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Abstract: Satellite communication (SatCom) systems operations centers currently require high human
intervention, which leads to increased operational expenditure (OPEX) and implicit latency in human
action that causes degradation in the quality of service (QoS). Consequently, new SatCom systems
leverage artificial intelligence and machine learning (AI/ML) to provide higher levels of autonomy
and control. Onboard processing for advanced AI/ML algorithms, especially deep learning algo-
rithms, requires an improvement of several magnitudes in computing power compared to what is
available with legacy, radiation-tolerant, space-grade processors in space vehicles today. The next
generation of onboard AI/ML space processors will likely include a diverse landscape of hetero-
geneous systems. This manuscript identifies the key requirements for onboard AI/ML processing,
defines a reference architecture, evaluates different use case scenarios, and assesses the hardware
landscape for current and next-generation space AI processors.
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1. Introduction

Satellite communication (SatCom) systems today heavily rely on human expertise
and manual operations. Control activity of the satellite system requires high human
involvement, resulting in increased operational expenditure (OPEX) and implicit latency
in human action, leading to quality of service (QoS) degradation. Moreover, human-based
decisions are often far from optimal, leading to inefficient system performance [1–3].

In this context, artificial intelligence (AI) has emerged as a promising alternative
to cope with a computationally expensive optimization procedure. Recently, with the
exponential increase in available data, machine learning (ML) has become a fundamental
technology in different areas of wireless communications [4,5]. In particular, ML has already
proven to be a helpful tool to accelerate complex optimization procedures for wireless
communications in general, and SatCom [1,2,4,6].

The European Space Agency (ESA) opened an AI-related call for SatComs for the first
time in 2019 to investigate the applicability of AI techniques in satellite communications.
Several potential use cases were shortlisted during these projects, and a preliminary evalu-
ation of a small number of them was carried out to provide guidelines for future research:
(i) SATAI—Machine Learning and Artificial Intelligence for Satellite Communications [7] and
(ii) MLSAT—Machine Learning and Artificial Intelligence for Satellite Communication [8].

The overall drawbacks identified in both SATAI and MLSAT are as follows:

• A large and representative training set (labeling) is required to achieve acceptable
performance.

• Particular use cases were considered, and typically limited ML techniques were
examined.

• Insufficient evaluation and comparison with non-ML designs (note that the evaluation
phase was < 4 months).

Aerospace 2023, 10, 101. https://doi.org/10.3390/aerospace10020101 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10020101
https://doi.org/10.3390/aerospace10020101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-2280-4689
https://orcid.org/0000-0002-0035-3944
https://orcid.org/0000-0002-4164-3673
https://orcid.org/0000-0001-7304-095X
https://orcid.org/0000-0003-4415-9649
https://orcid.org/0000-0002-8198-7497
https://orcid.org/0000-0002-9936-7245
https://orcid.org/0000-0002-8500-5534
https://orcid.org/0000-0001-5122-0001
https://doi.org/10.3390/aerospace10020101
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10020101?type=check_update&version=3


Aerospace 2023, 10, 101 2 of 21

Both activities were too brief for an in-depth analysis of the full potential of ML techniques.
Outside Europe, NASA has been actively investigating the cognitive radio (CR) frame-

work in satellite communications within the John H. Glenn Research Center testbed radios
aboard the International Space Station [9].

In addition, Kato et al. [10] propose to use AI techniques to optimize space–air–
ground integrated networks (SAGINs). First, the authors discuss several main challenges
of SAGINs and explain how AI can solve these problems. They consider satellite traffic
balancing and propose a deep learning (DL)-based method to improve traffic control
performance. Simulation results conclude that the DL technique can be an effective tool to
enhance the performance of SAGINs. However, the authors mention that implementing AI
techniques in SAGINs is still a new topic and needs more effort to improve its performance.

There are more significant contributions regarding radio resource management (RRM)
in SatCom. For example, in [11], the authors propose a combined learning and optimization
approach to address a mixed-integer convex programming (MICP) problem in satellite
RRM. Deng et al. [12] suggest an innovative RRM framework for next-generation hetero-
geneous satellite networks (HSNs), which can cooperate between independent satellite
systems and maximize resource utilization. The critical points of the proposed design lie
in the architecture that supports intercommunication between different satellite systems
and in the management that provides pairing between resources and services. The authors
apply deep reinforcement learning (DRL) in the system due to its strong capability for
optimal pairing.

Following more recent research suggesting DRL algorithms to solve the RRM problem,
Ferreira et al. [13] claim that a feasible solution can be designed for real-time, single-
channel resource allocation problems. However, in their study, DRL architectures are based
on the discretization of resources before allocation, while satellite resources, such as power,
are inherently continuous. Therefore, Luis et al. [14] explore a DRL architecture for power
allocation that uses continuous, stateful action spaces, avoiding the need for discretization.
However, the policy is not optimal since part of the demand is still lost.

On the other hand, Liu et al. [15] suggest a new dynamic channel allocation algorithm
(DRL-DCA) in multibeam satellite systems. The results show that this algorithm could
achieve lower blocking probability than traditional algorithms. However, the joint channel
and power allocation algorithm is not considered.

Liao et al. [16] construct a game model to learn the optimal strategy in the SatComs
scenario. In particular, the authors suggest a bandwidth allocation framework based
on the bandwidth DRL, which can dynamically allocate the bandwidth in each beam.
The effectiveness of the proposed method in time-varying traffic and large-scale communi-
cation is verified in the bandwidth management problem with acceptable computational
cost. However, only one resource per satellite can be managed with this method, a critical
limitation when full flexibility is sought in the multibeam satellite system.

