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Abstract: To assist air traffic controllers (ATCOs) in resolving tactical conflicts, this paper proposes 
a conflict detection and resolution mechanism for handling continuous traffic flow by adopting fi-
nite discrete actions to resolve conflicts. The tactical conflict solver (TCS) was developed based on 
deep reinforcement learning (DRL) to train a TCS agent with the actor–critic using a Kronecker-
factored trust region. The agent’s actions are determined by the ATCOs’ instructions, such as alti-
tude, speed, and heading adjustments. The reward function is designed in accordance with air traf-
fic control regulations. Considering the uncertainty in a real-life situation, this study characterised 
the deviation of the aircraft’s estimated position to improve the feasibility of conflict resolution 
schemes. A DRL environment was developed with the actual airspace structure and traffic density 
of the air traffic operation simulation system. Results show that for 1000 test samples, the trained 
TCS could resolve 87.1% of the samples. The conflict resolution rate decreased slightly to 81.2% 
when the airspace density was increased by a factor of 1.4. This research can be applied to intelligent 
decision-making systems for air traffic control. 

Keywords: air traffic control; conflict resolution; decision support tool; Markov decision process; 
deep reinforcement learning 
 

1. Introduction 
Before the COVID-19 pandemic, the scale of civil aviation transportation showed 

rapid growth. Compared to 2018, daily flights in Europe increased by 8% in 2019 [1]. 
Nearly 11.5 million commercial flights were completed in the United States in 2019 [2]. In 
2019, transport airlines in the Chinese civil aviation industry performed 4.966 million 
take-offs, indicating an annual increase of 5.8% [3]. Although air traffic has decreased dur-
ing the COVID-19 pandemic, it will continue to grow as the temporary crisis passes. 

Identification and resolution of possible conflicts by air traffic controllers (ATCOs) 
alone is feasible with the current traffic flow. However, as traffic flows increase, so do the 
number of conflicts and the frequency with which they occur. This will result in an in-
creased workload for ATCOs, which could lead to traffic flow restrictions and, therefore, 
flight delays, in addition to affecting flight safety. From this perspective, decision support 
technologies that can automatically perform conflict detection and provide ATCOs with 
appropriate conflict resolution (CR) schemes and reduce the workload on ATCOs. 

Decision support systems with conflict detection and resolution functions can be 
broadly classified into two categories. One category is ground-based systems (primarily 
designed to assist ATCOs in their decision making), such as the Centre/TRACON Auto-
mation System (CTAS) [4], the User Request Evaluation Tool (URET) [5], and En Route 
Automation Modernization (ERAM) [6]. Another category is airborne systems (primarily 
designed to aid in aircraft decision making), such as the Airborne Separation Assurance 
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System (ASAS) [7], the Traffic Collision Avoidance System (TCAS) [8], the Airborne Col-
lision Avoidance System (ACAS) [9], and ACAS Xu [10]. Different assisted decision-mak-
ing targets have different requirements for mechanisms and algorithms. Assisting ATCOs 
is concerned with acceptance of schemes by ATCOs and air traffic control (ATC) regula-
tors. Existing decision support systems need to be improved in terms of handling specific 
tasks and scenarios. The higher level of ATC automation requires automation to adapt to 
a broad range of scenarios and tasks while giving the human operator appropriate action 
advice [11]. Therefore, this work uses the deep reinforcement learning (DRL) method to 
implement a core function in decision support systems, i.e., conflict resolution, to improve 
the CR model’s intelligence level. 

This study aims to assist ATCOs in resolving tactical conflicts. ‘Tactical’ here corre-
sponds to the second level of ICAO’s conflict management ‘separation regulations’ [12]. 
Based on ATCOs’ decision-making habits and dynamic decision-making process in CR, 
this work designs a conflict detection and resolution (CD&R) mechanism capable of han-
dling continuous traffic flow under the CD&R framework. The tactical conflict solver 
(TCS) agent is trained in the actor–critic using a Kronecker-factored trust region (ACKTR), 
taking into account multiple constraints, such as ATC regulations, uncertainty in the real 
environment, and the real airspace environment. The DRL environment was developed 
based on the Air Traffic Operations Simulation System (ATOSS). Depending on the real-
time situation, the TCS can resolve conflicts in real 3D airspace with high quality by using 
altitude, speed, or heading adjustments used by ATCOs and taking into account the op-
erations of other aircraft. 

The remainder of this paper is organized as follows. Section 2 presents a description 
of the CD&R framework and mechanism, the construction of a Markov decision process 
(MDP) model for resolving two-aircraft conflicts, and a description of the training method. 
Section 3 presents a description of the analysis of the experimental results and a discus-
sion. Section 4 summarises the research and provides an outlook on the future scope of 
research. 

2. Previous Related Works 
Academic efforts are underway to address CR problems. Reviews of CR problems 

can be found in several reports [13–15]. The main approaches to solving CR problems 
include optimal control methods, mathematical programming methods, swarm intelli-
gence optimisation or search methods, and machine learning methods. Soler et al. [16] 
considered fuel-optimal conflict-free trajectory planning as a hybrid optimal control prob-
lem. Matsuno et al. [17] considered wind certainty and solved the CR problem using the 
stochastic near-optimal control method. Liu et al. [18] further considered constructive 
weather areas and proposed a stochastic optimal control algorithm for collision avoid-
ance. The CR schemes obtained using optimal control methods are generally a trajectory 
composed of continuous position points of the aircraft, which is quite different from the 
scheme of ATCOs. Among mathematical programming methods, most studies have em-
ployed mixed-integer nonlinear programming (MINLP) or mixed-integer linear program-
ming (MILP) to establish mathematical models [19–23]. In addition, some studies estab-
lished general nonlinear models or used a two-step optimisation approach [24,25]. Math-
ematical programming methods allow customised models to be built and globally solved 
for different CR problems. However, it is difficult to describe the complex motion pro-
cesses of aircraft and the variable airspace operating environment and constraints. Swarm 
intelligence optimisation or search methods describe the airspace operating environment 
through simulation. This approach can consider a variety of nonlinear constraints. In 1996, 
Durand et al. [26] used the genetic algorithm (GA) for CR. Ma et al. [27] abstracted airspace 
as a grid and studied the use of the GA to solve the CR problem in the context of free 
flight. Emami et al. [28] studied multiagent-based CR problems using the particle swarm 
optimisation (PSO) algorithm. Sui et al. [29] used the Monte Carlo tree search (MCTS) 
algorithm to solve the CR problem in high-density airspace. 
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Recently, many researchers have attempted to use machine learning methods, such 
as supervised learning and DRL, to solve CR problems. Machine learning methods are 
fast and have high intelligence levels. Supervised learning methods use datasets to con-
struct and train models to map conflict scenarios and CR schemes [30–32]. DRL methods 
focus on enabling a self-learning model with human-like behaviour. According to the ob-
ject of auxiliary decision making, the current research can be divided into that focused on 
assisting the decision making of ATCOs and that assisting the decision making of aircraft. 
The research on assisting ATCOs’ decision-making is described as follows. Based on a 
free-flight context, Wang et al. [33] considered the turning radius of aircraft, used the two-
dimensional heading adjustment to resolve conflicts, and matched the actual ATC mode 
by limiting the number of heading angle changes. They used the K-control actor–critic 
(KCAC) algorithm to train the agent. Alam et al. [34,35] ordered aircraft to perform a sim-
ilar ‘dog leg’ manoeuvre to resolve conflicts. The deep deterministic policy gradient 
(DDPG) was used to train the agent, considering the uncertainty in executing ATCOs’ 
commands by the aircraft [34]. The model achieved a resolution rate of approximately 
87% for different levels of uncertainty. The difference between the CR schemes given by 
real ATCOs and the agent was measured and added to the reward function to make the 
schemes given by the agent and ATCOs similar [35]. Sui et al. [36] defined the type of 
multiaircraft conflict based on the existing operation mode. They trained multiagents to 
resolve multiaircraft conflicts using the independent deep Q network (IDQN) algorithm. 
The model used a maximum of three actions to resolve conflicts and achieved a resolution 
rate of 85.71%. The types of actions included speed, altitude, and heading adjustments. 
Dalmau et al. [37] presented a recommendation tool based on multiagent reinforcement 
learning (MARL) to support ATCOs. The policy function was trained by gathering expe-
riences in a controlled simulation environment. Agents deployed aircraft in two dimen-
sions. 

