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Abstract: In this paper, a deep learning model trained to generate well-posed pressure distributions
at transonic speeds is coupled by the efficient global optimization (EGO) algorithm to speed up the
inverse design process for transonic airfoils. First, the Wasserstein generative adversarial network
(WGAN) is trained to generate well-posed pressure distributions at transonic speeds. Then, the EGO
algorithm is used to pick up a pressure distribution in WGAN by solving the associated optimization
problem defined for matching the prescribed pressure features, such as the suction peak and the
shock-wave position. Finally, a deep convolutional neural network (DCNN) for nonlinear mapping
is adopted to obtain the corresponding airfoil shape. Several cases with prescribed pressure features
were performed to verify the feasibility and efficiency of the proposed method. Test cases indicate
that the airfoil shape with the desired pressure distribution can be found in around one minute using
a desktop computer with an Intel i5-9300H CPU.

Keywords: inverse design; transonic airfoil; deep learning; Wasserstein Generative Adversarial
Network (WGAN); Deep Convolutional Neural Network (DCNN); efficient global optimization

1. Introduction

Airfoils play a critical role in designing the aerodynamic shapes of air vehicles, gas
turbines and wind turbines. They can be designed by either forward optimization design
methods or inverse design methods. Forward optimization design requires a large number
of CFD calculations and, therefore, consumes excessive resources. On the other hand, using
the traditional airfoil inverse design is still time-consuming, due to the fact that the airfoil
shape is adjusted to produce a prescribed pressure distribution by using a CFD-based
optimization algorithm. In a practical preliminary design, it is highly desirable to find
a reasonable airfoil design in minutes by using a desktop computer. Thus, a fast design
method for airfoils is of practical significance.

There are already several inverse design methods that can reduce the design cost
by mapping the pressure distribution to the geometry. For example, Bui-Thanh et al. [1]
obtained a mapping relation between the pressure distribution and the airfoil geome-
try by using the proper orthogonal decomposition to reduce the dimensionality of data.
Sekar et al. [2] proposed a deep convolutional neural network to quickly obtain geometric
shapes from pressure distributions. However, these methods cannot directly specify the key
features of pressure distributions, such as the suction peak and the shock-wave position,
which are believed to be important for airfoil design at transonic speeds.

Recently, the generative model in deep learning was thought to be able to address this
issue. This game-minded model can learn from existing datasets and generate new data
consistent with the training data. Various generative models have been widely applied to
speed up aerodynamic shape optimization. For instance, generative models are already
used for airfoil shape parameterizations. Li et al. [3,4] used the generative adversarial
network (GAN) proposed by Goodfellow et al. [5] to learn from the UIUC airfoil dataset
and trained a discriminative model that can filter out abnormal airfoil geometries, thus
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greatly accelerating the aerodynamic optimization process. Chen et al. [6,7] used GAN to
reduce the number of design variables, resulting in a great increase in design efficiency.
Du et al. [8,9] proposed a new parameterization method by combining B-Spline and GAN
to filter out abnormal geometries. This new parameterization method proved to be useful
for rapid aerodynamic optimization. Yilmaz and German [10] and Achour et al. [11] have
applied the generative model to associate the aerodynamic parameters with the airfoil
geometry. In addition, generative models are also used for flow predictions. Wu et al. [12]
proposed ffsGAN by combining the convolutional neural network and GAN and estab-
lished a mapping relationship between supercritical airfoils and transonic flows to predict
the flowfield of unseen airfoils. They further developed a data-enhanced generative model
named daGAN [13] to overcome the sparsity of training data. The most attractive applica-
tion of generative models is to generate reasonable aerodynamic characteristics by learning
from a dataset. For example, Wang et al. [14] used CVAE-GAN to generate Mach number
distributions with specified characteristics and then mapped them to airfoils. Lei et al. [15]
developed a multistep inverse design process to design supercritical airfoils, where GAN
was used to generate pictures containing physically existing pressure distributions.

