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Abstract: In this article, five feedback magnetic attitude control algorithms are compared in terms
of stabilization accuracy and implementation problems. The control strategies are classic Lyapunov
control with scalar gain; the same control strategy with matrix gain and a specific gain-tuning
procedure; sliding control with a variable surface; a linear quadratic regulator constructed for
a special time-invariant system of a higher degree than the initial time-varying system; and a
special controllable trajectory developed using particle swarm optimization. A new sliding surface
construction method is proposed in this paper. Surface parameters were changed in every control
iteration to ensure that the required control torque component along the geomagnetic induction
vector was small. The advantages and drawbacks of the considered methods and their applicability
for different target attitudes are discussed.

Keywords: magnetic attitude control; three-axis control; feedback control; sliding control; linear
quadratic regulator

1. Introduction

Magnetic attitude control systems significantly reduce satellite resource usage com-
pared to reaction wheels. As such, their implementation in CubeSats is a long-sought
goal. Three-axis stabilization suffers from low terminal accuracy both in the orbital (local
vertical) and inertial reference frames. Magnetic control systems excel at certain specific
tasks. Angular velocity damping can be effectively performed after a satellite’s separation
from the launch vehicle [1,2]. Likewise, it is used for the unloading of the reaction wheels’
angular momentum. Magnetic damping may be used to achieve semi-passive stabilization
along the local vertical frame, together with gravitational [3] torque; along the velocity of
the satellite, together with aerodynamic torque [4,5]; and along the geomagnetic induction
vector [6]. Spin-stabilized satellites [7–9], including stabilization towards the sun [10–12]
for battery charging, provide high-accuracy solutions but only for one axis of a satellite.

Three-axis magnetic control is technically not restricted at terminal attitude, and this
system is theoretically controllable [13–15]. In practice, achieving an arbitrary—far from the
gravitational equilibrium—attitude in the orbital reference frame is challenging, and overall
pointing accuracy is very low. The present paper compares five different control approaches
for the three-axis stabilization of a satellite in the orbital reference frame. Although different,
all control strategies essentially implement a feedback law.

The first considered control system is the simplest feedback law based on the Lyapunov
function (Lyapunov control, denoted as LC throughout the text). Originally, this type of
control was developed in both the inertial [16,17] and orbital [18,19] reference frames.
The original Lyapunov control ensures asymptotic stability of the required attitude. Its
magnetic counterpart, which is essentially the projection of the required torque on the
plane perpendicular to the geomagnetic induction vector, does not benefit from global
asymptotic stability properties. Careful control gain selection provides an asymptotically
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stable position [20]. However, the gain values and the resulting control torque are relatively
low [21]. Stability is extremely sensitive to uncertainties in inertia tensor knowledge [22].
The gain can be found if the inertia moments and uncertainty are bounded [23]. Significant
problems are encountered by satellites with elongated or disk-shaped ellipsoids of inertia.
Among these are 3U CubeSats. This problem is leveraged using matrix control gain,
distinguishing it from the second feedback control scheme considered in this paper (matrix
Lyapunov control—MLC). This approach was first introduced in [18]. The gain selection
procedure elaborated in [24] is utilized in the present paper.

The third control scheme is the sliding mode with special surface construction. Sliding
control (SC) was first proposed for a magnetically actuated satellite in [25,26]. In [27,28],
the respective authors introduce a sliding surface with an integral term representing control
torque projection on the induction vector direction. This term is designed to minimize the
inaccessible control component. This idea was directly investigated in [29] with varying
sliding surface parameters. The sliding surface changes so that the resulting stabilizing
torque lies almost within the plane perpendicular to the induction vector. However, ter-
minal stabilization cannot be maintained with the developed procedure, which amplifies
the typical chattering problem of sliding control. Therefore, the control is switched to the
simple feedback law near the required attitude. The present paper introduces a new proce-
dure for sliding surface construction. Compared to that reported in [29], this procedure
minimizes the torque projection on the induction vector instead of directly restricting it so
that it is equal to zero, thus leading to more robust behavior.