Research on aircraft-assisted decision making includes the following. Wei et al. 
[38,39] focused on the traversing of an en route sector with multiple intersections by dif-
ferent numbers of aircraft. They established a deep multiagent reinforcement learning 
framework to achieve the autonomous interval maintenance of the aircraft. Their model 
was scalable and supported the deployment of different numbers of aircraft. The aircraft 
used the speed adjustment action at an interval of 12 s to resolve conflicts. The framework 
used the proximal policy optimisation (PPO) algorithm, incorporating a long short-term 
memory network to ensure the model’s scalability [38]. In another study [39], the same 
authors proposed a scalable autonomous separation assurance framework and verified its 
effectiveness in high-density airspace. Isufaj et al. [40] used a multiagent deep determin-
istic policy gradient (MADDPG) to train two agents, representing each aircraft in a two-
aircraft conflict. The agents used heading and speed adjustments to resolve conflicts and 
executed adjustments every 15 s. The action space was continuous. Ribeiro et al. [41,42] 
focused on the operating environment of UAVs. They combined DDPG and the modified 
voltage potential (MVP) method to improve the CR capability of UAVs under high-traffic 
densities. 

To compare the characteristics of the aforementioned CR methods, we reviewed the 
above literature, as shown in Table 1. Assisting ATCOs means that the controller can ex-
ecute the CR scheme of the model output under the current ATC mode, which usually 
requires the CR manoeuvres to be discrete in terms of execution time and magnitude. CR 
manoeuvres are 2D for conflict resolution via horizontal manoeuvres and 3D for conflict 
resolution via stereo manoeuvres (usually including altitude adjustment). Uncertainty re-
fers to the uncertainty of flight in the real environment, for example, wind uncertainty. 
The supervised learning and DRL methods have a solution time of less than 1 s. Although 
much literature does not show the solution time, the supervised learning and DRL meth-
ods use neural networks to build mappings to obtain the CR scheme, so the solution time 
is similar. The solution time for other methods ranges from a few seconds to several thou-
sand seconds. As the complexity of the scenario increases, the solution time also increases, 
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easily exceeding the solution time allowed for tactical conflict resolution. There are three 
papers describing complete and detailed CD&R mechanisms. However, the CD&R mech-
anism in [29] cannot handle continuous traffic flow; in [38,39], aircraft were assisted in 
decision making rather than ATCOs. This work, therefore, deepens the study of the CD&R 
mechanism based on the need to assist ATCOs in resolving tactical conflicts and dealing 
with continuous traffic flow. Furthermore, this work uses discrete 3D manoeuvres to as-
sist ATCOs in resolving tactical conflicts within the current ATC mode and regulations, 
taking into account flight uncertainty and ensuring a stable solution time of a few seconds. 

Table 1. Features of conflict resolution methods. 

Category Scholars 
Specific  
Methods 

Assisting 
ATCOs 

CR 
Manoeuvres 

Uncer-
tainty 

Complete and De-
tailed CD&R 

Solution Time 

Optimal control 

Soler [16] Hybrid optimal control  2D   474 s 

Matsuno [17] 
Stochastic near-optimal 

control 
 2D   38–231 s 

Liu [18] 
Stochastic optimal con-

trol 
 2D   115.3 s 

Mathematical program-
ming 

Cafieri [19] MINLP  2D   0.04–2561.98 s 
Cai [20] MINLP  3D   3.131–75.102 s 

Alonso-Ayuso [21] MINLP  3D   0.32–24.00 s 
Omer [22] MILP  2D   Within 8.3 s 
Cecen [23] MILP  2D   3.8–17 s 

Hong [24] 
Nonlinear program-

ming 
 2D   Within  

11 s 
Cecen [25] Two-step optimisation  3D   Within 240 s 

Swarm intelligence op-
timisation or search 

methods 

Durand [26] GA  2D   - 
Ma [27] GA  2D   - 

Emami [28] PSO  3D   - 
Sui [29] MCTS  3D   Average 12.44 s 

Supervised learning 

Durand [30] Random forests  2D   - 

Kim [31] 
Hierarchical classifica-

tion 
 3D   Within 0.1 s 

Van  
Rooijen [32] 

Convolutional 
neural networks 

 2D   - 

DRL 

Wang [33] KCAC  2D   0.762 s 
Pham [34] DDPG  2D   - 
Tran [35] DDPG  2D   - 
Sui [36] IDQN  3D   Average 0.011 s 

Dalmau-Codina 
[37] 

MARL  2D   - 

Brittain [38] PPO  2D   - 
Brittain [39] PPO  2D   - 
Isufaj [40] MADDPG  2D   - 

Ribeiro [41] DDPG and MVP  3D   - 
Ribeiro [42] DDPG and MVP  2D   - 

Note:  denotes that the conditions are met;  denotes that the conditions are not met; ‘-’ denotes 
not described in the literature. 