In [17], a DRL architecture based on a cooperative multiagent system was presented,
demonstrating better performance than a single agent for RRM in multibeam satellites with
more than one flexibility resource since the number of possible states increases exponentially
for a single agent. In addition, Q-learning (QL), deep Q-learning (DQL), and double deep
Q-learning (DDQL) algorithms are analyzed by comparing their performance for RRM
based on their throughput, complexity, and added latency.

Based on the above, we can note that the study of AI applications in SatCom has
advanced considerably in recent years. However, it is still in its infancy; for example, most
of these studies are based on theoretical simulations performed on traditional processors
without considering the hardware technical limitations in space. AI algorithms can be
very computationally intensive, consume significant power, and are slow when running
on standard processors. These problems severely limit their use in satellite payloads and,
thus, applications. The industry has developed AI-specific processors capable of executing
complex algorithms in real time and consuming a fraction of the power. These processors
are now available as commercial AI chipsets.
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The availability of these chipsets has enabled the practical use of AI for satellite appli-
cations in terrestrial and onboard scenarios. However, next-generation defense systems
and commercial broadband satellites require more autonomy, onboard data processing,
and decision making. In this regard, interest in using commercial AI chipsets has increased
significantly to evaluate, develop, and validate AI-based signal processing techniques
onboard the satellite, such as signal identification, spectrum monitoring, spectrum sharing,
or signal demodulation.

This paper identifies the key performance indicators (KPIs) for AI/ML processing
onboard SatCom systems, defines a reference architecture, analyzes different use scenarios,
and assesses the hardware landscape for current and next-generation commercial AI
processors. The main contributions of the paper are as follows:

• The critical requirements for onboard AI/ML processing include power consumption,
latency, and accuracy.

• Usage scenarios for onboard AI/ML processing are identified and discussed, including
applications in communication satellites.

• Three scores for comparing the applicability of onboard AI/ML processing are defined,
including the onboard applicability, the AI gain, and the complexity. These scores
provide a quantitative measure of the suitability of various scenarios where AI chipsets
can be used for onboard AI/ML processing.

• The authors present a comprehensive review of commercial AI chipsets and compare
their specifications concerning the applicability of onboard AI/ML processing.

Overall, this paper thoroughly analyzes the current state of the art in onboard AI/ML
processing, and identifies key considerations for its implementation in communication
satellites. It also presents a useful framework for comparing and evaluating the suitability of
different AI chipsets for onboard AI/ML processing. The remainder of the paper is divided
as follows. In Section 2, we present the KPIs and architecture required for AI processing
implementation onboard the satellite. Section 3 evaluates the applicability in different use
cases, Section 4 evaluates commercial AI chips for implementation, and Section 5 presents
the conclusions and challenges.

2. Onboard AI Processing

AI techniques for onboard processing must go through two phases: training and
inference. Initially, the AI model undergoes the training phase. The objective is to find
the optimal model parameters to predict the satellite configuration for the system conditions.
Then, the trained model is obtained and used to indicate the system parameters depending
on the input data. We propose an architecture (Figure 1) based on training the offline ML
model with a training database that describes the system behavior. A model that manages
the satellite could be obtained according to the system conditions. The main advantage
of this architecture is that onboard processing times and required power consumption are
reduced, firstly because the model has been previously trained. However, this architecture
depends on the training data and the models used.

Not all use cases are implementable onboard the satellite. Therefore, in Table 1,
we present the analysis and scoring of the KPIs for the applicability of onboard AI imple-
mentation use cases. Each use case should be evaluated accordingly.
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Figure 1. AI chipset implementation in the space segment for onboard processing. The training of
the ML algorithm is performed offline in the ground segment with a training database, thus saving
the obtained model, and the AI chipset can go on board the satellite using the model for inference.

Table 1. KPI analysis for the applicability of onboard AI implementation use cases.

Scores
KPI

0 1 2 3 4 5

Onboard
applicability

Not
applicable

Network of
regenerative

satellites

Regenerative
Upper layers
(CU–RAN)

Regenerative
Lower layers
(DU–RAN)

Regenerative
PHY layer
(RU–RAN)

DTP/RF/
Antenna
Interface

AI Gain No gain
Human

intervention
reduction

The previous
score +
OPEX

reduction

The previous
score +

QoS gain

The previous
score +

processing
time reduction

The previous
score +

performance
gain

Complexity Unfeasible

Extensive
payload
changes
required

Computational
level +

memory-intensive
+ power and time

constraints

Computational
level +

memory-intensive
+ power

constraints

Computational
level +

memory-intensive

Computational
level

2.1. Onboard Applicability

The applicability of the proposed use case to be implemented on board a satellite
must be evaluated, considering the state of satellite payloads and their required onboard
functionalities. This depends on the current level of technology. Some proposed cases (e.g.,
adaptive coding and modulation (ACM) optimization) require the onboard implementation
of a complete satellite payload or a constellation. We propose a progressive scale of applica-
bility scores that increase according to the complexity of the satellite or the regenerative
level required to implement the proposed scenario. These levels can also correspond to
the 4G/5G/6G radio access network (RAN) divisions and their functional groups: radio
unit (RU), distributed unit (DU), and centralized unit (CU).