However, the above-mentioned inverse design methods still require a relatively
large time cost, which is not ideal for a fast preliminary design. Following the work
by Lei et al. [15], this work aims to further increase the efficiency of airfoil inverse design at
transonic speeds by combing the Wasserstein generative adversarial network (WGAN) [16]
and the efficient global optimization (EGO) [17] algorithm. The WGAN is used to generate
well-posed pressure distributions by learning from a dataset. Different from previous work,
the pressure distribution curves are used as training data, resulting in a significant decrease
in the number of latent variables required by WGAN. Then, the EGO algorithm is used
to quickly find the target pressure distribution based on prescribed features including
the suction peak, the shock-wave position and strength, and the pressure gradient. After
finding the target pressure distribution, a deep convolutional neural network (DCNN) [18]
is used to obtain the corresponding airfoil shape.

This paper first describes the flowchart of the inverse design process in Section 2,
followed by the dataset preparation and the adopted deep learning models. Then, Section 3
presents the training process, followed by the results of WGAN models for generating
pressure distributions and DCNN models for obtaining airfoil geometries. Section 4
presents inverse design results by the proposed method, followed by conclusions.

2. Methodology

The flowchart of the proposed method is presented in Figure 1. The airfoil inverse
design based on deep learning models is used to quickly find an airfoil geometry with
desired characteristics of pressure distribution. The design process can be expressed as
follows: a Python script for the tasks of airfoil parameterization, mesh deformation and
CFD calculations is first executed to collect the datasets containing a large number of
airfoil geometries and the corresponding pressure distributions; then, these datasets are
preprocessed for training deep learning models; after that, a WGAN model is trained to
generate well-posed pressure distributions and the EGO algorithm is used to select the
target pressure distribution that meets the requirements; finally, the pressure distribution is
mapped to the airfoil geometry by the DCNN model.
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Figure 1. Flowchart of the proposed method.

2.1. Dataset Preparation

Training datasets are obtained by a Python script. First, the Latin hypercube sampling
(LHS) method is employed to generate multiple sampling points in the design space, which
is defined by the class shape transformation (CST) [19] method where each airfoil surface is
defined by

Z(X) =
(

X0.5·(1− X)
)
·S(X) + X·Zte. (1)

There, Zte is the trailing-edge half-thickness and S(X) is a shape function defined as a
linear combination of Bernstein polynomials Bi,n(X) of degree n:

S(X) = ∑n
i=0 aiBi,n(X), (2)

Bi,n(X) =
n!

i!(n− i)!
·Xi·(1− X)n−i. (3)

In this work, the RAE2822 airfoil was used as the baseline airfoil. A CST method
with n = 6 was used to deform the baseline airfoil shape. In order to generate sufficient
and reasonable airfoils, the parameters in CST were constrained within the bounds of
ai ∈ [−0.05, 0.05], resulting in design shapes shown in Figure 2. In total, 1000 airfoils
were collected.
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The open-source CFD solver CFL3D [20,21] was used to solve the Reynolds-averaged
Navier–Stokes (RANS) equations and obtain pressure distributions. The datasets used
for network training were analyzed at flow conditions M∞ = 0.73, Rec = 6.5× 106 and
α = 2.79◦. As shown in Figure 3, the pressure distribution by CFD agrees well with the
experimental result [22], indicating a satisfactory accuracy.

Aerospace 2023, 10, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 2. Geometry of the baseline airfoil and the shape deformation boundary for dataset prepara-

tion. 

 

Figure 3. Pressure distribution of CFD simulation and the experiment for RAE2822 baseline. 

2.2. WGAN for Well-Posed Pressure Distributions 

GAN adopts two adversarial models to learn from the training data. A generative 

model G is used to capture the real data distribution Preal and a discriminative model D is 

used to estimate the probability that a sample comes from the real data rather than from 

G. Models G and D are trained simultaneously to reach a Nash equilibrium, which is the 

optimal point for the loss function L in a two-player minimax game defined as 

min
�

max
�

� (�, �) = ��~�����
[����(�)] + ��~��

���� �1 − ���(�)��� (5)

where � and � are the training sample and latent variables, respectively. � is statistics 

expectation with respect to real data distribution Preal and distribution Pw of latent varia-

bles. By learning from Preal, G can produce similar data from only noise input. 