In this work, we propose a receding horizontal control CD&R mechanism that can 
handle continuous traffic flow to assist ATCOs in conflict resolution. To improve the in-
telligence level and computational speed, the TCS agent is trained using the DRL method, 
considering the flight uncertainty and the existing ATC mode. The TCS agent uses the 
altitude, speed, and heading adjustments used by ATCOs daily to resolve tactical con-
flicts. The DRL environment was developed based on a high-fidelity airspace simulation 
system to ensure that the training environment is similar to the real environment. This 
paper focuses on CD&R under common flight conditions and therefore does not consider 
meteorological impacts, which will be considered in future studies. 
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3. Methodology 
3.1. Conflict Detection and Resolution Framework 

Based on the CD&R framework for assisting ATCOs’ decision-making proposed by 
Kuchar et al. [13], relevant modules are refined, as shown in Figure 1. The state estimation 
module observes the airspace and obtains an estimate of the current traffic situation, 
which is then passed to the intention-based dynamic model to estimate the future state of 
the airspace. The conflict detection module generates conflict information based on con-
flict definitions. The conflict resolution module generates CR instructions based on ATC 
regulations. 

In this paper, a flight conflict is defined as a case in which the horizontal separation 
between two aircraft is less than 10 km and the vertical separation is less than 300 m at a 
particular time. The ATC regulations reflect that (1) the CR instructions should be the 
daily CR instructions used by ATCOs and (2) the CR instructions should adjust the flight 
state of the aircraft to ensure that parameters such as the speed, rate of climb, and accel-
eration are consistent with the aircraft dynamics. Therefore, the CR instructions in this 
study include altitude, speed, and heading adjustments. According to the ICAO docu-
ment [43] and our previous study [36], the altitude adjustment is set to 300 m, the speed 
adjustment is 10 kt, and the heading adjustment is obtained using the route offsets. The 
offset turning angle is 30°, and the offset distance is 6 nm from the original route. 

 
Figure 1. CD&R framework diagram. 

Based on the need for continuous traffic flow, a forward rolling CD&R mechanism is 
proposed, as shown in Figure 2. In the figure, t  is the current moment, iT  is the time 
interval for conflict detection, and hT  is the time horizon of forwarding detection in con-
flict detection. Referring to the review reported in [14], tactical conflict resolution in this 
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study is defined as the resolution of a two-aircraft conflict that exists after 6 min. There-
fore, set = 360 shT . Theoretically, iT  should be set small enough so that the high fre-
quency of conflict detection ensures that no conflicts are missed. However, the smaller the 

iT , the greater the computational load. Based on the flight speed of the aircraft and the 
results of several experiments, this work sets = 30 siT . 

• Step 1: Conflict detection. At t , the proposed mechanism detects whether there are 
conflict pairs at + ht T  (a conflict pair is an aircraft conflict involving two aircraft). If 
there are no conflict pairs, the subsequent conflict detection is performed after iT . If 
there are conflict pairs, the conflict resolution session is initiated. 

• Step 2: Conflict resolution. One or two CR instructions are generated for each conflict 
pair in turn at time t  (if a single CR instruction cannot resolve the conflict pair, two 
CR instructions are generated for each of the conflicting aircraft to execute). 

• Step 3: Scheme selection. Let CONDITION Ω  be the condition for successfully re-
solving a conflict pair, i.e., the given CR instructions need to ensure that there is no 
conflict between the two aircraft in the conflict pair at (∈ + , 2 htime t t T  and that 
there is no conflict between the two conflicting aircraft and the neighbouring aircraft 
at (∈ + , 2 htime t t T . CONDITION Ω  involves the 2 hT  time horizon and neigh-
bouring aircraft in order to avoid secondary conflicts. If the CR instructions satisfy 
CONDITION Ω , they are sent to the controller; otherwise, the controller resolves 
the conflict manually. The subsequent conflict detection is then started after 2 iT . 
For example, at t , the detection conflicts occur at + ht T : aircraft A and B are in con-
flict, and aircraft A and C are in conflict. Thus, two conflict pairs can be formed: A–B 
and A–C. Depending on the severity of the conflict pairs (measured, for example, by 
the distance between conflicting aircraft), A–B is assumed to be a high priority, and 
A–C is the next highest priority. At t , CR instructions are first generated to resolve 
the A–B conflict pair, and then additional CR instructions are generated to resolve 
the A–C conflict pair. It is then determined whether the CR instructions satisfy CON-
DITION Ω  to determine whether they can be sent to the controller. Finally, after iT
, the subsequent conflict detection is started. 

 
Figure 2. CD&R mechanism in continuous time. 
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3.2. Conflict Resolution Model 
3.2.1. Conflict Resolution Model Based on Markov Decision Process 

Let the TCS be the agent and the airspace be the environment. Let time t  be the 
moment when the resolution of a conflict pair begins. Let the two aircraft in the conflict 
pair be 1F  and 2F . 

1. Based on the state ( tS ), the TCS agent generates and executes an action ( tA ) (giving 

1F  the CR instruction corresponding to tA ) and then receives the reward ( +1tR ). tS  
contains the airspace situation at t  and the predicted airspace situation a while after 
t  for the agent to receive sufficiently comprehensive information. The trajectory pre-
diction determines whether CONDITION Ω  is satisfied after 1F  executes the CR 
instruction. If the condition is met, the conflict pair is successfully resolved, and the 
terminal state is reached. 

2. Suppose the conflict pair is not successfully resolved. In that case, the state is trans-
ferred from tS  to +1tS  ( +1tS  contains the airspace situation at t  and the predicted 
airspace situation for a while after the CR instruction has been executed by 1F ). The 
TCS agent generates and executes an action ( +1tA ) (giving 2F  the CR instruction 
corresponding to +1tA ) based on the latest state ( +1tS ) and then receives the reward 
( + 2tR ). Subsequently, a terminal state is reached. If CONDITION Ω  is satisfied, the 
TCS agent successfully resolves the conflict pair; otherwise, the conflict resolution 
fails. 
According to the above description, +1tS  and +1tR  only depend on tS  and tA , not 

on earlier states and actions; that is, the agent–environment interface of the discrete time 
satisfies the Markov property. Therefore, the CR model can be modelled as a discrete-time 
MDP, and the DRL method can be used to solve the MDP. 

3.2.2. MDP Description 

The MDP is represented by the tuple γ   , , , , , where   is the state space,   
is the action space,   is the state transition function,   is the reward space, and γ  is 
the discount factor. The MDP established in this study involves complex motion processes 
in the aircraft, making it difficult to build an accurate dynamic model for the environment, 
so the model-free method is used. γ  is described in Section 3.2. 

(1) State space 
The midpoint of the line joining the two aircraft in the conflict pair is defined as the 

conflict point. After a conflict pair is detected, the 200 × 200 × 6 km cuboid airspace centred 
on the conflict point is used to describe the state of the current conflict scenario. Because 
CONDITION Ω  involves a time horizon of =2 720 shT  after the occurrence of the con-
flict pair, tS  is set to be the 200 × 200 × 6 km cuboid airspace situation from time t  to 
time + 2 ht T  ( t  is the moment at which the resolution of the conflict pair begins). The 
airspace situation at t  is obtained by direct observation of the airspace, whereas the air-
space situation at other times is obtained by prediction. With 180 s as the time interval, tS  

is given by Equation (1) and can be represented as a vector, where ( )= , , ,c c c cc x y z t , the 
components of which represent the longitude, latitude, altitude, and time of occurrence 
of the conflict point, respectively. 