The fourth feedback method is based on the control construction procedure elaborated
in [14]. The equations of motion are linearized in the vicinity of the required attitude.
Linear equations of motion with periodic coefficients are transformed into time-invariant
equations by changing the variables with larger state vectors. A linear quadratic regulator
(LQR) is constructed for the time-invariant system. This directly provides the control dipole
moment, not the control torque. It is then converted into initial variables to obtain the
feedback for the time-varying system.

The fifth method generalizes the sliding surface construction idea into a direct search
for the angular trajectory of the satellite near the required attitude. Each specific trajectory
implies the need to account for specific control torque to satisfy the equations of motion.
This torque projection on the induction vector is minimized using the particle swarm
optimization method [30,31] to find the “most controllable” trajectory (particle swarm opti-
mization control—PSO). Furthermore, simple feedback control is additionally introduced
to settle on this trajectory. The trajectory near the required attitude has an inherent attitude
error. However, the resulting error (the specific trajectory difference from the required
attitude and the error in this trajectory maintenance) may be lower than the error of direct
stabilization for the required attitude.

Each of the discussed feedback methods has its own advantages in different situations
and inherent disadvantages. Simulation results are compared below to summarize the
features of the five control methods and provide conclusions regarding the favorable
application conditions of each method.

2. Equations of Motion and Environment Models

The satellite is stabilized in the orbital reference frame OX1X2X3. Its first axis lies in
the orbital plane, and it is directed toward the satellite’s velocity vector in a near circular
orbit. The second axis is positioned along the satellite’s normal orbit. The third axis is the
radius vector of the satellite. The satellite reference frame OX1X2X3 is characterized by the
principal central axes of inertia.

Euler’s equations of motion are shown below

Jdω/dt +ω× Jω = Mgg + Maero + Mdist + M, (1)

where the symbol × denotes a cross product; J = diag(A, B, C) denotes the satellite inertia
tensor; Mgg, Maero, and Mdist are the gravitational, aerodynamic, and disturbing torque
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of an unknown nature; and M is the control torque from the magnetic control system.
Absolute angular velocityω is related to the velocity relative to the orbital reference frame
Ω as represented below

ω = Ω + Aωorb, (2)

whereωorb is the orbital angular velocity and ωorb = |ωorb| is the orbital rate, while A is
the transition matrix from the orbital to the satellite reference frame. Note that throughout
the text, bold letters correspond to matrices and vectors, while normal letters correspond
to scalar values. The kinematics of the satellite are described in terms of the attitude
quaternion (q0, q) derivative:(

dq0/dt
dq/dt

)
=

1
2

(
q0
q

)
◦
(

0
Ω

)
,
(

a
a

)
◦
(

c
c

)
=

(
ac− (a, c)

ac + ca + a× c

)
. (3)

The control torque is expressed as

M = m× B,

where m is the control dipole moment. The geomagnetic induction vector B was calculated
using the IGRF model [32] in the numerical examples. The dipole model [33] was utilized
in the feedback control gain adjustment procedure.

Gravitational torque is expressed as

Mgg = 3ω2
orbe3 × Je3,

where e3 is the unit radius vector in the satellite reference frame.
Aerodynamic torque is calculated as the net torque acting on satellite surfaces facing

the incoming flow. Atmospheric rotation with respect to the Earth is not considered. For
the side with the normal vector n, the force magnitude is expressed as

Fn = −1/2cSρ|V|(n ·V)/|n|,

where c is the drag coefficient, S is surface area, ρ is atmospheric density, and V is the
satellite’s velocity relative to the incoming flow. The torque acting on the side is expressed
as follows:

Maero(n) = Fn(−d + n)× fn.

The direction of the force fn = A(sin ωorbt, − cos ωorbt, 0) is calculated according to
the satellite’s attitude. Vector d is the center-of-mass displacement relative to the center
of pressure.

Other disturbing effects of a lower magnitude—solar radiation pressure, gravitational
torque modification due to the Earth’s oblateness, etc.—are modelled as periodic torque of
orbital and double orbital frequencies

Mdist = Mval
dist(a0 + a1 sin u + b1 cos u + a2 sin 2u + b2 cos 2u),

where u = ωorbt is the argument regarding latitude. Coefficients ak and bk are uniformly dis-
tributed in the range −1, 1. The magnitude Mval

dist is fitted so that the unknown disturbance
is approximately one order of magnitude less than the gravitational torque magnitude.

