsequent work. At present, the
space-time parallel computing research is being carried out to facilitate coupling with CFD
and an easier exchange of information, thereby improving the efficiency of rotor aeroelastic
comprehensive analysis.

Author Contributions: Conceptualization, L.C. and Y.L.; methodology, L.C.; validation, L.C.; formal
analysis, L.C. and X.H.; investigation, L.C.; writing—original draft preparation, L.C. and X.H.;
writing—review and editing, X.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

I Inertial coordinate system
bi Basis vector of the undeformed coordinate system
Bi Basis vector of the deformed coordinate system
r The relative position of undeformed beam section in I
R The relative position of deformed beam section in I
u Displacement vector of reference line
( )′ ∂( )/∂x
(.) ∂( )/∂t
( )B The observed quantity in B
(̃ ) Antisymmetric matrix associated with a column matrix; Equation (3)
F(x, t) Cross-sectional force vector
M(x, t) Cross-sectional moment vector
V(x, t) Cross-sectional linear velocity vector
Ω(x, t) Cross-sectional angular velocity vector
γ(x, t) Cross-sectional force strain vector
κ(x, t) Cross-sectional moment strain vector
P(x, t) Cross-sectional linear momentum vector
H(x, t) Cross-sectional angular momentum vector
f (x, t) Distributed applied force vector
m(x, t) Distributed applied moment vector

e1
[
1 0 0

]T

k The initial bending and torsion of the beam
R, S, T Cross-sectional flexibility coefficient matrices; Equation (4)
G, I, K Cross-sectional inertia coefficient matrices; Equation (6)
µ Mass per unit length
∆ 3 × 3 identity matrix

ξ(x)
[
0 x2 x3

]T
B

x2, x3 The position offsets in b2,b3 from reference line to cross-sectional mass centroid
i2, i3 Cross-sectional mass moments of inertia
L Length of beam
Li Length of i th beam element
T Periodic time
T j Length of j th time element
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n Number of segments discretized in spatial direction
m Number of segments discretized in temporal direction
Eij i th (space) and j th (time) space-time element
( )i,j Relative variable of Eij
V0, Ω0 Linear velocity and angular velocity of beam root
FL, ML Force and moment at the free end of the beam
p(x) Legendre interpolation polynomial
px(x), pt(x) Legendre interpolation polynomial about space and time
( )ij,kl k th (space) and l th (time) unknown variable of Eij
( )α

x Space integral coefficient of α th legendre interpolation polynomial
( )αk

x Space integral coefficient of α,k,p th legendre interpolation polynomial
( )αkp

x Space integral coefficient of α,k,p th legendre interpolation polynomial
( )

β
t Time integral coefficient of β th legendre interpolation polynomial

( )
βl
t Time integral coefficient of β,l th legendre interpolation polynomial

( )
βlq
t Time integral coefficient of β,l,q th legendre interpolation polynomial

Bele Space-time element linear array
Cele Space-time element nonlinear array
Dele Constant vector
qele Unknown quantity of the space-time unit (i, j)
qsele Unknown quantity of the space-time unit (i − 1, j), (i, j) and (i + 1, j)
qtele Unknown quantity of the space-time unit (i, j − 1) and (i, j)
Hsele, Htele Connection matrix of space-time element in space and time
( )total Coefficient matrix of the final equation

Appendix A

For the (i, j)-th space-time unit, the Galerkin integral equations are:

∫ T j

0

∫ Li

0
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x pβ

t
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k .
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k .
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− (ẽ1 + ˜Rij px p ptq f ij,pq + ˜Sij px p ptqmij,pq)px
k pt

l f ij,kl

−mij




dxidtj

+
∫ T j

0

{
pα

x(1)pβ
t

[
px

k(1)pt
lmij,kl − px

k(0)pt
lm(i + 1)j,kl

]}
dtj

+
∫ Li

0

{
pα

x pβ
t (1)

[
px

k pt
l(1)K

T
ij vij,kl − px

k pt
l(0)K

T
i(j + 1)vi(j + 1),kl

+ px
k pt

l(1)Iijωij,kl − px
k pt

l(0)Ii(j + 1)ωi(j + 1),kl

]}
dxi = 0

(A2)



Aerospace 2023, 10, 92 22 of 24
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where, α, k and β, l are the orders of spatial and temporal interpolation polynomials, respectively.

Appendix B

The connection matrix for the space-time unit in spatial direction can be expressed as:

Hsele1 =


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 (A6)

where, T is the periodic time and m represents the number of segments discretized in
temporal direction.

Appendix C

The connection matrix for the space-time unit in temporal direction can be expressed as:

Htele =


Ht1

Ht2

. . .
Htn

 (A7)
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L
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L
n

L
3n

L
3n
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n
− L
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3n

 (A8)

where, R, T, S, G, I, K represent the two-dimensional profile characteristics of beam. L is
the length of beam and n denotes the number of segments discretized in spatial direction.
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