2.2. AI Gain

Existing solutions for the proposed use cases often have inherent limitations in trans-
lating theory to practice when handling the computational complexity and/or latency
required for results, especially when dealing with an ample search space or high degrees
of freedom. This has been the typical motivation for using AI, as it has shown a strong
potential to overcome this challenge through data-driven solutions. This paper will con-
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sider these criteria and evaluate the expected latency, complexity, and throughput gains
achieved with AI-based techniques in each considered use case.

2.3. Complexity

When assessing the applicability of the AI technique, the complexity and runtime anal-
ysis of the algorithm must always be discussed and taken into account.
Consequently, it is crucial to quantify the resources required to execute each selected
AI-based technique. This includes the following:

• Computational complexity. Number of operations as a function of the input size of
an algorithm.

• Computational time. The execution time of an algorithm depends on the machine that
executes it.

• Memory. Memory in neural networks is needed to store input data, weight parameters,
and activations as input propagates through the network.

• Power consumption. Power is critical in both phases of AI-based techniques, the train-
ing phase and the testing phase. All available processing elements are used in a highly
parallel fashion for training. For the inference phase, algorithms are optimized to
maximize performance for the specific task for which the model is designed.

3. Onboard AI Applications
3.1. Use Cases
3.1.1. Interference Detection

In a satellite communications system, inter-system interference due to jamming, mis-
aligned dishes, and unintentional interference from other systems has become a significant
concern. Interference substantially deteriorates the signal quality, and thus degrades overall
system performance. Therefore, detecting interference is the first step in the interference
management chain (detection, classification, localization, and mitigation).

The proliferation of the non-geostationary satellite orbit (NGSO) constellation has
exacerbated the space interference scenario. With multiple satellites flying in different
orbits and inclinations, in-line interference is increasingly likely to occur (see Figure 2) [18].

Figure 2. Example of an onboard interference scenario between NGSO and GSO.
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Interference is often monitored on the ground and minimized in satellite networks
to maintain high QoS. In terms of better spectral management and customer incident
prevention, the possibility of offloading a purely human task, such as power spectrum
density verification, to an automated system capable of detecting the presence of unwanted
signals is an exciting prospect. The introduction of AI would significantly reduce inci-
dent/degradation duration and increase cost savings from an OPEX perspective, and
ultimately increase availability and QoS.

Significant interference is considered a critical problem for SatCom systems and ser-
vices. The SatCom industry is increasingly concerned about managing and mitigating
interference effectively. Although efficient techniques exist to control substantial inter-
ference in SatCom, weak interference is not so easy to detect due to its low signal-to-
interference-plus-noise ratio (SINR). To solve this problem, the work proposed in [19]
offers and develops a technique that is performed on board the satellite by decoding
the desired signal, removing it from the total received signal, and applying an energy
detector (ED) on the remaining signal for interference detection. Unlike previous work,
the authors in [19] consider imperfect signal cancellation, examining how decoding errors
affect detection performance.

The work presented in [20] proposes a two-step algorithm for onboard interference
detection, exploiting the frame structure of the digital video broadcasting–second gen-
eration satellite extensions (DVB-S2X) standard, which employs pilot symbols for data
transmission. Assuming that the pilot signal is known at the receiver, it can be removed
from the total received signal. Then, an ED technique can be applied to the remaining
signal to decide the presence or absence of interference.

On the other hand, a receiver in which compressive signal processing is used to esti-
mate the power spectrum in the compressed domain using a computationally lightweight
algorithm is proposed in [21]. It has a significantly low detection time to detect the presence
of a narrowband, high-power interference signal. It also proposes interference filtering
using a novel and computationally efficient filtering method in the compressed domain.
This receiver architecture results in a computationally efficient receiver with reduced de-
tection time and is suitable for real-time applications. This will help protect a satellite
transponder from saturation due to unwanted high-power narrowband interference.

In this context, AI-based techniques can bring gains in identification accuracy and
latency. Several AI-based decision processes can be used when mapping baseline features
to a class label. Probabilistic-derived decision trees on expert modulation features were
among the first to be used in this field, but for many years such decision processes have also
been trained directly on datasets represented in their feature space (e.g., neural networks
and support vector machines (SVM)).

The accuracy of the interference detector is a critical parameter because false negatives
can have a high cost in lowering the SINR, which would be reflected in the QoS. In that
sense, using ML for interference detection is expected to decrease the probability of false
detection by 44% compared to traditional methods [1].

An ML model based on an autoencoder is proposed for interference detection, assum-
ing the interference is an anomaly in the system. The autoencoder will be composed of
an encoder neural network and a decoder neural network, stacked sequentially. The en-
coder compresses the data blocks and reduces the dimensionality of the input. The data is
passed to the decoder, which increases the dimensions and restores the original dimension.

If the input signal does not include any interference, the reconstructed signal will be
very close to the input signal. On the contrary, if the input signal comprises interferences
that modify the original statistics, the reconstructed signal will be noticeably different
(see Figure 3).
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Figure 3. Autoencoder for interference detection.