( )+ + + += 180 360 540 720, , , , ,t t t t t tS s s s s s c  (1)

where: 
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( )= = + + + +1 2 30, , , ,  , 180, 360, 540, 720T T T
Ts Info Info Info T t t t t t  (2)

where T
iInfo  is the information of the i th aircraft in the cuboid airspace. T

iInfo  is ex-
pressed as: 

( )= , , , , , , ,T T T T T T T T T
i i i i i i i i iInfo x y z vspd hspd h type ur  (3)

where 
T
ix , 

T
iy , 

T
iz , 

T
ivspd , 

T
ihspd , 

T
ih , 

T
itype , and 

T
iur  are the longitude, latitude, al-

titude, climb rate, horizontal speed, heading, aircraft type (represented by serial number), 
and the length of the major axis of the confidence ellipse (see Section 3.3.2) of the i th 
aircraft at time T . The 1st aircraft is the aircraft receiving the CR instruction, the 2nd air-
craft is that with the closest European distance to the 1st aircraft, the 3rd aircraft is that 
with the next closest European distance to the 1st aircraft, etc. Statistically, the number of 
aircraft in the 200 × 200 × 6 km cuboid airspace is generally no more than 20 (see Section 
3.1), so a maximum value of 30 is set. If there are fewer than 30 aircraft, then the remaining 

T
iInfo  is represented as an all-0 vector. Minimum–maximum normalization is applied to 

tS . 
(2) Action space 

Action space is a collection of actions that the TCS agent can execute. An action rep-
resents a CR instruction given by the TCS to an aircraft in the conflict pair. An action (i.e., 
a CR instruction) is a two-dimensional vector ( ), wAdj T , where Adj  denotes altitude, 
speed, and heading adjustments, and wT  represents the waiting time, that is, the time 
from the beginning of the resolution of a conflict pair to the actual execution of the adjust-
ment by aircraft. The waiting time enables the adjustment to be executed appropriately. 
The action space is shown in Table 2. The size of the action space is therefore 

+ + × × =(3 2 1) 2 9 108 . 

Table 2. The CR instructions (i.e., the action space). 

CR Manoeuvre Resolution Action Adjustment Value Waiting Time 
Altitude adjustment Climbing or descending/m 300, 600, 900 20x  s,  

∈  1,9x  
Speed adjustment Acceleration or deceleration/kt 10, 20 

Heading adjustment Right or left offset/nm 6 

(3) Reward function 
The reward function guides the agent towards learning in a direction that yields 

higher rewards. In this work, the reward function is constructed manually based on the 
advice of experienced air traffic controllers and it is designed considering the following 
factors. 
(a) The primary goal is to ensure that the conflict pair is resolved; therefore, if it succeeds 

in resolving the conflict pair, the agent should be rewarded heavily. Conversely, if it 
fails, it should be given a substantial penalty. A conflict resolution failure occurs 
when the TCS agent cannot satisfy condition Ω , even after giving CR instructions 
to the two aircraft in the conflict pair. Accordingly, the reward function ( 1r ) can be 
expressed as: 

η
η

+
= −

1

olved successful,   res
,   res

ly
olved failed

if
r

if
 (4)

where the constant is η +∈  . 
(b) The actions given by the TCS agent must be executable. If these actions breach the 

ATC regulations, the agent will be punished; otherwise, it will be rewarded. The ATC 
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regulations are defined in the second paragraph of Section 3.1. Therefore, the reward 
function 2r  is expressed as: 

μ
μ

+
= −

2

,   action is valid 
,  

if
r

else
 (5)

where the constant is μ +∈  . The value of μ  should be set lower than that of η  be-
cause the primary goal is to resolve the conflict pair. 
(c) Let _conflict num  be the number of conflicts between the aircraft in the conflict pair 

plus the number of conflicts between the aircraft in the conflict pair and the neigh-
bouring aircraft during (∈ + , 2 htime t t t ; then: 

ψ= ×3 _r conflict num  (6)

where the negative coefficient is ψ −∈  . By punishing the agent with 3r , the agent can 
learn to reduce conflicts in the future and improve its ability to satisfy condition Ω . 

In summary, the total reward function for the training is expressed as: 

=

=
3

1
i

i
R r  (7)

3.3. Training Environment 
3.3.1. Conflict Scenario Samples 

Using DRL to train the TCS agent requires a large number of conflict scenario sam-
ples for the dataset. The ability of the CR scheme generated by the TCS needs to be trained 
to satisfy condition Ω , which involves a time horizon of 2 hT . Therefore, the conflict sce-
nario sample contains only a time horizon of 2 hT . As shown in Figure 3, a conflict scenario 
sample starts at = 360 shT  before the conflict pair occurs and ends at hT  after the con-
flict pair occurs, involving a square of actual airspace with side length d . The conflict 
scenario sample in Figure 3 shows two aircraft associated with the conflict pair (orange 
and blue) and several neighbouring aircraft (black), which fly along the route according 
to their flight plans. After loading the conflict scenario sample, the conflict between orange 
and blue aircraft is detected at + ht T , and resolution of that conflict is initiated at t . The 
scenario sample is then run up to + 2 ht T  to verify that the CR scheme can successfully 
resolve the conflict pair (i.e., to determine whether condition Ω  is met). 

In each CD&R process, there is no conflict during )∈ + , htime t t T  (as conflicts in this 
time horizon have already been resolved in the previous CD&R process). Therefore, the 
constructed conflict scenario samples must also satisfy this condition. To improve the ef-
ficiency of constructing the samples, the condition for generating an adequate sample is 
weakened as follows. Consider the case in the square airspace where there exists a conflict 
pair at + hT t , and this conflict pair first occurs during (∈ + , htime t t T . The two aircraft 
involved in this conflict pair are not in conflict with the neighbouring aircraft in the air-
space during ( )∈ +, htime T T t . Subsequently, a conflict scenario sample is resolved when 
and only when the conflict pair in this sample is resolved. 
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Figure 3. Schematic diagram of a conflict scenario. 