GAN is known to be very unstable due to the mode collapse issue where the gener-

ative model can produce only a small portion of the trained distribution. The WGAN [16] 

has been proposed to address this issue. The Wasserstein distance function is used to 

quantify the distance between the real distribution and the generated distribution. WGAN 

optimizes the Jensen–Shannon (JS) divergence instead of the Kullback–Leibler (KL) diver-

gence in order to overcome the collapse issue in the training process of the original GAN. 

Therefore, the loss function L of WGAN for synthesis and real data can be expressed as 

min
�

max
�

� (�, �) = ��~�����
[�(�)] − ��~��

����(�)�� (6)
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Each airfoil surface is represented by a total of 241 coordinate points (xi, zi) which
are encoded as a tuple (x, z) and sorted in an anti-clockwise direction starting from the
trailing edge. For CFD, the discrete surface is fitted by spline interpolation. The pressure
coefficients of the corresponding coordinates are also stored as a tuple (x, Cp). In order to
reduce the dimensionality of the input and output of the deep learning network to accelerate
the training process, only z and Cp are allowed to be varied, whereas x coordinates are
prescribed as

xi =
1
2

(
cos

2π(i− 1)
240

+ 1
)

, i = 1, 2, · · · 241. (4)

2.2. WGAN for Well-Posed Pressure Distributions

GAN adopts two adversarial models to learn from the training data. A generative
model G is used to capture the real data distribution Preal and a discriminative model D is
used to estimate the probability that a sample comes from the real data rather than from
G. Models G and D are trained simultaneously to reach a Nash equilibrium, which is the
optimal point for the loss function L in a two-player minimax game defined as

min
G

max
D

L(D, G) = Es∼Preal [logD(s)] + Ew∼Pw [log(1− D(G(w)))] (5)

where s and w are the training sample and latent variables, respectively. E is statistics
expectation with respect to real data distribution Preal and distribution Pw of latent variables.
By learning from Preal, G can produce similar data from only noise input.

GAN is known to be very unstable due to the mode collapse issue where the generative
model can produce only a small portion of the trained distribution. The WGAN [16] has
been proposed to address this issue. The Wasserstein distance function is used to quantify
the distance between the real distribution and the generated distribution. WGAN optimizes
the Jensen–Shannon (JS) divergence instead of the Kullback–Leibler (KL) divergence in
order to overcome the collapse issue in the training process of the original GAN. Therefore,
the loss function L of WGAN for synthesis and real data can be expressed as
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min
G

max
D

L(D, G) = Es∼Preal [D(s)]− Ew∼Pw [D(G(w))] (6)

‖∂D/∂
(

vD, bD
)
‖ ≤ γ (7)

where vD, bD are neuronal parameters to be trained in D and γ is a weight-clipping bound-
ary of D to enforce smoothness and stability.

The network architecture that consists of forward-propagation and back-propagation
is adopted to implement WGAN as shown in Figure 4. Model G receives latent variables w
from the latent space, expressed in a standard normal distribution and generates Cp through
an up-sampling process realized by transposed convolution layers. The Cp samples from
real dataset and synthesized by G will be input into model D. Model D scores the samples
to judge real or fake through a down-sampling process realized by convolution layers. The
gradient of neuronal parameters with respect to loss function will be calculated through
backpropagation. The parameters of the models will be updated by the RMSprop optimizer.
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In each epoch of training, model G tries to generate reasonable Cp to cheat model D,
and model D is constantly updated to make correct judgments on real Cp and synthetic
Cp. Finally, model D will be completely fooled by model G. The trained model G will be
introduced into the optimization program as a well-posed Cp generator to find Cp with
desired features.

2.3. Definition of Pressure Distribution

Generally, a practical transonic airfoil needs to satisfy multiple design objectives and
constraints. It was found that the aerodynamic performances of an airfoil could be affected
by the key features of its pressure distribution [23]. In order to obtain an airfoil with desired
aerodynamic performances, the typical features of Cp can be used as a merit function,
which is subsequently optimized by the EGO optimizer to pick up the target pressure
distribution in a design space spanned by the latent variables in the above-mentioned
WGAN generative model G.