The final important disturbance source is the inertia tensor uncertainty at the level of
approximately 5% of the principal inertia moment values.

3. New Sliding Surface Design (SC Construction)

Sliding control [34] was utilized by the authors to create a control torque that is almost
perpendicular to the geomagnetic induction vector [29]. The proposed surface was derived
from the abovementioned condition MTB = 0. Thus, the control torque and therefore the
sliding surface are significantly restricted in their parameters. This, in turn, leads to the
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significant deterioration of the control performance near the required attitude and for some
specific mutual attitudes of the satellite and geomagnetic induction vector. To address this
problem, a new sliding surface was developed, as shown below.

First, the equation of the surface is considered in the classic form

x = Ω + J−1Λ(q, Ω, t)J−1q = 0, (4)

where the attitude error is expressed as the vector part of quaternion q in this paper.
Coefficient J−1 is introduced to simplify the resulting expressions. The positive definite
matrix Λ is variable, which is the major property of the proposed methodology. It depends
on the current satellite attitude and the geomagnetic induction vector attitude, which,
in turn, depend on time. This variation is necessary to achieve a “controllable” angular
trajectory of the satellite characterized by MTB ≈ 0. Matrix Λ is referred to as the surface
parameter below. Equation (4) operates using the relative angular velocity Ω. The satellite
is stabilized in the orbital reference frame in specific numerical examples provided in the
paper. The same procedure was established for stabilization in the inertial space, and no
significant difference was observed. The surface equation should evolve according to

.
x = −J−1Px, (5)

where P is a positive definite matrix. Substituting the surface Equation (4) into (5) leads to

J
.

Ω︸︷︷︸
1

+ ΛJ−1 .
q︸︷︷︸
2

+
.

ΛJ−1q = −P
(

Ω + J−1ΛJ−1q
)

. (6)

The first derivative in Equation (6) is defined by the Euler equations of motion (1). The
second derivative is defined by the kinematic relations (3). Note, however, that Equation (1)
was derived for the absolute angular velocity, whereas Equation (6) requires the relative
velocity derivative. Utilizing the relationship between the absolute and relative velocity (2),
the following equations were derived for the latter,

J
.

Ω + Ω× JΩ = M̃ + Mgg + Maero + Mdist + M, (7)

where M̃ = −JWΩAωorb − Ω × JAωorb − Aωorb × J(Ω + Aωorb), and WΩ is a skew
symmetric (cross product) matrix. Substituting (7) into (6) leads to

M = Ω× JΩ− M̃−Mgg −
.

ΛJ−1q−ΛJ−1 .
q− PΩ− PJ−1ΛJ−1q, (8)

where only gravitational torque is considered and compensated for during the control construc-
tion process. The attitude error derivative

.
q is calculated from (3) as

.
q = 1/2(q0Ω + q×Ω).

The surface parameter Λ derivative is approximated as a simple difference from two
consecutive control iterations

.
Λ ≈ Λ(k)−Λ(k− 1)

∆t
.

Equation (8) is then formulated in the following form:

a−Λ(k)J−1q = M, (9)

a =
(

Ω× JΩ− M̃−Mgg − 1/2Λ(k− 1)J−1(q0Ω + q×Ω)− PΩ− PJ−1Λ(k− 1)J−1q
)

∆t + Λ(k− 1)J−1q.

The left side of the Equation (9) has one unknown—the surface parameter in the
current iteration Λ(k). Its value defines the control torque M. Vector a contains known
parameters: current satellite attitude and angular velocity and the surface parameter in the
previous iteration.
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The sliding control scheme developed in [29] suffers from rapid growth in the surface
parameter when the condition MTB = 0 is difficult to achieve. To avoid this situation, an
optimization problem is formulated in this paper. First, a vector of the surface parameter
matrix elements is introduced as λ = (Λ11, Λ22, Λ33, Λ12, Λ13, Λ23). This vector contains
only six parameters since matrix Λ is symmetric. The cost function is shown below:

F = kF‖λ(k)− λ(k− 1)‖+ ‖λ(k)‖.

The first term indicates that the surface parameter should change as slowly as possible.
The second term indicates that its elements should possibly decrease. Coefficient kF equals
100 in the example below.