3.3.2. Uncertainty of Prediction 
We rely on prediction of the aircraft’s future trajectory to detect conflicts and deter-

mine whether the conflict pair has been resolved. However, discrepancies between the 
actual and predicted trajectories can occur owing to navigation errors and errors in flight 
technique. In this work, we refer to the model proposed in [44] and consider the uncer-
tainty in the real position of the aircraft on the horizontal plane. As shown in Figure 4, a 
plane rectangular coordinate system is established with the aircraft heading along the 
positive x -axis, with the predicted aircraft position considered as the origin. Assuming 
that the real horizontal position of the aircraft is the point ( , )X Y  in the coordinate sys-
tem, the two-dimensional random variable ( , )X Y  is subject to the following two-dimen-
sional Gaussian distribution: 

( ) σ
σ

   
          


2

2

0 0
, ,

0 0
AT

CT

X Y N  (8)

where σ CT  and σ AT are the cross-track and along-track standard deviations, respec-
tively. According to [44], σ CT  is a constant, and σ AT is a linear function of time expressed 
as 

σ σ α= +
0AT AT t  (9)

where α  describes the growth of the along-track uncertainty with prediction time ( t ) in 
units of nautical miles per minute. 

As shown in Figure 4, the confidence ellipse of the two-dimensional Gaussian distri-
bution can be determined according to different confidence levels. Because ellipses are 
challenging to handle, it is assumed that the real horizontal position of the aircraft does 
not extend beyond the concentric tangent of the confidence ellipse. The aircraft can self-
correct its course, so although the radius of this concentric tangent circle will increase with 
time, it will not exceed a specific value. This study assumes that the RNAV 1 navigation 
specification is used and considers this circle to have a maximum radius of 1 nm. The 
conflict detection mechanism proposed in this study is shown in Figure 5, where the green 
ellipse is the confidence ellipse, 0R  and 1R  are the major axis lengths of the two aircraft 
confidence ellipses, H  is the vertical separation of the two aircraft, and the confidence 
level is considered as 90%. 
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Figure 4. Real horizontal position obeys a two-dimensional Gaussian distribution. 

 
Figure 5. Conflict detection under uncertain conditions. 

3.4. Resolution Scheme Based on ACKTR 
The model-free DRL algorithms are used to solve the MDP. Such algorithms use the 

interaction with the environment to gain experience without a mathematical description 
of the environment, while relying only on experience (e.g., samples of trajectories) to learn 
an approximate representation of the optimal policy. The model-free DRL algorithms in-
clude optimal value, policy gradient, and actor–critic algorithms. This study uses the ac-
tor–critic algorithms because they combine the advantages of the other two algorithms, 
with high sample efficiency and powerful characterisation of the policy. The actor–critic 
algorithm uses a value network to approximate the value function and a policy network 
to approximate the optimal policy. In updating the parameters of neural networks, the 
natural gradient method is used to translate parameter updates into updates on model 
performance at each iteration. The Kullback–Leibler divergence constrains the distance 
between the old and new models. ACKTR is an actor–critic algorithm that uses the natural 
gradient method. ACKTR outperforms the trust region policy optimisation (TRPO), the 
advanced actor–critic (A2C), and Q-learning methods in terms of training efficiency on 
discrete control tasks [45]. 

3.4.1. Actor–Critic Using Kronecker-Factored Trust Region (ACKTR) 
ACKTR [45] uses the Kronecker-factored approximate curvature (K-FAC) to approx-

imate the Fisher information matrix to reduce the computational complexity of the natural 
gradient method. When using natural gradient descent, the parameter update method is 
given by 

( )η −← − ∇ 1
θθ θ F θ  (10)



Aerospace 2023, 10, 182 12 of 24 
 

 

where ( ) θ  is the function to be optimised, η  is the step size, and F  is the Fisher in-
formation matrix. 

As the calculation of −1F  is very complex, it reduces the training speed. Therefore, 
to improve the efficiency of natural gradient descent, ACKTR uses K-FAC [46] to approx-
imate the calculation of −1F . We suppose that ( )p y x  is the output distribution of a neu-

ral network, and = ln ( )L p y x  is the log-likelihood output distribution. Furthermore, we 

suppose that ×∈ out ind dW  is the weight matrix in the thl  layer of the neural network, 
where outd and ind  are the number of output and input neurons of the thl  layer, respec-

tively. The input activation vector to the layer is denoted as ∈ inda , and the preactiva-
tion vector for the next layer is denoted as =s Wa . The weight gradient is expressed as 
∇ = ∇ T( )L Lw s a . Let { }⋅vec  be a vectorized transformation that transforms a matrix into 
a one-dimensional vector. K-FAC approximates the block Fisher information matrix ( lF ), 

which corresponds to the thl  layer as ̂F , which is expressed as 

{ } { } ( )
( )

   ∇ ∇ = ⊗∇ ∇      
  ⊗ ∇ ∇ = ⊗ = ≈ 

=

 





T TT

TT

E vec vec E

E E : ˆ    :

L L L L

L L

W W s s

s s

F aa

aa Α S F
 (11)

where  =  
TEA aa  and ( )

∇ ∇ =  
T

L LE s sS . Based on Equation (11) and two identities, 

( )− − −⊗ = ⊗
1 1 1P Q P Q  and ( ) { }⊗ = TvecP Q T PTQ , we can deduce an efficient method to 

descend the natural gradient by approximate calculation as follows: 

{ } { } { }− − −Δ = ∇ = ∇ 1 1 1ˆvec vec vec ( )l W WW F A S  (12)

In this way, when updating the parameters of the thl  layer of the neural network, it 
is converted from inverting a matrix with dimensions of ( ) ( )×in out in outd d d d  to inversing 
two matrices with dimensions of ×in ind d  and ×out outd d . The computational complexity 

is therefore reduced from ( )3 3
in outO d d  to ( )+3 3

in outO d d . 

3.4.2. Training Process 
The multithreaded ACKTR is used to train the TCS agent. The agent in each thread 

interacts with its DRL environment, and the tasks of decision making and training are 
integrated into the model itself, as shown in Figure 6. n  in the figure indicates the total 
number of threads. 

ACKTR uses the actor–critic architecture, which includes a policy network ( ( )π θ , 

i.e., actor) and a value network ( ( )V w , i.e., critic). The output ( ( )π ⋅ ;tS θ ) of the policy 

network is a distribution; therefore, it is easy to define its Fisher information matrix. How-
ever, the output of the standard value network is scalar rather than a distribution; there-
fore, its Fisher information matrix cannot be defined. Therefore, ACKTR defines the out-
put of the value network as a Gaussian distribution ( ) ( )( )σ 2; ; ,t tp v S v V S w  whose 

σ  can be simply set to 1 in practice. We used the neural network architecture shown in 
Figure 7 to train the agent. The actor and the critic share a fully connected neural network 
with four hidden layers each of which connects a fully connected layer to output the value 
and policy. The numbers in parentheses in the figure represent the number of nodes in 
the neural network. ‘FC’ represents a fully connected layer.  
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Figure 6. Multithreaded training mechanism. 

 
Figure 7. Neural network architecture for agent training. 