The features embedded in the pressure distributions can be of great value to aerody-
namic design for transonic airfoils. Following the previous works [14,15], the features of the
pressure distribution with a single shock are shown in Figure 5 and described as follows:
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Suction peak FSP: Cp value at the point with the lowest pressure near the leading
edge. The suction peak should not be too high to avoid an excessive shock intensity or
unreasonable leading edge radius. In this work, the suction peak is calculated by choosing
the minimal value of Cp within the first 15% of the chord region resulting in

FSP = min
X≤p1

Cp(X), (8)

where p1 = 0.15.
Pressure gradient FPG: Cp rise ratio of pressure platform in front of the shockwave.

The pressure gradient has a great impact on the stability of the boundary layer. The natural
laminar flow airfoil usually has a negative value to maximize the laminar flow area while
the supercritical airfoil has a positive value to slowly recover pressure and avoid strong
shock waves. It is defined as

FPG =
[
Cp(p2)− Cp(p1)

]
/(p2 − p1), (9)

where p2 is the xi value at the start of the shock wave.
Shock-wave position FSW: X value of the maximal Cp rise ratio. Generally, a position

near the middle chord is beneficial for drag reduction and drag divergence control. FSW is
defined as:

FSW = argmax
X∈[p2,p3]

dCp/dX, (10)

where p3 is the xi value at the end of the shock wave.
Shock-wave strength FSS: Cp increase between two sides of the shock wave which

directly indicates the shock drag performance of transonic airfoils:

FSS = Cp(p3)− Cp(p2). (11)

Note that more complicated features can also be incorporated into this method to
generate specific distributions for different aerodynamic design problems. This is different
from the conditional generative model. The method based on feature extraction does not
need to retrain the generative model.

2.4. DCNN Model for Airfoil Geometry

The nonlinear mapping of the pressure distribution to the airfoil shape is realized by a
deep convolution neural network (DCNN), whose architecture is symbolically depicted in
Figure 6. The mapping models are obtained by making the predicted output as close as
possible to the ground truth.
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Figure 6. Architecture of DCNN to generate airfoil shape from Cp distribution: (a) Demonstration
of airfoil geometry predicted by two independent DCNN models; (b) DCNN model for airfoil
geometry mapping.

In order to improve the model accuracy, the upper and lower airfoil surfaces are
trained by two independent DCNN models, respectively. The DCNN architecture consists
of convolution layers, batch normalization layers and a fully connected layer. The inputs to
the network are the pressure distributions in the form of a 32 × 32 2D matrix described
below. Note that using structured matrixes in DCNN is similar to utilizing images as input,
which can reduce the number of parameters in the network. The outputs of the network
are z values representing the airfoil geometry.

A method based on the signed distance function (SDF) [24] is used to represent the
pressure distribution. The combination of SDF and CNN can obtain smoother airfoil
geometry than a multi-layer perceptron. Discrete pressure coefficient points will be fitted
into a curve C by spline interpolation. The SDF at a point

(
X′, Cp

′) in the 2D matrix is
defined as its minimum distance away from curve C. Its mathematical formula can be
expressed as:

SDF
(
X′, Cp

′) = min
(X,Cp)∈C

‖
(
X′, Cp

′)− (X, Cp
)
‖sign

(
X′, Cp

′), (12)

where sign determines whether the point is inside or outside the curve. Here sign
(
X′, Cp

′) = 1
because the curve C is not closed. The pressure distribution is represented by a 32 × 32
Cartesian grid within

(
X′, Cp

′) ∈ [0, 1]× [−2, 1].
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3. Model Training and Performance Analysis

In this section, the training processes of both WGAN and DCNN will be described,
followed by their performance analysis. The open-source software PyTorch [25] is adopted
for the following study.

