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Abstract: Combustion instability constitutes the primary loss source of combustion chambers, gas
turbines, and aero engines, and it affects combustion performance or results in a sudden local
oscillation. Therefore, this study investigated the factors affecting flame fluctuation on unsteady
combustion flow fields through large-eddy simulations. The effects of primary and secondary holes
in a triple swirler staged combustor on flame propagation and pressure fluctuation in a combustion
field were studied. Moreover, the energy oscillations and dominant frequencies in the combustion
field were obtained using the power spectral density technique. The results revealed a variation in
the vortex structure and Kelvin–Helmholtz instability in the combustion field, along with a variation
in the pressure pulsation during flame propagation under the influence of the primary and secondary
hole structures. Additionally, the spatial distributions of pressure oscillation and heat release rate
amplitude were obtained, revealing that the foregoing increased owing to the primary and secondary
holes in the combustion field, reaching a peak in the shear layer and vortex structure regions.

Keywords: combustion instability; triple swirler combustor; large-eddy simulation; pressure fluctuation;
flame dynamics

1. Introduction

Combustion instability represents the primary loss source of combustion chambers [1],
gas turbines [2], and aero engines [3]. It is primarily manifested through large-scale
fluctuations that can severely affect combustion performance, potentially causing a sud-
den increase in local heat release [4]. This can, in turn, trigger large-scale flame fluctu-
ations, affecting combustion performance or resulting in a sudden local thermoacoustic
oscillation [5,6]. Therefore, it is essential to mitigate aero-engine instability [7].

Recently, the focus of research on combustion instability has evolved from simple
laminar flame burners [8] to complex turbulent flame burners [9]. Most previous studies
have focused on controlling the equivalence ratio and boundary conditions [10,11]. In par-
ticular, Ren et al. [12] explored pressure fluctuations and the driving mechanisms of various
equivalence ratios and combustion modes through numerical simulations. Palies et al. [13]
studied the dynamics of premixed flames based on incident velocity and concluded that an
unsteady heat release is triggered by the combined action of axial and azimuthal velocities.
Ozgunoglu et al. [14] elucidated the interaction between complex turbulent flow fields
and flame dynamics in a non-premixed combustor. Huang et al. [15] analyzed turbulent
combustion characteristics under various combustion pressures and equivalent ratios using
the large-eddy simulation (LES) of a combustion chamber. Guo et al. [16] used numeri-
cal simulations to explore longitudinal combustion instabilities, including the coupling
among acoustics, fluid mechanics, and heat release. Zeng et al. [17] conducted a numer-
ical simulation of an unsteady turbulent flow field by comparing combustion chamber
models with and without blunt bodies. In general, these studies have demonstrated that
combustion instability is usually sensitive to the geometry and boundary conditions of the
combustion chamber.
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Several scholars have studied the pressure spectrum and hydrodynamic characteristics
of dynamic combustion in an aero-engine combustion chamber. Wu et al. [18] studied
the effect of outlet geometry contraction on the precessing vortex core (PVC) and the
vortex breakdown structure in a combustor. Stöhr et al. [19] elucidated the coupling
of a helical PVC in a combustion chamber and flame development in a turbulent flow
field. Salvador et al. [20] analyzed the low-order coherent structure of a high-swirl com-
bustor. They also conducted a numerical study of the unreacted flow field through proper
orthogonal and dynamic mode decomposition techniques. Zhang et al. [21] applied a
self-developed high-order numerical solver to examine the effect of hydrodynamic char-
acteristics on thermoacoustic instability in a swirl-stabilized combustion chamber. Nam
and Yoh [22] elucidated the driving source of combustion instability by analyzing the
pressure spectrum and harmonic modes of unsteady flames. Song et al. [23] investigated
the characteristics of longitudinal combustion instability using an analytical model of flame
motion in a combustor. However, the dynamic combustion characteristics of a complex
multistage swirler, particularly the combustion instability of the primary and secondary
holes in a triple-swirl combustion chamber, have not been studied in detail.