The proposed neural network architecture can be regarded as a global neural net-
work. Therefore, we can update the global network with only one loss function, that is, 
we can update the parameters of the critic and the actor simultaneously. Suppose that 
there are p  threads and that the agent in each thread interacts in k  steps with its envi-
ronment in one multithreaded interaction; then, it collects the experience dataset ( N ). 
Then, we have = ×N k p . The loss function is defined as Equation (13). Let _e coef  and 

_v coef  be the constant coefficients and   be the action space. 

= − × + × _ _pgLoss e coef entropy v coef vfLoss  (13)

where 

( ) ( )( ) ( )γ π+ +
∈

= + − × − 1 1
1 ; ln ( ; )t t t t t

n N
pgLoss R V S V S A S

N
w θ  (14)

( )+
∈

= − 2

1
1 ( ; )
2 t t

n N
vfLoss V S Rw  (15)
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( ) ( )π π
∈

= 


; ln ;t t
a

entropy a S a Sθ θ  (16)

To use the method of natural gradient descent to update the model, ACKRT defines 
the output of the global network as ( ) ( ) ( )π=,p a v s a s p v s  by assuming independence of 

the policy and the value distribution. Therefore, the parameter λ  update formula of the 
global network is 

( )η −← − ∇ 1
λλ λ F λ  (17)

where ( ) ( ) ( )τ
 =  
∇ ∇


 T

ln , ln ,p p a v s p a v sF , and τ( )p  is the distribution of trajectories 

given by ( ) ( )π +
=

∏ 1
0

,
T

t t t t t
t

A S p S S A . 

To adapt the TCS agent to various conflict scenarios, the agent should be provided 
with a large number of conflict scenario samples as the environment. The construction of 
the conflict scenario samples is described in Section 3.3.1, and the specific sample genera-
tion method is described in Section 3.1. Algorithm 1 shows the agent training process 

based on ACKTR. ACKTR sets ηk  in row 11 of the table to η δ Δ Δ
T

max
ˆmin( , 2 )k k kλ F λ  

[47], where η max  is the learning rate, δ  is the trust region, and each block in the block 

diagonal matrix ( k̂F ) corresponds to the Fisher information matrix ( = ⊗ˆ l
k l lF A S ) of each 

layer of the global network. To reduce instability in training for the conflict pair in the 
same conflict scenario sample, the agent’s first action is always for the aircraft specified in 
this conflict pair; if there is a second action, it is for the second aircraft. 

Algorithm 1 shows the flow of the ACKTR algorithm used to train the TCS agent. 

Algorithm 1: ACKTR Algorithm for Training the TCS Agent 
1: Initialize the parameter 0λ  of the global network. 
2: Loop through iterations 1,2, ,M . 
3: Each thread selects a conflict scenario sample randomly and initializes the state 0S . 
4: Loop through the steps 1,2, ,T . 
5: Each thread generates its own trajectory 0 0 1 1 1 2 end, , , , , , , tS A R S A R S S=  with its policy ( )π λ . 
6: Until the steps end. 

7: 
Summarise the trajectory of each thread and calculate the loss function according to Equa-
tion (13). 

8: For the layer 0,1,2,l =   of the global network, do: 

9: ( ) ( )( )1 1vec vec l
k

l l
k l k l

− −Δ = ∇λλ A λ S , in the calculation of 1
l
−A  and 1

l
−S , ( )ln ,L p a v s= . 

10: End for. 

11: 
Use K-FAC to approximate the natural gradient to update the parameters of the global net-
work: 1k k k kλ λ η λ+ = + Δ . 

12: Until the iterations end. 

4. Results 
4.1. Experimental Setup 
(1) Experiment and simulation environment 

We developed a realistic airspace operating environment based on the ATOSS as the 
DRL environment, which interacts with the agent to generate the data required online. 
The ATOSS is also used for trajectory and airspace situation prediction, state transition, 
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and conflict detection. Developed in our laboratory, ATOSS combines an airspace data-
base with the Base of Aircraft Data (BADA) database for motion simulation of the engine 
to simulate the aircraft’s operational posture. It calculates the acceleration, speed, and 
rates of climb and descent of the aircraft based on parameters such as force and fuel con-
sumption during each phase of the flight. It predicts the trajectory in conjunction with 
operational airspace rules. 

The hardware environment for all experiments is an HP Z8 G4 workstation with an 
Intel Xeon(R) Gold 6242 CPU and 64 GB of RAM (manufacturer: Hewlett-Packard, Palo 
Alto, CA, USA). The software environment is IntelliJ PyCharm (version: Community Edi-
tion 2020.2.4 ×64), using Python to write the algorithms. 
(2) Conflict scenario samples 

We used the ATOSS for airspace situational simulation to generate conflict scenario 
samples. Considering the HFE, the busiest waypoint in China in 2019 [48], as the central 
point, a cuboid airspace (i.e., airspace A) of 400 × 400 × 6 km was expanded as the airspace 
for the traffic flow simulation. Moreover, using the HFE as the central point, the cuboid 
airspace (i.e., airspace B) was expanded to 200 × 200 × 6 km; the conflict pairs in this air-
space were recorded to generate conflict scenario samples, as shown in Figure 8. 

 
Figure 8. Traffic simulation and conflict airspace. 

The flight plans of the aircraft that flew through or landed in airspace A on 1 June 
2018 were selected. To ensure sufficient time to resolve conflict pairs, plans that resulted 
in the aircraft taking less than 600 s to arrive at airspace A were removed. The remaining 
plans formed the simulation flight plan set to simulate traffic flow. The HFE is the route 
convergence point; therefore, its flow also reflects the flow in airspace A. The peak hourly 
flow at the HFE in 2019 was 106 flights/h [48], so 20–30 aircraft were allowed to arrive at 
airspace A within 10 min of one another to simulate the operation situation of airspace A 
at peak flow. The process of constructing the conflict scenario samples was as follows. 
• Step 1: From the simulation flight plan set, 20–30 flights were randomly loaded, and 

the departure times of the flights were changed by adding random amounts to ensure 
that the flights arrived at airspace A within the 10 min window; 
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• Step 2: The detected conflict pairs in airspace B were recorded during the simulation. 
For each conflict pair, we determined whether the conflict scenario construction con-
dition described in Section 3.3.1 was met. If so, a conflict scenario sample was gener-
ated for the period in which the conflict occurred; 

• Step 3: Steps 1 and 2 were repeated until the number of conflict scenario samples 
satisfied the requirements. 
By performing the above steps, 6000 conflict scenario samples were obtained. Using 

the holdout method, 5000 samples were selected to constitute the training set, and the 
remaining 1000 samples constituted the testing set. Three conflict scenario samples were 
randomly selected and loaded with 20, 25, and 30 flights. The relationship between the 
number of aircraft and time in airspace A and the airspace of the state space (i.e., the 

× ×200 200 6  km cuboid airspace centred at the conflict point) is shown in Figure 9. For 
each sample, the time when the first flight entered airspace A is 0. The results show that 
these samples provide reasonable airspace densities for airspace A. Figure 9 also shows 
that in each sample, the traffic density in the airspace of state space is near its peak at the 
time of the conflict pair; therefore, the samples are challenging to resolve. 