3.1. Parameter Selection of WGAN

The architecture of the WGAN network is described in Table 1. The model G receives
the latent variables w from the latent space. Usually, a 100-dimensional latent space is
considered to be big enough. In D, we use convolution layers (C layer) with a stride r = 2
instead of adding a pooling layer because it tends to improve the overall accuracy and
stability. Similarly, the up-sampling in G is performed by using the transposed convolution
layers (TC layer) with r = 2, rather than by adding an unpooling layer. The last layer of D is
a full-connected layer (FC layer) to judge according to the characteristics. We chose ReLU
and leakyReLU as activation functions (AF) of G and D, respectively, by considering the
fact that these two functions have good stability during the training process.

Table 1. Architecture details of model G and model D.

Model G Model D

Layer Filter depth AF Layer Filter depth AF

FC layer 512 ReLU C layer 1 Ndepth LeakyReLU(0.2)
TC layer 1 4 × Ndepth ReLU C layer 2 2 × Ndepth LeakyReLU(0.2)
TC layer 2 2 × Ndepth ReLU C layer 3 4 × Ndepth LeakyReLU(0.2)
TC layer 3 Ndepth ReLU C layer 4 8 × Ndepth LeakyReLU(0.2)
TC layer 4 1 FC layer 1

The kernel size Nsize and the filter depth Ndepth are two important parameters that in-
fluence the convergence and performance of WGAN. We conduct several tests to determine
the proper values for these parameters. Figure 7 shows the convergence histories of the loss
function and synthetic pressure distributions of generative models with different values of
Nsize and Ndepth. The loss functions of model G and model D follow the description in the
Equation (6). The kernel size Nsize is selected from {3, 5, 7, 9} and the filter depth Ndepth is
selected from {5, 10, 20}. The remaining parameters were determined by trial and error,
which are listed as follows: the training epoch equals 500, the batch size equals to 64, the
learning rate equals to 0.0001 for both G and D and the clipping weight of D equals to
0.01. It was found that the kernel size has a significant influence on the performance of
WGAN. The generative model with Nsize < 5 fails to produce a smooth pressure distribution.
Furthermore, increasing Nsize helps WGAN models to converge faster. The filter depth
Ndepth should be greater than 5 to generate a reasonable distribution. According to our
experiences, the model with Ndepth = 10 and Nsize = 7 was selected in this work.
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The maximum mean discrepancy (MMD) metric can be used to evaluate the diversity
of synthetic pressure distributions by calculating the similarity between the real data and
the generated data. A lower MMD means that the distribution of generated data is closer
to that of real data. It is defined as:

MMD2(Preal , Pgen
)
= 1

n2 ∑n
i=1 ∑n

j=1 k
(

si
real , sj

real

)
+ 1

m2 ∑m
i=1 ∑m

j=1 k
(

si
gen, sj

gen

)
− 2

mn ∑n
i=1 ∑m

j=1 k
(

si
real , sj

gen

)
,

(13)

k(s1, s2) = exp
[
−
(
‖s1 − s2‖2

)
/2θ2

]
(14)

where n and m are the numbers of real and generated samples. si
real and si

gen are the ith Cp
sample from a real dataset and generated dataset. Preal and Pgen are the real and generated
distribution, respectively, and k is the kernel function with θ = 0.1.

We studied the convergence of the latent space dimension dlatent (from 1 to 100) of
latent variables w based on the MMD scores. A total of 1000 synthetic pressure distributions
generated by trained models were compared with the original training dataset. The results
are listed in Table 2. It can be clearly seen that increasing the dimension of latent space
results in a lower MMD score, which is desirable. The MMD score no longer decreases as
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the dimension of latent space reaches to 10, which is significantly smaller than that in the
previous work [15]. The following study proceeds with a 10-dimensional latent space.

Table 2. Convergence study of the latent space dimension.

dlatent 1 5 10 100

MMD 0.067 0.047 0.045 0.045

3.2. Parameter Selection of DCNN

In the training process of DCNN, 80% of samples were used to train the network and
the remaining 20% of samples were used to validate its performance. The number of layers,
kernel size and choice of activation functions are often referred to as parameters needed to
be selected before training. By trial and error, we designed five CNN models with different
kernel sizes and filter depths. The comparison of the networks is given in Table 3. The
other parameters were determined by setting the learning rate as 1.0 × 10−5, the batch size
as 64 and the training epoch as 1250.