3.1.2. FEC in Regenerative Payload

Forward error correction (FEC) [22] decoding algorithms such as low-density parity
check (LDPC), Reed–Solomon, or polar codes are crucial elements of modern digital com-
munications based on 3GPP and DVB standards. These decoding schemes require high
implementation complexity and power consumption to be integrated into full regenerative
satellite payloads. Therefore, this use case is motivated by AI acceleration through ML
algorithms to reduce the complexity and, thus, the power consumption of FEC decoding
algorithms on board satellites. A conventional FEC approach is based on maximum a pos-
teriori decoding in which ML application is restricted to shortcodes due to the exponential
training complexity [23]. In addition, sometimes, an unknown distribution of the channel
noise makes training difficult. The most popular algorithm applied to conventional FEC
decoding with ML is the belief propagation (BP) algorithm [23], trained as a neural net-
work to improve error correction performance. However, its application on regenerative
payloads and SatCom links has not been analyzed.

In this scenario, a complexity reduction in FEC decoding for small power-limited
regenerative satellites with a reduced number of datalinks is expected. Then, this approach
may also be scaled up to future regenerative ultra-high-throughput satellites (UHTSs)
with thousands of datalinks requiring simultaneous FEC decoding. A significant decrease
in the power consumption of such a case will also lead to an increase in the available
power budget for other satellite subsystems or to a decrease in the mass, and hence,
launching costs.

Typical decoding relies on maximum a posteriori decoding, which consists of comput-
ing the probability that a specific bit is 0 or 1 and selecting the hypothesis with a higher
probability. The two main drawbacks of typical decoding are (i) the computational complex-
ity and (ii) the sometimes unknown distribution of the channel noise. Therefore, it makes
sense to consider the ML alternative to learning from data automatically. The application
of ML to FEC decoding is generally restricted to shortcodes due to the exponential training
complexity. For instance, a message with k bits gives a total of 2k possible codewords.
Fortunately, the ACM codes of DVB-S2X are generally limited, favoring such a scenario.

Two ML technique options exist, artificial neural networks (ANNs) and recurrent neu-
ral networks (RNNs), as candidates to include onboard processing. The first has a fixed in-
put layer size, which can be inefficient when applying ACM techniques to maintain avail-
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ability in the system. The second can process a sequence of arbitrary length by recursively
applying a transition function to the internal hidden state vector of the input sequence.
The RNN properties suggest that it can correct errors in the time series data flow by refer-
ring to the contexts obtained by supervised training. Hence, RNNs have been shown to
perform well for FEC decoding on receivers that may not previously know the channel cod-
ing types, such as cognitive radio. In this sense, a technique based on RNNs is preferable
for error correction based on FEC for a regenerative satellite.

An RNN can process a sequence of arbitrary length by recursively applying a transition
function to the internal hidden state vector of the input sequence, in addition to the fact that
RNNs have been shown to perform well for FEC coding on receivers that may not know
the channel coding types previously, such as cognitive radio [24]. In this sense, a technique
based on RNNs is chosen for error correction in a regenerative satellite. The RNN is a direct
adaptation of the standard feedforward neural network used to learn the features of time
series data. Figure 4 shows the structure of the RNN for the FEC of a regenerative satellite.
Hidden layer outputs are used as inputs of the delay layer, and those of the delay layer and
the outputs of the delay layer are used as part of the inputs of the hidden layer the next time.
Due to this structure, the RNN makes it possible to obtain outputs considering the inputs
at a given time and the relationship between its inputs and those of the previous time step.
These properties of the RNN suggest that the RNN can correct errors in the time series data
flow by referring to the contexts obtained by supervised training. We can use the RNN as
an FEC algorithm in the time series data.

Figure 4. Recurrent neural network for forward error correction in regenerative payloads.

3.1.3. Link Adaption/ACM Optimization

ACM techniques are among the most successful fade mitigation techniques for wire-
less links. The receiver estimates the instantaneous signal-to-noise ratio (SNR), and signals
this value back to the transmitter, requiring a dead time to react to any changes. The channel
conditions in SatCom links, such as rain, delay, and scintillation, make it difficult obtain
the estimation signal required for feedback to choose the most suitable MODCOD at all
times. In addition, another problem is added, the number of channel models currently
considered for NGSO shows no consensus to determine the unique channel model [25].
In conventional approaches, ACM is easy for a single link without interference, where
a pilot signal can be used to measure the channel and report back to the receiver. However,
the innate delay of satellite links makes the problem substantially challenging. The ML algo-
rithms are expected to improve the channel state information (CSI) prediction in the satellite
network to help achieve ACM, hence optimizing system capacity.

The work presented in [26] focuses on applying ML algorithms to CSI prediction
in the satellite network, and using the improved prediction results to optimize system
capacity. By testing different ML algorithms, the improvement in system performance and
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the feasibility of deploying an ML-based prediction framework are demonstrated. The ML-
based CSI prediction model provides an average capacity increase of up to 10.9% with
acceptable overhead. Faced with the complexity of channel estimation techniques, non-
coherent schemes do not need CSI to arise. In SatCom, these schemes are challenging for
many use cases; for instance, they require abundant computational resources, as presented
in [27] for SatCom. Onboard processing ML techniques can reduce the ACM capability
required by non-coherent receivers.

Machine learning techniques are proposed to increase the system’s availability when
link adaptation is required. Implementation based on deep learning, such as a long short-
term memory network (LSTM), allows us to predict the SINR through time series data.
This prediction strategy will enable us to develop a more efficient ACM mechanism.

An LSTM layer is an RNN that supports time series and sequential data. To predict
the values of future time steps of a sequence, we can train a sequence-by-sequence regres-
sion LSTM network. The responses are the training sequences with the value shifted by
a one-time step, i.e., at each time step of the input sequence, the LSTM network learns to
predict the value of the next step, t + 1.