 
Figure 9. Number of aircraft in the two airspaces changing with time. 

(3) Baseline algorithms 
The baseline algorithms used in this work are Rainbow [49] and A2C [50]. Rainbow 

is an improved algorithm for deep Q networks and uses techniques such as double Q 
learning and prioritized replay buffer. It is an optimal-value algorithm with excellent per-
formance. A2C has good performance among the actor–critic algorithms. The main differ-
ence between A2C and ACKTR is that A2C uses the gradient descent method when up-
dating the parameters of neural networks, whereas ACKTR uses the natural gradient 
method. The test results of the untrained random agent are presented to observe the per-
formance improvement of the agent after training. 

4.2. Experimental Analysis 
(1) Determining the parameter combination 

The DRL method mainly consists of the parameters in the reward function and the 
hyperparameters, and their settings affect the agent’s training. Six parameter combina-
tions are set up to evaluate the impact of different combinations of hyperparameters and 
reward function parameters on training. Among the hyperparameters, the learning rate, 
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which significantly impacts training, is chosen as the variable parameter. Experiments are 
conducted with different reward function parameters when the learning rate is −× 45 10  
and −× 31 10 . We tested different values for η , μ , and ψ  in Equations (4)–(6). 

The hyperparameters of ACKTR are shown in Table 3. We used 32 threads for train-
ing following the multithreaded training mechanism described in Figure 6. In each thread, 
the agent interacts with the environment in two steps. The total training steps refer to the 
total number of steps in which the agents interact with the environment in all threads. 

Table 3. Hyperparameter values of ACKTR. 

Hyperparameter Parameter Value Hyperparameter Parameter Value 
Total training steps 5,000,000 σ  0.0005 

Discount factor 0.99 _e coef  0.6 

Number of threads 32 _v coef  0.3 
Interaction steps  

per thread 
2 Learning rate −× 45 10  or −× 31 10  

The six parameter combinations for ACKTR are shown in Table 4, demonstrating six 
combinations of the learning rate and reward function parameters at different values. We 
compared the TCS agent training results with six parameter combinations to select the 
best combination. 

Table 4. Different parameter combinations for ACKTR. 

Combination Name Learning Rate η  μ  ψ  

Combination A 5.0 × 10−4 5 0.2 − 1  
Combination B 5.0 × 10−4 10 0.6 − 4  
Combination C 5.0 × 10−4 20 1 − 2  
Combination D 1.0 × 10−3 5 0.2 − 1  
Combination E 1.0 × 10−3 10 0.6 − 4  
Combination F 1.0 × 10−3 20 1 − 2  

The same training set was used for the six parameter combinations. Because the re-
ward function parameters differ, we used the average resolution rate during training to 
represent the effect. The average resolution rate is the percentage of conflict scenario sam-
ples resolved out of the samples selected in 1000 updates of the global network. The train-
ing process is shown in Figure 10. The high learning rate slightly improves the sample 
efficiency but has little impact on the convergence of the model. Irrespective of the sample 
efficiency or the post-convergence performance, combinations A and D were trained less 
effectively than other combinations. This may be because the reward values are too small, 
making the model insensitive to the feedback from the reward. In combinations B, C, E, 
and F, the observed training effects are similar, which also validates the robustness of the 
model. 

To describe the model’s performance after convergence, we present the training data 
after four million steps, as shown in Table 5. After convergence, combination C has the 
best average reward, and E has the highest average resolution rate. Our primary goal is 
to ensure that the conflict pairs can be resolved; therefore, we chose combination E as the 
final parameter of the model. The learning curve for combination E is shown in Figure 11. 
We averaged the rewards for every 100 updates of the global network to smooth the curve. 
As the reward values increased, the loss values decreased. Finally, they all converged. The 
model proved to be convergent. 
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Figure 10. Resolution rate changes with training steps under different parameter combinations. 

Table 5. Training data of six parameter combinations. 

Combination Name 
Average Reward after Four Million Steps  

Divided by Optimal Reward 
Average Resolution Rate after Four 

Million Steps 
A 72.19% 95.39% 
B 84.31% 98.14% 
C 87.13% 98.15% 
D 73.16% 96.86% 
E 85.16% 98.58% 
F 86.20% 98.21% 

 
Figure 11. Learning curves of parameter combination E. 

(2) Comparison with the baseline algorithms 
ACKTR, Rainbow, and A2C used the same reward function and dataset with the 

learning curves, as shown in Figure 12. We averaged the rewards for every 60 s of training. 



Aerospace 2023, 10, 182 19 of 24 
 

 

Table 6 presents the training data after 30 h of training time to observe the model perfor-
mance after convergence. It can be seen that ACKTR outperformed the other two algo-
rithms in terms of computational efficiency and post-convergence performance. Further-
more, as algorithms for training policy networks, ACKTR and A2C presented more minor 
training variances than those presented by Rainbow. The model performance of ACKTR 
continued to improve when A2C converged at approximately 4 h, demonstrating that the 
natural gradient method can make the model exceed the local optimum solution. 

 
Figure 12. Training speed of ACKTR, Rainbow, and A2C on the same training set. 

Table 6. Training data of different algorithms. 

Algorithm Average Reward after 30 h Average Resolution Rate after 30 h 
ACKTR 9.03 98.58% 

A2C 3.07 79.32% 
Rainbow 0.16 67.82% 

(3) Model performance based on the testing set 
A testing set containing 1000 test samples was used to test the model performance 

after convergence. In the first test of a test sample, the TCS agent gave one aircraft in the 
conflict pair the CR instruction; after that, if the conflict pair remained unresolved, the 
agent gave the other aircraft the CR instruction. The order of the CR instructions given to 
the conflicting aircraft was then reversed, and the test was performed again. The best of 
the two tests was then considered the final test result for that test sample. 

Table 7 lists the test results for the different algorithms. The conflict resolution rate is 
the ratio of successfully resolved test samples to the total test samples. It is the most direct 
indicator of model performance. ACKTR has a conflict resolution rate of 87.1%, which is 
higher than that of the other two algorithms. Compared with the random agent, the 
ACKTR conflict resolution rate improved by 41.1%. When testing with ACKTR, the TCS 
was able to generate a CR scheme for each test sample and determined whether the 
scheme met CONDITION Ω  with the ATOSS in less than 4 s total time (1.13 s on aver-
age). 