Table 3. Kernel size, filter depth and neurons of DCNN models.

Network CNN7-3 CNN5-3 CNN5-5 CNN5-7 CNN3-7

Kernel size 7 × 7 5 × 5 5 × 5 5 × 5 3 × 3
C Layer 1 depth 20 20 20 20 20
C Layer 2 depth 40 40 40 40 40
C Layer 3 depth 60 60 60 60 60
C Layer 4 depth - - 80 80 80
C Layer 5 depth - - 100 100 100
C Layer 6 depth - - - 120 120
C Layer 7 depth - - - 140 140

FC Layer neurons 61 61 61 61 61

CNN training can be seen as an optimization problem, in which the parameters
(weights and biases) of the network are updated using the backpropagation algorithm. The
optimization involves minimizing a loss function that defines the deviation of a prediction
and its true value. The mean square error (MSE) is used as the loss function defined as

MSE =
1
m ∑m

i=1

(
zi

t − zi
p

)2
(15)

where zi
t and zi

p are ith true z value and prediction of airfoil geometry, and m is the batch
size during training.

Figure 8 shows the testing loss with different DCNN models. The performance
of DCNN is insensitive to the kernel size and the number of layers. Furthermore, the
performance of CNN5-3 with the medium kernel size and shallow layers is slightly better
than that of the other models. Therefore, CNN5-3 will be used in the following study.
Figure 9 shows the convergence history of the CNN5-3 model. After 1250 epochs, the loss
function MSE drops by three orders of magnitude, indicating a reasonable convergence.

Error =
1
n ∑n

i=1

∣∣∣zi
t − zi

p

∣∣∣ (16)

The absolute error is further used to assess the prediction accuracy of airfoil shape
where n represents the total number of test samples. The result is shown in Figure 10. It can
be seen that the error is below the tolerance requirement proposed by Sobieczky [26], which
is 0.0007. It indicates that the designed DCNN model is capable of accurately generating
the corresponding airfoil shape by a given pressure distribution.
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surface and (b) lower surface.

Figure 11 shows the four predicted airfoils by DCNN. Although the pressure distribu-
tions have various suction peaks, pressure gradients, shock-wave positions and shock-wave
strengths, DCNN can produce reliable airfoil predictions that are almost indistinguishable
from the true airfoils.
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Figure 11. Typical predicted results by DCNN from different pressure distributions: (a) test sample 1;
(b) test sample 2; (c) test sample 3; (d) test sample 4.

4. Results and Discussions

This section will present the design results by using the above deep learning models.
The calculations were conducted on a desktop computer with an Intel i5-9300H CPU.

4.1. Design for Various Features

The optimization problem for finding the target pressure distribution is defined
as follows:

min
w

[(
FSP − FSP

′)2
+
(

FPG − FPG
′)2

+
(

FSW − FSW
′)2
]

(17)

where FSP
′, FPG

′ and FSW
′ are predetermined target features added as required. The design

variables are the latent variables w to model G of WGAN. This optimization problem is
solved by the EGO optimizer.

Figure 12 shows four inverse design results with different FSP varying from −1.3 to
−1.0 and FSW is fixed at the chord position of 0.5c where c represents the chord length.
The target pressure distribution is found by the EGO optimizer and the airfoil shape is
generated by the DCNN model. It can be seen that the desirable suction peak is well
realized by the inverse design. Note that the FSP is defined as the minimal value of Cp in
the first 15% chord region. Due to some defects in the geometry predicted by DCNN, such
as insufficient smoothness and cross of trailing edge coordinates, the designed airfoil shape
is fitted by a CST function, and then validated by the high-fidelity CFD simulation. The
pressure distribution by WGAN shows good agreement with that by the CFD simulation.
Figure 13 shows four inverse design results with different FSW varying from 0.44c to 0.56c
where FSP is fixed as −1.2. It can be seen that the shock-wave position is changed as the
prescribed value and the pressure distribution by WGAN is very close to that of the CFD
simulation. Figure 14 shows the design results for different FPG varying from −0.8 to 0.4. It
can be seen that the target pressure distribution is well realized by the inverse design and
shows good agreement with that by the CFD simulation.