Figure 5 shows the proposed architecture for SNIR prediction. The SINR time series
vector for each nth channel, γn, is preprocessed using feature scaling, also known as
normalization, which is expressed as γ

′
n. The LSTM network comprises at least one LSTM

layer and a complete connection layer. The input of the LSTM network is γ
′
n, with which

the SNIR prediction for time step t + 1, γ̂n, is performed. With this prediction, the predicted
value of the spectral efficiency can be calculated, and the MODCOD can be adapted.
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Figure 5. LSTM network for predicted SNR.

3.1.4. Flexible Payload Reconfiguration

Flexible payloads are becoming mainstream, and are revolutionizing the conven-
tional idea of “mission by satellite”. Focusing on frequency-flexible satellites, the goal
is to dynamically adapt frequency resources to avoid congestion and ensure a high QoS.
More advanced satellite systems can allocate bandwidth dynamically to each beam (as-
suming a multibeam satellite system). Multiple carriers can be made available within each
beam, and the per-user carrier assignment can also be optimized. However, the degree
of flexibility available in most satellite systems is power allocation. Power control is easy
to implement, and can resolve small congestion events such as the one depicted, where
a user terminal is suffering from low SNR (mainly because it is located at the edge of
the beam). At the same time, a privileged user in the center of the beam is receiving more
SNR than it actually needs. Proper power balancing could resolve the unfortunate situation
of the congested user without affecting the QoE of the user in the center of the beam.

The next generation of satellite communications (GSO or NGSO) is being built with
the capability to quickly and flexibly assign radio resources according to the system load and
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the changing environment. Many significant resource allocation problems are non-convex
or combinatorial because of the discrete nature of the variables involved. Hence, computing
the optimal solution is challenging, leading to unaffordable computational times.

However, some approaches are based on simplifying the case study to reduce the search
variables. For example, the authors in [28] propose an assignment-game-based dynamic
power allocation (AG-DPA) to achieve suboptimal low complexity in multibeam satellite
systems. The authors compare the results obtained with a proportional power allocation
(PPA) algorithm, obtaining a remarkable advantage in energy savings; however, the re-
source management is still insufficient for the required demand.

As an alternative, Lei et al., have proposed a suboptimal [29] method, which addresses
parts of the problem separately and then iteratively adjusts the parameters. The problem
splitting is conducted in such a way that power allocation and carrier allocation are separated.

On top of the new perspective of reconfigurable payload, AI shall be integrated into
the end-to-end service delivered to introduce a smart interference management system.
A fully reconfigurable payload using a conventional interference management approach
could not bring a substantial differentiator to the industry or customers. Instead, the win-
ning combination of flexible payload with a smart interference avoidance system is a ne-
cessity that can deliver the benefits of the previously mentioned use cases and increase
the customer QoS. This use case proposes a machine learning system capable of providing
a satellite payload configuration either at the RF interface to meet the requested user bit
rates under certain external interference power levels over the coverage area, or at the phys-
ical layer (PHY) to provide flexibility for future satellite–terrestrial network integration.

In that sense, it is proposed to use a convolutional neural network (CNN) for flexible
payload reconfiguration at the RF interface, as shown in Figure 6. The CNN input is
represented in the form of tensor matrices, which will be passed to the convolutional
layers where feature extraction is performed and then propagated to the full connection
layers, where a classification will be generated, and each class will represent a payload
resource configuration. The depth of the input layer will be given by the number of features
evaluated as the traffic demand, ri,j, the interference power level, Ii,j, and/or the rain
attenuation, Ai,j, where i and j represent the geographic coordinates within the service area.

Figure 6. Convolutional neural network for RF interface flexible payload reconfiguration.

3.1.5. Antenna Beamforming

Antenna arrays play an increasingly important role as we move into the era of high-
capacity wireless access systems that demand high spectral efficiency. Antenna arrays
have become part of the standards for cellular and wireless local area networks. These ac-
tive antenna arrays will play an equally important role in the next generation of satellite
communication systems. In addition, the substantial low earth orbit (LEO) and medium
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earth orbit (MEO) constellations envisioned by companies such as OneWeb, Telesat, SES,
and SpaceX will require antennas capable of beamforming according to traffic require-
ments. This convergence of trends is driving a shift from passive antennas with fixed,
static beam patterns to active, fully steerable, intelligent antennas. Active beamforming
antennas, commonly referred to as active phased array antennas, have active phase shifters
on each antenna element or subarray to generate an incremental phase shift to beam steer
the radiation pattern in a certain direction. In addition, the amplitude of the power re-
ceived by each antenna allows to control of the shape of the beam; for instance, control
of the beamwidth θ−3dB, side lobe levels (SLLs), and even the nulls in a certain direction.
Hence, controlling both the phase and the amplitude gives us plenty of control of the radia-
tion pattern. Next, a short description of the radiation pattern characteristics is provided.