The optimization problem utilizes three conditions:

1. Λ(k) > 0—the surface parameter is a positive definite matrix (moreover, eigenvalues
should be less than a predefined threshold);

2. MTB/|M||B| < cos(80◦)—the control torque deviates from the plane perpendicular
to the geomagnetic induction vector by no more than 10 degrees;

3. ‖m‖∞<0.1 A·m2—the dipole moments are bounded.

Due to the typical values of the matrix Λ(k) elements, its eigenvalues are multiplied
by 105 to ensure that the expressions in conditions 1 and 2 have approximately the same
order. After the surface parameter matrix in the current iteration is calculated, the con-
trol torque is also calculated according to (9). It is then used to find the control dipole
moment as a projection on the plane perpendicular to the geomagnetic induction vector
m = B×M/|B|2. The same procedure is used during the optimization process to find the
dipole moment in condition 3. The resulting control torque Mreal = m× B slightly differs
from the calculated one M. According to condition 2, the angle between the calculated and
defined torques does not exceed 10 degrees. If the optimization procedure fails to find a
feasible surface parameter and therefore the control torque with the defined restrictions,
the control scheme is not implemented.

4. Description of the Feedback Laws Utilized for Comparison

Below is a brief description of four (excluding the sliding control scheme described
above) feedback control strategies that are utilized in the comparison of their performance.

4.1. Lyapunov Control—LC

The simplest feedback control scheme is

m = −kωB×ω− kaB× S, (10)

where S = (a23 − a32, a31 − a13, a12 − a21), and anm denotes the direction cosine ma-
trix A elements. This control scheme is derived from the Lyapunov function candidate
V = 1/2ωTJω+ ka∑(1− akk) and represents the simplest possible solution for three-axis
satellite stabilization. Control scheme (10) does not ensure asymptotic stability for any
positive control gain values. Gain should be carefully selected for each tensor of inertia and
satellite orbit (altitude and inclination). A relevant procedure developed by this paper’s
authors in [35] is used to find the gain values in the next section. In essence, the equations
of motion are linearized near the required attitude:

dΩ1

du
= −kω

B2
0

Aωorb

[(
B2

2 + B2
3

)
Ω1 − B1B2Ω2 − B1B3Ω3

]
− 2ka

B2
0

Aω2
orb

[
−B1B2α− B1B3β +

(
B2

2 + B2
3

)
γ
]
+ Ω2 +

B− C
A

(
Ω2 + γ

)
,

dΩ2

du
= −kω

B2
0

Bωorb

[
−B1B2Ω1 +

(
B2

1 + B2
3

)
Ω2 − B2B3Ω3

]
− 2ka

B2
0

Bω2
orb

[(
B2

1 + B2
3

)
α− B2B3β− B1B2γ

]
−Ω1 +

C− A
B

(
Ω1 − 4α

)
, (11)

dΩ3

du
= −kω

B2
0

Cωorb

[
−B1B3Ω1 − B2B3Ω2 +

(
B2

1 + B2
2

)
Ω3

]
− 2ka

B2
0

Cω2
orb

[
−B2B3α +

(
B2

1 + B2
2

)
β− B1B3γ

]
+ 3

A− B
C

β,

dα

du
= Ω2,

dβ

du
= Ω3,

dγ

du
= Ω1.
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Here, u = ωorbt, Ω1 = Ωk/ωorb, α, β, and γ are the attitude angles (rotation sequence
2-3-1), while B0 = µ/r3, µ ≈ 7.7245·106 T·km3, and Bk(u) are periodic components of the
geomagnetic induction vector in the dipole model. The linearized equations with periodic
coefficients are examined for stability using Floquet theory [36].

4.2. Matrix Lyapunov Control—MLC

The natural extension of the feedback law (10) MLC scheme utilizes matrix con-
trol gain:

m = −KωB×ω−KaB× S. (12)

The derivation of the control law (10) from the Lyapunov function allows for positive
definite matrix control gain. A gain search procedure for diagonal matrices was devel-
oped by the authors in [24]. This procedure uses the periodic linear Equation (11) and
Floquet theory. However, each equation for dΩn/du has its own gain kn

ω and kn
a on the

right side. Control scheme (10) allows for convenient stability area visualization for two
types of gain, whereas control scheme (12) operates with six parameters. Characteristic
multiplier visualization with respect to gain is impossible. Therefore, an automatic pro-
cedure was established to find gain values that ensure the minimum possible number of
characteristic multipliers.