When using ACKTR for testing, the TCS can generate a CR scheme for each test sam-
ple in less than 4 s (1.13 s on average) and determine whether the scheme satisfies CON-
DITION Ω  through the ATOSS to verify the validity of the scheme. In contrast, CR meth-
ods using GA may take tens of seconds to find a suitable scheme [36]. 
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Table 7. Performance of different algorithms on 1000 test samples. 

Algorithm Conflict Resolution Rate Average Reward Median Reward 
ACKTR 87.10% 6.54 10.60 
Rainbow 75.30% 2.73 10.60 

A2C 83.60% 5.29 10.60 
Random agent 46.00% −5.43  −16.80  

Table 8 shows the distribution of the CR manoeuvres acting on the conflicting aircraft 
used by the TCS when tested with ACKTR. In most cases, the TCS used the altitude ad-
justment to resolve conflicts and rarely used speed and heading adjustments. This sug-
gests that in the route intersection scenario used for the experiment (see Figure 8), it is 
easier to resolve conflicts by expanding the vertical separation of the aircraft than by ex-
panding the horizontal separation. In addition, within the short, tactical resolution time 
horizon of 6 min, there may not be sufficient time to use speed and heading adjustments 
to expand the horizontal separation, so the agent did not tend to use speed and heading 
adjustment. 

Table 8. Distribution of the CR manoeuvres performed by the TCS. 

CR Manoeuvre Frequency CR Manoeuvre Frequency 
Climbing (300 m) 188 Acceleration (10 kt) 0 
Climbing (600 m) 116 Acceleration (20 kt) 0 
Climbing (900 m) 11 Deceleration (10 kt) 0 

Descending (300 m) 253 Deceleration (20 kt) 3 
Descending (600 m) 486 Right offset (6 nm) 6 
Descending (900 m) 117 Left offset (6 nm) 0 

The TCS agent’s solution which uses one action to resolve the conflict pair is better 
than the solution which uses two actions. Among the 871 test samples that were success-
fully resolved using ACKTR, approximately 94.14% were resolved by a single action. Con-
sidering the samples resolved in the testing set, the relationship between the proportion 
of samples in which the agent performed one action and the number of flights loaded in 
the sample is shown in Figure 13. The figure also shows the relationship between the con-
flict resolution rate and the number of flights loaded in the sample. The number of flights 
loaded reflects the airspace density. 

First, irrespective of the airspace density, the agent could adopt an action to resolve 
the conflict pair in more than 85% of the samples. In addition, there is no significant cor-
relation between the two variables (see the blue dotted line in Figure 13), which implies 
that an increase in airspace density does not affect the quality of the solutions generated 
by the TCS in this airspace density range. Second, the conflict resolution rate shows a 
negative correlation with airspace density (see the purple solid line in Figure 13), indicat-
ing that the CR ability of the TCS decreases at high airspace density. This may be because 
the increase in airspace density leads to a reduction in the solution space, which increases 
the difficulty in resolving the conflict. 
(4) Performance of the model in higher-density airspace 

The situation in which 20–30 aircraft arrive at airspace A within 10 min is defined as 
medium-density airspace, and the situation in which 30–40 aircraft are loaded is defined 
as high-density airspace. The airspace density of the high-density airspace is 1.4 times that 
of the medium-density airspace. The training and testing process uses ACKTR. The train-
ing process is shown in Figure 14, where 

= −failure rate 1 average resolution rateaverage . The increase in airspace density leads 
to a slight decline in the training effect but does not lead to the collapse or divergence of 
the model, indicating that the model maintains good stability and convergence under the 
stress test. 
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Figure 13. Performance of the TCS under different numbers of flights. 

 
Figure 14. Training data of high-density and medium-density airspace (using AKCTR). 

The models were tested under high-density airspace using 1000 test samples. The 
conflict resolution rate for the model trained with ACKTR was 81.20%, whereas it was 
39.00% for the random agent. With ACKTR, the conflict resolution rate in the high-density 
airspace was 5.9% lower than that in the medium-density airspace. With ACKTR, com-
pared with the random agent, the conflict resolution rate of the trained agent was 42.2% 
higher, which approximated the performance improvement of the model under the me-
dium-density airspace. This shows that although the increase in airspace density leads to 
a decline in the agent’s ability to resolve conflicts, the improvement of the agent’s ability 
to resolve conflicts using the DRL method is not inhibited. 

4.3. Discussion 
Tactical conflict resolution is an essential part of intelligent ATC. The critical problem 

in tactical conflict resolution is clarifying the framework and mechanism of CD&R and 
improving the model’s CR ability in various scenarios. This study proposes a receding 
horizontal control CD&R mechanism to assist ATCOs in CR. The TCS agent is trained 
using ACKTR, and experimental proofs are performed. 

The CR model uses the same altitude, speed, and heading adjustments as the con-
trollers. Using performance data from different aircraft types during the agent’s interac-
tion with the environment can ensure that the model solutions fit the aircraft dynamic 
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constraints. The uncertainty of the real horizontal position is inscribed with the two-di-
mensional Gaussian distribution during trajectory prediction, enhancing the feasibility of 
the CR schemes. Realistic airspace structure, flight plans, and airspace density are used in 
the training and testing sets to increase the model’s confidence. The conflict resolution 
rate did not reach 100%; however, a resolution rate of nearly 90% is acceptable for a tool 
that assists ATCOs in decision making. Nonetheless, it is necessary to improve the 
model’s performance model in future research. 

We found that the conflict resolution rate of the testing set decreased as the airspace 
density increased. The underlying reason is that the airspace structure and traffic flow 
density determine the size of the available solution space. In practice, to ensure flight 
safety, airspace density is usually restricted by holding aircraft or controlling traffic flow. 

The work in this study enriches the research methods in tactical conflict resolution. 
It enhances the intelligence of CR models, which can be used as a reference for intelligent 
ATC auxiliary decision-making systems in the future. 

5. Conclusions 
This study proposes a receding horizontal control CD&R mechanism to handle con-

tinuous traffic flow with CD&R on the continuous time horizon. Considering ATC regu-
lations, uncertainty in real environments. and actual airspace structures, the TCS agent is 
trained using ACKTR to assist ATCOs in resolving conflict pairs. We incorporated the 
trajectory prediction error into the training and testing sets to ensure the robustness of the 
TCS in uncertain environments. The results show that using ACKTR to train the agent can 
resolve most conflict pairs with only one CR instruction in the actual airspace structure 
and density. The training is completed within 38 h, which is not much time for the com-
plex CR task. The final conflict resolution rate exceeded 87%, and the TCS could find the 
CR scheme within an average of 1.13 s. Even when the airspace density was increased by 
a factor of 1.4, the conflict resolution rate exceeded 80%. The scope for future work can be 
described according to the following aspects. (1) The controllers’ experience can be ex-
tracted from historical data to make the generated CR strategy conform to the habits of 
ATCOs. (2) Adjustments to neighbouring aircraft can be added to increase the solution 
space during conflict resolution. 
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