Beamwidth θ−3dB

A direct radiating array (DRA) antenna beamwidth can be increased or decreased by
controlling its effective aperture, which also depends on the number of rows and columns
of active elements. An estimation of the required number of elements R in one dimension
for a certain beamwidth can be computed using Equation (1)

R =
arcsin( 1√

2
)

ηdθ−3dB
2λ0 (1)

where η is the antenna efficiency, d is the inter-element spacing, and λ0 is the antenna
wavelength. For instance, to obtain θ−3dB = 0.9◦ using a DRA with subarray elements
separated by d = 2.5 λ0, and assuming an ideal case with η = 1, a total number of R =
16× 16 elements is needed. The radiation pattern corresponding to this scenario can be
estimated using the planar array factor formula presented in (2)

AF = IUC

Rx

∑
rx=1

ej(rx−1)(kdx sin(θ) cos(φ)+βx) ×
Ry

∑
ry=1

ej(ry−1)(kdy sin(θ) sin(φ)+βy) , (2)

where IUC is the unit cell element pattern, Rx is the number of elements in the x-direction,
Ry is the number of elements in the y-direction, k is the wave number, dx is the period
in the x-direction, dy is the period in the y-direction, βx is the incremental phase shift
in the x-direction, and βy is the incremental phase shift in the y-direction. The radiation
pattern corresponding to the azimuth cut is illustrated in Figure 7.

Figure 7. Azimuth cut of a 16 × 16 DRA, using subarrays as radiating elements separated by 2.5 λ0.
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Side Lobe Levels

Low side lobe levels (SLLs) can be easily accomplished using a windowing operation
by means of a filter design, such as that of Hamming, Chebyshev, Kaiser, Taylor, or another
known approach. Some of these methods allow one to reduce the side lobe levels to
the desired value; however, the drawback of this is a beamwidth increase, hence reducing
the directivity of the array. For instance, we can consider the previously presented example,
which uses 16× 16 subarray elements used to obtain a radiation pattern with a θ−3dB = 0.9◦.
If we apply a Hamming window to reduce the SLL by 30 dB, we need to increase the number
of antenna elements to 24 × 24 to keep a more or less equal beamwidth. Figure 8 shows
the directivity at φ = 0◦ cut for the case when the array has tapering for SLL reduction.

Figure 8. Azimuth cut of a 16 × 16 DRA using subarrays as radiating elements separated by 2.5 λ0

with a Hamming window applied to the weight vector.

Nulling

Multibeam interference can be avoided by generating nulls in the radiation pattern at
the position of the interfering beam. Controlling the nulling is a straightforward process
because the interference direction is known, which makes the implementation of the al-
gorithm relatively simple. First, we need to obtain the weights of a beam that points
towards the null angle, and then scale the beam weights and subtract scaled weights
from the weights for the beam patterns that point towards the beam steering direction.
The formulation of this nulling is presented in (3)

WT = Wθ0φ0 −Wnull
W ′nullWθ0φ0

W ′nullWnull
(3)

where Wθ0 φ0 is the weight vector with the beams steering towards a certain θ0 and φ0
direction, and Wnull represents the weight vector with the direction where the null is
intended to be. Figure 9 shows the amplitude distribution and radiation pattern of a 16 ×
16 DRA that generates multiple nulling in a multibeam scenario.
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Figure 9. Azimuth cut of 16 × 16 subarrays in a multibeam scenario with nulling between beams.

All previous parameters can be controlled by AI, especially for a multibeam scenario
with SLL, beamwidth, and nulling constraints for multiple beams. Future satellites will
be equipped with an array of active antennas rather than a fixed multipoint beam pattern.
This allows the generation of multiple spot beams with different numbers, sizes, and shapes.

3.2. Use Cases Assessment

Figure 10 and Table 2 present the analysis and comparison of the different scenarios
presented, including the identification of the inputs and outputs of the AI model; the values
in the “Total Scores” column represent the sum of each KPI score, as presented in Figure 10.
Regarding the applicability on board, the use cases with higher scores are interference
detection and antenna beamforming, because the regenerative level remains at RF and
antenna level, respectively, as explained in Table 1. Meanwhile, the flexible payload use
case is the one that has a lower score concerning onboard applicability because it requires a
regenerative payload at the low layer level (DU-RAN) due to the fact that a return channel
demodulator would be required to analyze the traffic demand in real time; an additional
ML block for onboard traffic prediction is also feasible. Nevertheless, the response time to
changing traffic demand is expected to be drastically reduced due to the response time of
inference compared to other decision-making techniques.

However, the flexible payload use case is one of those expected to have a higher AI gain
due to the complexity of optimal radio resource management with conventional techniques.
Therefore, it is expected that with AI-based techniques, an increase in performance of up to
30% and a reduction in power consumption of up to 50% can be obtained [2].

Based on the three KPIs explained in Table 1, the most promising use cases for onboard
processing are interference detection, antenna beamforming, and flexible payload.
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Figure 10. Use cases evaluation.

Table 2. Different scenarios comparison.

Scenario Input Output Total Scores

Interference
Detection

Baseband
digital signal

Binary
detection flag 13

FEC in
Regenerative

Payload

Modulated or
demodulated

codeword

Corrected
codeword 10

Link Adaptation/
ACM Optimization

SNR time
series Predicted SNR/ModCod 9

Flexible
Payload

Demand
Information

Configuration
of the RF

11

Antenna
Beamforming

User locations
within antenna

FOV

Beamforming
parameters 12

4. AI-Capable Commercial Chipsets

So far, complex onboard AI applications can only be performed with very expensive
custom-designed ASICs [30]. The increase in performance requirements for onboard
processing to support higher data rates and autonomy has made the existing space-graded
CPUs obsolete. New technologies, including non-qualified commercial off-the-shelf (COTS)
devices from other critical domains, are currently being explored [31].