Existing experimental methods, such as those using a high-speed camera, particle im-
age velocimetry (PIV), and planar laser-induced fluorescence (PLIF), encounter difficulties
in obtaining information on the details inside the combustion zone [24–26]. Moreover, the
complex combustor geometry further exacerbates the difficulties associated with experi-
mental measurements. Notably, the computational fluid dynamics method can effectively
quantify the turbulent flow field and flame propagation inside a combustion chamber.
Chen et al. [27] studied combustion instability using Openform. Mansouri et al. [28,29]
performed numerical simulations of flame characteristics using the Reynolds-averaged
Navier–Stokes technique. Despite providing some promising results, their study was
limited by coarse resolution in terms of the turbulent eddies. In this context [30,31], LES
represents a highly effective tool for predicting turbulent flow and flame propagation
characteristics and can reduce computational costs. In recent years, the corpus of studies
on turbulent combustion using LES has grown.

In this study, the effects of primary and secondary holes on flame propagation and
combustion instability were investigated using the LES and power spectral density (PSD)
techniques. By analyzing the relationships among pressure oscillation, flame propaga-
tion, and unsteady flow fields, this study provides detailed insights into the potential
mechanisms driving different combustor geometry combustion instability characteristics.

2. Materials and Numerical Methods
2.1. Numerical Model

In this study, the three-dimensional LES equations were employed as the governing
equations using a commercial computational fluid dynamics software, ANSYS Fluent 2020.
The dynamic Smagorinsky LES subgrid-scale model was used to process the instability
characteristics in the presence of turbulent reactive flow. The governing equations, after
being spatially and Favre-filtered [31,32], were formalized as follows:
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Equations (1)–(4) describe the conservation of mass, momentum, energy, and species
conservation, respectively, after spatial and Favre filtering. The stress tensor τij can be
expressed as follows:

τij = uiuj − uiuj (5)

where µ denotes the molecular viscosity; and τSGS and Vt are the subgrid-scale stress tensor
and viscosity, respectively.

τSGS = −2ρvt

(
S̃ij −

1
3

δijS̃kk

)
(6)

vt = (G∆)2
(

2S̃ijS̃ij

)1/2
(7)

where Sij is the resolved strain rate tensor; and ∆ and G are the filter width and kernel
in the dynamic Smagorinsky–Lilly model, respectively. Note that the subgrid-scale total
enthalpy and convective species flux are expressed according to the following equations:

hSGS
j = −ρ

vt

prt
· ∂h̃

∂xj
(8)

YSGS
j,m = −ρ

vt

Sct
· ∂Ỹm

∂xj
(9)

2.2. Reaction Model

In this study, the combustion model adopted the partially premixed equilibrium
chemical reaction model. A 44-species and 78-reactions surrogate fuel RP-3 chemical kinetic
mechanism [33–35] was employed in the simulation. The adopted flamelet-generated
manifold (FGM) approach is based on the widely used and broadly acknowledged flamelet
concept. The basis of the FGM approach is the generalized description of the flame front
in a flame adaptation coordinate system. The FGM is an efficient and accurate modeling
approach for premixed flames. Oijen applied the FGM to the modeling of turbulent flames
using the LES flow solver [36].

The mixture fraction was formalized as follows:

Z =
Yi −Yi,ox

Yi, f uel −Yi,ox
(10)

The subscript ox denotes the value at the oxidizer stream inlet, and the subscript f uel
denotes the value at the fuel stream inlet. The Favre-filtered governing transport equation
of Z is expressed as:

∂

∂t
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ρ
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Z
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The normalized mass fraction (reaction progress variable C) of products is expressed
as follows:

C =
∑ k∂k

(
Yk −Yu

k
)

∑ k∂k
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k
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YC
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C

(12)

The subscript denotes the unburnt reactant, and Yk denotes the kth species mass
fraction. The transport equation of YC is solved as:

ρ
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2.3. Computational Details