4.3. Linear Quadratic Regulator—LQR

Special change of variables is used in the next control approach to turn the time-
varying linear equations into time-invariant ones [14]. The general strategy of this method
is as follows. The initial time-varying linear equations are

.
x = Ax + Bc(u)m. (13)

State vector x comprises the attitude angles and velocity components. The specific
expressions for the matrices in (13) for a magnetically actuated satellite can be found in [14].
Control matrix Bc(u) is periodic. Through the change in variables from x→ y

x = eiuy(1) + e−iuy(2) + y(3)

time-invariant equations can be obtained. These equations have more dimensions: instead
of six variables, there are eighteen. However, some of these variables are uncontrollable or
do not affect the initial system. Finally, a time-invariant system can be obtained:

.
ỹ = Ãỹ + B̃cm̃.

Here, ỹ ∈ R8 and m ∈ R2, so only two magnetorquers are required for stabilization.
A linear quadratic regulator is constructed for this system, defined as m̃ = −Kỹ, where
the gain matrix K is calculated via solving the classic Riccati equation. The vector of
the initial variable x is augmented with two auxiliary variables, x̃7 = −ỹ5 sin t + ỹ7 cos t
and x̃8 = −ỹ6 sin t + ỹ8 cos t, so x̃ = (x1, . . . x6, x̃7, x̃8). This is necessary to construct a
scheme for the proper univocal change in variables x̃ = T(t)ỹ and the following final
control scheme:

m̃ = −KT−1(u)x̃, T = diag(T1, T2), T1 = E4, T2 =

(
cos uE2 sin uE2
− sin uE2 cos uE2

)
. (14)

Note that this method retains two auxiliary variables, x̃7 and x̃8, in the final form of the
equations of motion with control. These two variables are in essence the control parameters.
They are calculated for each control step according to specific equations.
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4.4. Particle Swarm Optimization—PSO

Finally, a special angular trajectory construction procedure is considered. The required
satellite motion is parametrized as

αre f = a1 sin u + a2cosu + a3 sin 2u + a4cos2u,

βre f = b1 sin u + b2cosu + b3 sin 2u + b4cos2u, (15)

γre f = g1 sin u + g2cosu + g3 sin 2u + g4cos2u,

where coefficients ak, bk, and gk should be found according to two main rules. First, they
must be small, a few degrees each, to allow for precise stabilization. Second, the control
torque that stabilizes the satellite in this trajectory should be as close as possible to the
plane perpendicular to the geomagnetic induction vector, so MTB→ min. This generally
leads to the formulation of an optimization problem with constraints.

To solve this problem, a particle swarm optimization routine [37] was established. The
cost function is

Φ =
1
N

√√√√ N

∑
n=1

φ2
n → min, φn =

(
_
M/

∣∣∣∣_M∣∣∣∣, B/|B|
)

,

where N is the number of control iterations, and the required control torque
_
M is calculated

from (1) as
_
M = Jdωre f /dt +ωre f × Jωre f −Mgg

(
αre f , βre f , γre f

)
. (16)

The gravitational torque is calculated for the reference trajectory (15). The reference
angular velocityωre f is essentially the derivative of the trajectory. The attitude angles in
(15) are used to calculate the attitude quaternion and then calculate the relative reference
velocity Ωre f from the quaternion kinematics (3). The relationship between the absolute
and relative velocities (2) is used to findωre f . Aerodynamic torque is not included in the
control scheme’s construction, as the examples below are presented for a 550 km orbit.
Control scheme (16) only ensures the existence of the required trajectory (15). To settle on
this trajectory, control scheme (10) is utilized in the form given below

m = −kωB× ∆Ω− kaB× ∆S, (17)

where ∆ defines the difference between the actual angular velocity or attitude and the
reference one. The control gain of the feedback law (17) is found using another particle
swarm optimization routine. The optimization objective is to minimize the maximum
characteristic multiplier.