Finding a device with adequate computer capacity, proper power consumption,
and compliance with standards specifications for onboard and standalone applications



Aerospace 2023, 10, 101 15 of 21

is one of the most critical points for future implementations. This section compares non-
qualified COTS AI-capable chipsets, and provides guidelines for chip selection.

The current market for commercial AI-capable chipsets is divided into graphics pro-
cessing units (GPUs), mostly used for the training steps, and dedicated devices for hard-
ware co-processors or stand-alone embedded systems. Focusing on this last classification,
several devices have been launched on the market, led mainly by NVIDIA, AMD, Intel,
and Qualcomm [32].

Table 3 summarizes current COTS AI-capable chipsets [33–37]. AI-capable chipsets
include a central processing unit (CPU) and an on-chip accelerator, which define their
capabilities and performance in AI and ML tasks.

Table 3. Trade-off of the AI chipsets and boards under consideration: Core Units.

Device Provider
Core Units

CPU On-Chip Accelerator

Myriad Family Intel 2× Leon 4 RISC
Image/Video PA

SHAVE

Jetson Nano NVIDIA 4× ARM Cortex-A57MP 128-CUDA Maxwell

Jetson TX2 Family NVIDIA
2× Denver ARM64b

256-CUDA Pascall
4× ARM Cortex-A57MP

Jetson Xavier NX Family NVIDIA 6× Carmel ARM64b

384-CUDA Volta

2× NVDLA

2× PVA

48 Tensor

Jetson AGX Xavier Family NVIDIA 8× Carmel ARM64b

512-CUDA Volta

2× NVDLA

2× PVA

64 Tensor

Jetson Orin NX Family NVIDIA 6×/8× ARM64b
Cortex-A78AE

1024-CUDA Ampere

1×/2× NVDLAv2

1× PVAv2

32 Tensor

Jetson AGX Orin Family NVIDIA 8×/12× ARM64b
Cortex-A78AE

1792/2048-CUDA Ampere

2× NVDLAv2

1× PVAv2

56/64 Tensor

Cloud AI 100 Family Qualcomm
Snapdragon 865 MP

Cloud AI 100
Kryo 585 CPU

Instinct MI200 Family AMD CDNA2
6656/14,080 Stream Proc.

104/220
Core Units

Versal AI Edge Family XILINX

2× Cortex-A72 8-304 AI Engines

2× Cortex-R5F2
90-1312 DSP Eng

43k-1139k System
Logic Cells

The number of CPUs and cores depends on the manufacturer and the family, and they
vary from one to two CPUs, and two to twelve cores. Most remarkable are the multicore
ARM Cortex-R5F2 on the Versal chips, already on the market, and the 12 cores on the Jetson
Orin AGX high-end chip, partially available since late 2022 (according to the information
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available on January 2023 [38]). The first is suitable for embedded real-time and safety-
critical systems, while the wide number of cores of the second allows the use of multiple
threads in sequential parallelizable software [33,37].

In the case of the on-chip accelerators, as their architecture differs from one devel-
oper to the other, one cannot make a proper comparison without taking into account
the performance per operation, which is detailed in Table 4. The most popular AI on-chip
accelerators are GPUs (CUDA Cores, Streams Processors) and AI cores (Tensor, AI Engines,
and DSP Engines). Versal chips, apart of the on-chip accelerators (AI and DSP Engines),
include a programmable logic (PL) chip that can be used to design time-critical parts of
the algorithm, exploiting the inherent parallelism of the hardware design.

Table 4. Trade-off of the AI chipsets and boards under consideration: computing capacity per operation.

Device
Computer Capacity in Operations

Power Cons. (W)
I8 (Ops) FP16 (FLOPs) FP32 (FLOPs)

Myriad
Family NR NR NR 1∼2

Jetson Nano NR 512 G NR 5–10

Jetson TX2
Family NR x NR 7.5–20

Jetson Xavier
NX Family 21T x NR 10–20

Jetson AGX
Xavier Family 30–32 T 10 T NR 10–40

Jetson Orin
NX Family

70–100 T
Sparse

x x 10–2535–50 T
Dense

20 T Sparse

Jetson GX
Orin Family

108–170 T
Sparse

54–85 T

3.3–5.3 T 15–60
92–105 T
Sparse

6.7–10.6 T

Cloud AI
100 Family

70–400 T 35–200 T x 15–75

Instinct MI200
Family 181–383 T 181–383 T

45.3–95.7 T
(Matrix) 300–560

22.6–45.9 T

Versal AI Edge
Family

5–202 T

NR

0.4–16.6 T

6–750.6–9.1 T
0.1–2.1 T

1–17 T

Notice that some data are not reported by the developer, marked as NR, and in some
cases, the required information is not detailed, marked as x. The most supported data type
operations conducted by the chipsets are integer byte (INT8), half-precision floating point
(FP16), and single-precision floating point (FP32) operations. Instinct MI200 and Cloud AI
100 families have the greatest operation rates in half-precision floating point, but their form
factor and power consumption make them unsuitable for embedded systems applications.
NVIDIA’s next-generation AI processors family (Orin NX and AGX Orin) promises to
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achieve a high operations per second (OPs) rate, as good as the Versal AI chip, increasing
the power consumption compared to previous NVIDIA families.