A schematic of the combustor structure is shown in Figure 1 The computational
domain was a 1/20-sector annular combustion chamber with a period-symmetric structure.
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The inner radius of the combustor was 168 mm, the outer radius was 306 mm, and the
axial length was 332 mm. The outer diameter of the swirler was 69 mm. The outer
diameters of the primary and secondary holes were 16 and 9 mm, respectively. The swirler,
primary holes, and secondary holes were 144, 229, and 261 mm in diameter from the
inlet, respectively. The combustor included a triple swirler with swirl angles of 40◦, 45◦,
and 45◦. Air entered the combustion zone through the swirler, mixed with the fuel, and
underwent reactions. The walls of the combustion chamber were cooled with the injection
of air through the cooling film. Note that the axial and radial axes were the X and Y
axes, respectively. According to different combustion chamber geometries, four cases were
considered, as shown in Table 1. Case 1 included primary and secondary holes, Case 2
included only primary holes, Case 3 included only secondary holes, and Case 4 implied
the absence of any holes.
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Figure 1. Three-dimensional view of combustion chamber: (a) combustion chamber; (b) swirler; (c) 

midplane. 
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Figure 1. Three-dimensional view of combustion chamber: (a) combustion chamber; (b) swirler;
(c) midplane.

Table 1. Different combustion chamber geometries.

Name Primary Holes Secondary Holes

Case 1 yes yes
Case 2 yes no
Case 3 no yes
Case 4 no no

Adaptive mesh refinement was applied to mesh the combustor model with a poly-
hexacore, as shown in Figure 2. The grid dependency was evaluated at three grid levels
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prior to the simulation. The moderate grid included 3,972,056 cells. The finer and coarser
grids included 7,801,743 and 859,419 cells, respectively. Figure 2 shows a comparison
between the pressure and temperature distribution distance for the three grids from the X
coordinate, i.e., 25 mm (line 1).
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Figure 2. Grid sensitivity analyses: (a) pressure; (b) temperature.

The analysis revealed that the grid with 859,419 cells was exceedingly coarse, and the
pressure and temperature distribution results of the fine grid were comparable to those of
the moderate grid. Thus, the current selection of 3,972,056 cells was deemed to be sufficient.
Figure 3 shows the grid of the combustor model, where the minimum orthogonal quality
of meshing was >0.4.
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Figure 3. Grid distributions.

The kinetic energy spectra of H1 in the reaction region under the four cases are
shown in Figure 4. A comparison with the −5/3 law showed that the simulation can
reasonably predict the inertial behavior [37]. Moreover, Figure 4 demonstrates that the
smallest resolution scale was in the inertial range of the turbulent kinetic energy spectra.
Owing to this, it was reasonable to correct the LES method in this study to the turbulent
motion in the reaction zone. Accordingly, we considered that the grid met the requirements
of an LES in this study.
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Figure 4. Kinetic energy spectra of H1 within the reaction zone for four cases.

In this study, the unsteady combustion of aviation kerosene and air was examined
in various geometrical combustor models using the LES. The inlet pressure was set to
0.5 MPa. The inlet air and fuel temperatures were 600 and 300 K, respectively. The fuel and
air inlet mass flow values were 7.667 and 550 g/s, respectively. Moreover, pressure–velocity
coupling was achieved through the SIMPLE algorithm. The CPU processing time for each
case was 210 h through parallel computation using 64 cores on the Beihang University
supercomputer.

2.4. Model Evaluation

Figure 5 illustrates a schematic of the experimental setup. The experimental setup
was composed of a charge-coupled device camera, frame grabber, computer, synchronizer,
signal generator, laser optics, particle stroller, and high-pressure gas bottle. The construction
and operation of the experimental device were performed in the combustion laboratory of
Beihang University. The numerical simulation methods were previously evaluated [38,39].
Some transient axial velocity results were included in this study to confirm the accuracy of
the numerical simulations.
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The average absolute relative deviation (AARD) between the simulated and exper-
imental results was calculated to represent the error between the numerical results and
the experimental results. The AARD values of the axial velocities at the four positions
are shown in Table 2 The AARD values indicated that the errors between the experi-
mental and numerical simulation results were small, and the relevance of the two was
evident. Considering the empirical accuracy limitations, the numerical simulation results
are considered acceptable.