In summary, it can be concluded that the pressure distribution can be well designed
according to the requirements by using the proposed inverse design method.
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Figure 12. Typical inverse design results produced by different suction peak features: (a) FSP = −1.0,
FSW = 0.5; (b) FSP = −1.1, FSW = 0.5; (c) FSP = −1.2, FSW = 0.5; (d) FSP = −1.3, FSW = 0.5.
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Figure 13. Typical inverse design results produced by different shock-wave position features:
(a) FSP = −1.2, FSW = 0.44; (b) FSP = −1.2, FSW = 0.47; (c) FSP = −1.2, FSW = 0.53; (d) FSP = −1.2,
FSW = 0.56.
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Figure 14. Typical inverse design results produced by different pressure gradient features: (a) FPG = 0.4;
(b) FPG = 0.0; (c) FPG = −0.4; (d) FPG = −0.8.
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4.2. Design for Various Airfoils

This section will consider more practical airfoil design requirements. The optimization
problem is defined as minimizing the shock-wave strength subject to a number of con-
straints according to the design requirements. The definition of the optimization problem
is shown in Table 4, where c1 and c2 may be chosen based on design requirements.

Table 4. Optimization problem statement for different inverse design requirements.

Function Quantity Description

Minimize FSS 1 Shock-wave strength
Design variables w 10 Latent variables to model G

Constraints
FSP > c1,
FPG < c2,

0.45 < FSW < 0.55

1
1
1

Suction peak
Pressure gradient

Shock-wave position

In total, four inverse design cases with different constraints were carried out. The
convergence histories of the EGO optimizer are shown in Figure 15. It can be seen that the
convergence results are obtained within 200 iterations. The inverse design results of DCNN
are shown in Figure 16. The CFD simulation results of the inversely designed airfoils agree
well with the target pressure distribution generated by WGAN. Interestingly, it can be
observed that a more negative FPG requirement for natural laminar flow airfoils causes
the optimizer to select a pressure distribution with a stronger shock wave, as shown by
Design 3. Design 1 and Design 2 are close to the shape of a supercritical airfoil, whereas
Design 3 and Design 4 are close to the shape of a transonic airfoil with natural laminar
flow features.
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Note that the time cost for each case is around one minute by assuming that the deep
learning models are already available. It is believed that deep learning models can be
easily trained by high-performance computers and stored in a database. Then, airfoils with
various desired features can be found by a desktop computer in minutes.
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Figure 16. Typical inverse design results produced by different constraint combinations: (a) Design 1:
c1 = −1.3, c2 = 0.4; (b) Design 2: c1 = −1.2, c2 = 0.4; (c) Design 3: c1 = −1.2, c2 = 0.0; (d) Design 4:
c1 = −1.1, c2 = 0.0.

5. Conclusions

A data-driven inverse design method has been developed for transonic airfoils. Deep
learning models and the EGO algorithm have been combined to accelerate the design
process for fast airfoil design. Each airfoil design has been completed in around one minute
using a desktop computer with an Intel i5-9300H CPU.

Several test cases confirm the results in previous work. Various features of pressure
distribution can be directly specified according to the design requirements and the target
pressure distribution by the WGAN model shows good agreement with that of high-fidelity
CFD simulation.

It has been found that using the pressure distribution curves as training data can
significantly reduce the number of latent variables required by WGAN. A 10-dimensional
latent space has been found to be enough for generating well-posed pressure distributions
with sufficient accuracy, greatly reducing the time cost.
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Nomenclature

Cp Pressure coefficient
c Airfoil chord length
D Discriminative model
dlatent Dimension of latent variable
G Generative model
L Loss function
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M∞ Freestream Mach number
Rec Reynolds number based on the chord length
s Sample from dataset
w Latent variable of WGAN
X, Z normalized coordinates
(x, z) Tuple for storing coordinates
α Angle of attack
MSE Mean square error
SDF Signed distance function
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