It is important to analyze the computer capacity per Watt in order to select the proper
chipset for the application. Figure 11 presents this information for the most common integer
bytes operators and floating point.
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Figure 11. Performance related to the power consumption of the most remarkable families in byte
operations (INT8), half-precision floating point operations (FP16), and simple-precision floating point
operations (FP32).

The Cloud AI 100 family has better performance regarding byte operations (between
2.8 and 5.33 TOPs/W) followed by the Orin NX family (3.5 and 4 TOPs/W); however,
Versal’s AI Engines on Edge family exhibits a wide range of performance (0.55 and
2.69 TOPs/W) (INT8). For half-precision floating point (FP16), Cloud AI 100 achieves
between 1.4 and 2.6 TFLOPs/W, followed by the Orin AGX family (1.35–1.41 TFLOPs/W);
unfortunately, Versal’s AI data are not reported for this operation. For single-precision float-
ing point (FP32), Versal’s AI Engines achieve the best performance (up to 221 GFLOPs/W),
followed by the Instinct MI200 family (between 151 and 171 GFLOPs/W for matrix opera-
tions). This comparison proves that Versal AI Edge family has a remarkable and wide range
of performance per Watt, being a good solution for AI and ML applications for onboard
satellite communications.

Although none of the analyzed COTS AI-capable devices are considered space-graded,
some studies are emerging on the use of the COTS chipset in space AI applications. The cur-
rent literature in this field includes benchmark studies and comparisons of the performance
of embedded GPUs (NVIDIA Jetson TX2, NVIDIA Jetson Xavier NX), embedded proces-
sors (ARM Cortex-based), and FPGA-based devices (Versal ACAP) on space workload
operations [31,39–45]. The principal documented applications are matrix multiplication,
useful in CNN implementation [43,44]; onboard infrared detection [31]; onboard space
weather detection, including coronal mass ejection (CME) and particle detection [45]; and
massive MIMO beamforming for 5G New Radio [46,47].

Working on onboard device requirements, AMD announced the release of the first
space-grade XILINX Versal adaptive SoCs, enabling onboard AI processing in
space [30,45,48]. The actual information about this device is predicted to be available
in early 2023 (according to the information available in January 2023 [30]), and will be
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based on the Versal AI Core VC1902, a family not analyzed for its high power consump-
tion (87 mW reported in [49]), including Class B qualification, radiation tolerance, and
45 × 45 mm2 packing [48]. There is no information yet about the possible power con-
sumption, the principal inconvenience of its predecessor, and the computer capacity of
the chip.

5. Conclusions and Future Challenges

Early work in the literature has demonstrated the progress obtained from using AI
in SatCom, yet this research is still in its infancy. Due to the multiple possible use cases,
the progress is even more limited when focusing on AI onboard use cases. On the other
hand, the interest in evaluating the feasibility of using commercial AI-capable chipsets
on board satellites continues to grow. In this sense, we consider different use cases and
commercial AI-capable chipsets, and present a trade-off and feasibility analysis for imple-
menting onboard processing. In future work, the analysis should be extended to include
a more extensive and detailed study of the use cases and commercial AI chipsets, including
a radiation tolerance analysis and a chip comparison based on more recent technologies,
such as neuromorphic hardware [50].
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Abbreviations

The following abbreviations are used in this manuscript:

ACM Adaptive Coding and Modulation
AG-DPA Assignment-Game-based Dynamic Power Allocation
AI Artificial Intelligence
ANN Artificial Neural Network
BP Belief Propagation
CNN Convolutional Neural Network
COTS Commercial off-the-Shelf
CPU Central Processing Units
CR Cognitive Radio
CSI Channel State Information
CU Centralized Unit
DCA Dynamic Channel Allocation
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DDQL Double Deep Q-Learning
DL Deep Learning
DQL Deep Q-Learning
DRA Direct Radiating Array
DRL Deep Reinforcement Learning
DSP Digital Signal Processor
DTP Digital Transparent Payload
DU Distributed Unit
DVB-S2X Digital Video Broadcasting–Second Generation Satellite Extensions
ED Energy Detector
ESA European Space Agency
FEC Forward Error Correction
FOV Field of Vision
FP Floating point
GPU Graphics Processing Unit
GSO Geostationary Satellite Orbit
HSN Heterogeneous Satellite Network
KPI Key Performance Indicators
LDPC Low-Density Parity Check
LEO Low Earth Orbit
LSTM Long Short-Term Memory Network
MEO Medium Earth Orbit
MICP Mixed-Integer Convex Programming
ML Machine Learning
MLSAT Machine Learning and Artificial Intelligence for Satellite Communication
MODCOM Modulation and Coding
NGSO Non-Geostationary Satellite Orbit
NVDLA NVIDIA Deep Learning Accelerator
OPEX Operational Expenditure
OPs Operations per second
PHY Physical layer
PL Programmable Logic
PPA Proportional Power Allocation
PVA Programmable Vision Accelerator
QL Q-Learning
QoS Quality of Service
RAN Radio Access Network
RNN Recurrent Neural Network
RRM Radio Resource Management
RU Radio Unit
SAGIN Space–Air–Ground Integrated Networks
SatCom Satellite Communication
SATAI Machine Learning and Artificial Intelligence for Satellite Communications
SHAVE Streaming Hybrid Architecture Vector Engine
SINR Signal-to-Interference-plus-Noise Ratio
SLL Side Lobe Level
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
UHTS Ultra-High-Throughput Satellite
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