Table 2. AARD of axial velocity.

Coordinate (mm) 35 40 60

AARD 4.57% 6.01% 12.04%

Figure 6 shows the comparative distribution of transient axial velocities from the
experiments [38,39] and numerical simulations at various radial positions. The obtained
velocity fields demonstrated good agreement with the experimental results at four specific
locations, and the LES also accurately captured the drastic increase in the flow field.
Moreover, the LES could better capture the central recirculation zone, accurately obtaining
the peak of the axial velocity. Accordingly, we suggest that the numerical simulation results
agree well with the experimental results. Thus, the numerical method used in this study
is reliable.
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Figure 7 shows the velocity contour distribution obtained by comparing the experi-
mental and simulation results. Figure 7 shows the movement of the high-speed airflow in
the center recirculation zone and the high-speed airflow at the exit of the swirler. The shape
of the center recirculation zone appears the same in the experimental and simulation results,
and the peak velocity and size of the center recirculation zone are also the same. Thus, the
reliability of the numerical simulation method was verified again by the experimental and
simulation results.
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3. Results
3.1. Large-Eddy Simulation Analysis

Previous experimental studies have shown that the PVC is unstable in a combustion
field [40]. However, their experimental observations have been limited to plane measure-
ments, resulting in considerable limitations on their methodologies. Therefore, the LES
method was used in this study to analyze the combustion instability patterns in both
the stable and unstable states of the flames. The LES could provide the precise vortices
generated in the combustion chamber, which were visualized through the instantaneous
iso-surface and a vortex structure near the pilot-stage swirler. Figure 8 shows that with the
pressure iso-surface, a large-scale structure was often identified in turbulent flows. It is the
so-called precession vortex core, which was found in this combustor. Figure 8 illustrates
four case snapshots to demonstrate the development of the PVC and branches. Owing to
the intensification of flame fluctuation, the PVC rapidly spread out at the swirler exit and
dissociated into small-scale vortex structures. This movement of the PVC caused unstable
flow in the combustion chamber but enhanced the mixing level. Figure 8 also shows that
the PVC markedly changed during periods of combustion instabilities for the combustor in
Case 1. This was mainly owing to the enhanced mixing of the combustion chamber gases
with the primary and secondary introduction of injected air. The precession of the PVC
causes unstable periodic fluctuations in the flames, and the mixing of fresh reactant and
burned products directly results in a strong reaction.
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To elucidate the large-scale vortex in combustion dynamics in detail, the three-dimensional
structure of the vortex breakdown bubble (VBB) was determined using instantaneous
pressure (Figure 9). The VBB is the backflow region formed by the adverse pressure
gradient resulting from the swirling motion. Owing to the periodic instability of the vortex
shedding itself, it is coupled with the pressure fluctuations in the turbulent field during the
interaction with the flame, causing visible combustion oscillations. The VBB can potentially
represent a bubble around the centerline or a ring-shaped structure, which fundamentally
depends on the nature of the inflow vortex. The unsteady behavior of the VBB can reflect
the interaction of the flame and vortex within the combustor. Figure 9 shows that the range
of the VBB in Case 1 was considerably wider than that in the other three cases. Moreover,
the VBB interaction with flame propagation exacerbated the combustion instability in the
turbulent field.