5. Simulation Results for Different Control Strategies

Simulations of satellite motion were performed using the following parameters:

• Satellite inertia moments of 0.15 (Case 1) or 0.2 (Case 2), 0.13, and 0.11 kg·m2 (the
satellite is stabilized in the unstable gravitational equilibrium position);

• Orbit altitude of 550 km, inclination of 57◦, and eccentricity equal to 0.01;
• Aerodynamic torque calculation:

# Satellite size is 10 × 20 × 30 cm;
# Center-of-mass displacement is 1 cm along the second satellite axis (aerodynamic

torque is essentially non zero in the required attitude);
# Atmospheric density is 1.8·10−13 kg/m3;

• Principal moments of inertia are subject to 5% error.
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These parameters refer to a generic small satellite launched in a low Earth orbit. The
results on the circumpolar (sun-synchronous) orbit are generally the same. Orbit altitude
has a significant impact on the stabilization results. A 550 km orbit was chosen to impose
a relatively strong aerodynamic torque influence. At the same time, it does not lead to
the drastic deterioration in the control performance that is observed in a 350 km orbit.
Two inertia tensors are considered to represent satellites with relatively uniform mass
distributions and with significant unbalance, where the moment of inertia along the first
axis is close to the sum of two other moments. First, the control gain for the LC feedback
law (10) should be established. Characteristic multipliers of the linearized equations of
motion are presented in Figure 1 for Case 2.
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The simulations below utilize control gain values of kω = 460/ωorb N·m/T2,
ka = 150 N·m/T2 for Case 1 and kω = 360/ωorb N·m/T2, ka = 220 N·m/T2 for Case 2.
Damping gain kω is significantly shifted to the left compared to the theoretically best
positions in terms of the degree of stability. The best characteristic multipliers are shown at
kω ≈ 900/ωorb N·m/T2 in Figure 1, whereas the manually adjusted “best” value is
360/ωorb N·m/T2.

In Figure 2, the results for the LC (10) and SC are compared for the settling period,
when the satellite approaches the required attitude. The brown line in Figure 2 represents the
feedback law (10) results. The black line corresponds to the sliding control (9). The vertical, red,
dotted line indicates the switching moment, when the satellite is close to the required attitude
and SC is replaced with LC. Figure 2 reveals a decrease in the settling time duration for
the sliding control. Lyapunov magnetic control is always characterized by a small control
dipole moment. This is due to the fact that the designed control torque is not directly
implemented—only its projection on the plane perpendicular to the geomagnetic induction
vector. The sliding surface construction procedure ensures that MTB ≈ 0 (although no
feasible point was found in approximately 10% of iterations in the considered example).
The control torque (9) was implemented almost exactly as it was designed, with a difference
of no more than 10 degrees. As a result, the control dipole moment was higher by a factor
in the sliding control scheme presented in Section 3. However, it has its own disadvantages
compared to the simple Lyapunov feedback law (10). The optimization routine requires
extensive computational effort. The control scheme is significantly non-smooth, which can
be examined by referring to the angular velocity curve in Figure 2. Most importantly, the
developed sliding control cannot be used near the required attitude, so the final accuracy
is the same as that for control scheme (10) or whichever control scheme is used near the
required attitude.
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Figure 3 provides the results for the LC feedback law (10) for satellite Case 2 with a
notable difference in inertia moments. Figure 4 shows the results for the same situation but
also with uncertainty in inertia tensor knowledge.
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The stabilization accuracy for an uneven mass distribution is around 11–12 degrees,
whereas Case 1 provides 7-degree accuracy. Final accuracy is significantly affected by the
relations between the moments of inertia. In some specific situations, control scheme (10)
may completely fail. For example, a 3U CubeSat with two large moments of inertia and
one small moment of inertia quite often cannot be stabilized with simple Lyapunov control.
A comparison of Figures 3 and 4 highlights the influence of even small uncertainty in
inertia tensor knowledge. The control gain in (10) is highly sensitive to satellite inertia,
and Figure 1 may change significantly even after a small change in the inertia moment.
Low accuracy, high sensitivity to inertia moment uncertainty, and low performance for
satellites with highly uneven mass distributions are notable disadvantages of Lyapunov
control scheme (10). However, it is very simple and transparent.