Figure 10 shows the instantaneous temperature snapshots along plane 1 for the four
geometrical combustor models. Notably, four high-temperature areas were identified in
the temperature fields. In all cases, flame stability was achieved by the interaction of the
reversed hot products with the incoming reactants in the combustion process. The reaction
zone was more compact, and the temperature distribution along plane 1 was less uniform
in Case 1. This pattern was one of the key drivers behind the generation of combustion
instability. During temperature pulsation, a distinct phenomenon of irregular temperature
distribution in the downstream direction was identified, particularly in the vicinity of the
primary and secondary holes. Moreover, the flame with high-temperature values was
salient near the CRZ region in Case 1. The Kelvin–Helmholtz instability in the shear layer
induced the instability in the CRZ. The contribution of temperature fluctuations and VBBs
to unsteady combustion was anticipated to be high in Case 1. The disturbances in the flow
field caused by the mixing of jet air from the primary and secondary holes with the air in
the combustion chamber resulted in more pronounced temperature pulsations downstream
of the combustion field. The interaction between the vortex structures and flame certainly
caused some combustion instability. Moreover, the interaction of the jet air around the
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primary and secondary holes with the small-scale eddies in the combustion field inevitably
caused a certain degree of temperature pulsation, resulting in unstable combustion.
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To evaluate this observation, we compared the computed variation of temperatures
calculated for the four cases along line 1 (Figure 11). Given the different geometrical
combustor models, a substantial change in the temperature pulsation was discerned. It was
also clearly evident that the combustion became progressively more intense with increasing
temperature fluctuations as the amount of air injected into the primary and secondary holes
increased. Figure 11 also demonstrates that the temperature peaks were at 2462, 2453, 2455,
and 2432 K, indicating that the temperature pulsation in the combustion zone was driven
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by the injection of air through the primary and secondary holes, which, in turn, affected
unsteady combustion.
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The time-evolution characteristics were further analyzed in detail to elucidate the
impact of flame fluctuation on the unsteady combustion flow field. The change in flame
state was well captured in the LES. The primary and secondary holes enhanced the mixing
of fuel and air, strengthening combustion and shortening the flame length.

Notably, flame pulsation in Case 1 was represented by the OH distribution at specific
times (Figure 12). The instantaneous mass fraction of the OH fields shown in Figure 12
indicates that the flame characteristics differed at various times. At t = 0.01 s, as fuel injection
into the combustor was initiated, the flame also started developing and continuously
provided thermal energy to the flow field as the VBB moved, thus increasing the rate of
heat release for the combustor. At t = 0.08 s, the fuel was continuously injected into the
combustor to create a maximum flame structure. At the downstream side of the flow field,
air entered from the primary and secondary holes, and the disturbance of the flow field
exacerbated the flame pulsation. The oscillation in combustion increased the combustion
instability of the combustion chamber.

Moreover, the primary and secondary holes exacerbated the combustion instabil-
ity characteristics. Excessive air convection triggered more heat loss. The combustion
instability in the combustion chamber was also enhanced.

3.2. Power Spectral Density Analysis

Figure 13 indicates that the combustion instability characteristics were captured by
analyzing pressure signals at points S1 and H1 in the swirler outlet and along the boundary
layer of the recirculation zone (shown in Figure 1). This indicated that periodic pressure
oscillations occurred in the combustion fields for the four cases. Figure 13a shows that the
maximum pressure was 10.704 KPa in Case 1. At H1, the highest oscillation intensity was
found in Case 1, with the peak value of 10.97 KPa at 0.14 s (Figure 13b). Figure 13 reveals
that without primary and secondary hole structures, the pressure amplitude decreased,
and the decreasing rate accelerated. Moreover, unsteady combustion increased. Therefore,
the pressure oscillation amplitudes increased owing to the combustion instability related to
the primary and secondary holes.
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Notably, the difference in the structures of the primary and secondary holes directly
affected the heat release rate and, thus, the unsteady reaction flow characteristics. The
heat release rate at monitoring point H1 for different cases is shown in Figure 14, which
highlights that as the number of primary and secondary holes increased, the heat release
rate at the monitoring point increased, and the variation accelerated. The amplitude in
Case 1 reached a peak value of 8 × 1010 W at t = 0.12 s, whereas the amplitude in Case 4
reached a maximum value of 3.8 × 1010 W at t = 0.1 s. Unsteady combustion and flame
pulsation were more intense in Case 1 than in the other cases. The structures of the primary
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and secondary holes enhanced the flame pulsation in the combustion field and the heat
release rate, resulting in increased unsteady combustion in the combustion chamber. This
unsteady combustion was further intensified by pressure and flame pulsation, and the
peak heat release fluctuation for Case 1 was larger than that for Case 4. Therefore, as the
numbers of primary and secondary holes increased, the heat release rate increased.
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Point S1 was selected to monitor the pressure and perform fast Fourier transform anal-
ysis as well as PSD calculations using the data corresponding to the four cases. Figure 15a
presents the influence of the primary and secondary holes on the dominant frequency and
oscillation energy of the four cases at monitoring point S1. The four cases highlight that the
dominant frequencies of the pressure fluctuations corresponded to high-frequency oscilla-
tions. Despite dominant frequency similarities, the four cases differed markedly in terms of
the change in oscillation amplitude. The maximum value of the oscillation amplitude at
point S1 was 5653 Pa2 in Case 1, whereas the maximum value was only 1130 Pa2 in Case 4.
When the combustion chamber was equipped with both primary and secondary holes,
the amplitude of the pressure fluctuation at the monitoring point gradually increased, the
oscillation energy gradually increased, and the instability characteristics in the combustion
field were also aggravated. With the addition of injected flow through the primary and
secondary holes, the effect of flame combustion was enhanced, leading to the accelera-
tion of flame propagation, thus increasing oscillation combustion in the combustion field.
Meanwhile, the high oscillation amplitude produced significant instability characteristics.
Therefore, as the numbers of primary and secondary holes increased, the pressure pulsation
and oscillation energy increased.

Figure 15b shows the PSD of the pressure fluctuations at H1 on the boundary of the
CRZ for the four cases. The dominant frequency at point H1 corresponds to the low-
frequency oscillation induced by the Kelvin–Helmholtz effect, which, in turn, was affected
by the primary and secondary holes. On the boundary of the CRZ, the Kelvin–Helmholtz
instability was enhanced owing to the flow injected through the primary and secondary
holes, resulting in greater oscillation energy at monitoring point H1. The frequency fluc-
tuation range substantially differed between the four cases. The dominant frequencies in
Cases 3 and 4 fluctuated in the range of 0–1000 Hz, whereas the dominant frequency in
Case 1 with primary and secondary holes fluctuated from 0 to 4000 Hz. The maximum
oscillation energy in Case 1 was five times more than that in Case 4, confirming that the
combustor was affected by the injection flow through the primary and secondary holes.
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4. Conclusions

In this study, the effects of primary and secondary holes on flame fluctuation and
pressure oscillation combustion instability in complex triple swirler stage combustion
chambers were investigated using the LES and PSD methods.

The results corresponding to the instantaneous temperature and flame field were
associated with unsteady combustion characteristics, namely large-scale vortex structures
and the Kelvin–Helmholtz instability, which enhanced unsteady combustion. In the com-
bustion chamber reaction flow field, the large-scale vortex structure and Kelvin–Helmholtz
instability in the shear layer region were found to be affected by the primary and secondary
holes. Among the influencing factors, the injection flow through the primary and secondary
holes played a significant role in the flame and temperature fluctuations, whereas flame
fluctuation influenced the heat release rate of the combustion field.

The variations in energy amplitudes and pressure oscillations in the presence of pri-
mary and secondary holes were quantitatively analyzed. The influence of the oscillating
amplitude was found to be maximized in the presence of the primary and secondary
holes, leading to combustion instability in the combustion chamber. With the injection
flow through the primary and secondary holes, the oscillating energy increased, and
the frequency fluctuation range correspondingly widened. The maximum value of the
oscillation amplitude at point S1 was 5653 Pa2 with primary and secondary holes. More-
over, low-frequency oscillations dominated by the Kelvin–Helmholtz model in the central
recirculation region also affected the combustion instability process.

Notably, this study was limited to investigations of combustion instability based
on the influence of large-scale vortex structures, flame propagation, and pressure os-
cillation. Although unsteady characteristics were relatively accurately captured, ther-
moacoustic oscillation in the combustion chamber has yet to be evaluated in detail. To
comprehensively analyze dynamic combustion mechanisms, future studies can use com-
mercial software to investigate the thermoacoustic combustion instability characteristics in
combustion chambers.
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