Its modification, MLC (12), shows lower stabilization accuracy.
The stabilization accuracy in Figure 5 is only 30 degrees. This is the main disadvantage

of the considered control strategy. Theoretically, matrix control gain includes scalar gain
as a special case. As such, control scheme (12) is capable of exhibiting at least the same
performance as control scheme (10). However, the gain values utilized in Figures 2–4 differ
significantly from theoretically best gain in Figure 1. The lowest characteristic multiplier
is characterized by the best degree of stability. This does not necessarily mean the best
stabilization accuracy. Figure 1 provides the area of sensible control gain, which is then
manually adjusted. This cannot be performed manually with matrix gain. However, control
scheme (12) has distinct advantages over (10). Matrix gain is capable of handling significant
differences in inertia moments. Also, this control scheme stabilizes the satellite not only in
the gravitational equilibrium but in any predefined attitude in the orbital frame. Simple
feedback law struggles with this task.
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LQR (14) performance is presented in Figure 6 for Case 1.
The stabilization accuracy is the same as that for control scheme (10). The linear

quadratic regulator with the change in variables described in Section 4 has one important
advantage over simple feedback: it is possible to stabilize satellites with significantly un-
even inertia moments. This control scheme operates with matrix control gain, so, similar to
control scheme (12), it is possible to distinguish control channels with different “weights”
represented by the inverse inertia moments. However, the described linear quadratic regu-
lator only functions near the required attitude (although the neighborhood is slightly larger
than the linear one), and it is sensitive to the uncertainty in inertia moment knowledge.

The last approach is a special “controllable” trajectory construction PSO strategy. The
result is provided in Figure 7.
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Figure 7 indicates approximately seven degrees accuracy for Case 2 with inertia tensor
uncertainty. This control approach surpasses all others in terms of overall accuracy and
does not suffer from problems with inertia moment relations. Due to the existence of
a special trajectory construction procedure that incorporates gravitational torque, this
approach can be used to stabilize a satellite in any attitude in the orbital frame. Although
the gravitational torque is essentially non-zero in this case, the trajectory construction
procedure ensures its successful rejection. The main disadvantage of this control strategy is
its very-high computational demand.

6. Discussion and Conclusions

Five different strategies for three-axis magnetic attitude control are compared in this
paper, including a new sliding control scheme with varying surface parameters. Feedback,
or Lyapunov, control with scalar control gain shows moderate accuracy with a very simple
structure and gain adjustment procedure. It suffers from inertia tensor uncertainty and
an uneven mass distribution and struggles with stabilization when a satellite is not in the
gravitational equilibrium position. The feedback law with matrix gain negates these disad-
vantages but requires specific computationally expensive optimization procedures to find
proper gain matrixes and achieve the same accuracy as simple control with scalar gain. The
linear quadratic regulator constructed for the time-invariant system in augmented space
generally has the same properties as the feedback law with matrix gain but only operates
in the vicinity of the required attitude. Sliding control provides faster convergence to the
required attitude but fails to operate near it and requires an optimization problem solution.
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Being used together with any other approach, it has the corresponding control method
accuracy. The best accuracy is achieved though the development of a special angular trajec-
tory. Maintenance of this trajectory requires control torque that is almost perpendicular
to the geomagnetic induction vector. This approach involves using a direct optimization
method (particle swarm optimization) that cannot be run in real time onboard a satellite.
Instead, it requires periodic (once every few orbits) uploading of the constructed trajectory
and control parameters onboard, which significantly complicates mission maintenance.

Overall, the best control strategies are feedback with scalar gain due to its simplicity,
feedback with matrix gain due to its ability to negate problems typical encountered with
scalar gain (at the cost of a complicated and computationally demanding gain adjustment
procedure), and special angular trajectory construction due to its high accuracy (at the cost
of a complicated construction procedure and the necessity of periodically uploading new
control parameters onboard).

These conclusions are based on the Figures provided in this paper. However, another
important factor is control robustness toward variations in simulation conditions. One of the
major and inherently varying factors is inertia tensor uncertainty. Different errors in inertia
moment knowledge—even if they are on the same 5% level—can lead to the deterioration
of t Lyapunov control performance (both with scalar and matrix gain). Different initial
conditions affect sliding control schemes that strongly depend on the transient trajectory.
On the contrary, particle swarm optimization is not sensitive to initial condition change.
Despite this final note, the general conclusions regarding the best control strategies hold.
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