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Abstract: In various applications, the extended Kalman filter (EKF) has been vital in estimating a
vehicle’s translational and angular motion in 3-dimensional (3D) space. It is also essential for the
fusion of data from multiple sensors. However, for the EKF to perform effectively, the optimal process
noise covariance matrix (Q) and measurement noise covariance matrix (R) must be chosen correctly.
The use of EKF has been challenging due to the need for an easy mechanism to select Q and R values.
As a result, this research focused on developing an algorithm that can be easily applied to determine
Q and R, allowing us to harness the full potential of EKF. Accordingly, an EKF innovation consistency
statistics-driven Bayesian optimization algorithm was employed to achieve this goal. Q and R values
were tuned until the expected result met the performance requirement for minimum error through
improved measurement innovation consistency. The comprehensive results demonstrate that when
the optimum Q and R, as tuned by the suggested technique, were used, the performance of the EKF
significantly improved.

Keywords: extended Kalman filter; covariance tuning; Bayesian optimization; attitude and heading
reference system; UAV

1. Introduction

The extended Kalman filter (EKF) has been the most widely used algorithm for
estimating the three-dimensional (3D) translational and rotational motion of unmanned
aerial vehicles (UAVs). In aerospace in particular, the attitude of an air vehicle is commonly
estimated from data obtained from multiple sensors such as accelerometers, gyroscopes,
and magnetometers using the EKF algorithm. Furthermore, one of the critical features of
EKF is its ability to fuse data from various sources based on their trustworthiness, impacting
the value of the state under consideration. As a result, EKF has been the standard choice
for sensor fusion applications. Nevertheless, the values of the essential EKF parameters
are left up to the user’s discretion, which makes EKF challenging to utilize. Proper tuning
of four parameters must be identified for a Kalman filter to function as needed. Namely,
the initial state value, X0, and the three noise parameters, which are the initial state
estimation error covariance P0, the process noise covariance Q, and the measurement noise
covariance R [1]. However, in several practical scenarios, Q and R are either unknown or
only known approximately [2,3]. In other words, the Kalman formulation of the filtering
issue presupposes perfect a priori knowledge of the process, and measurement noise
statistics, which are seldom precise in practice [4]. In addition, the typical practice of using
the matrices Q and R through trial-and-error selection can be time-consuming and may
result in sub-optimal algorithm performance [1,5]. Therefore, the process noise covariance
matrix Q and the measurement noise covariance matrix R must be tuned to their proper
values for the Kalman filter to function as required by the user [2].

Numerous studies have been conducted on Kalman filter usage. However, there is yet
to be a universally accepted approach in the literature for selecting appropriate Q and R
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values [6]. Despite this, several positive advancements have been made toward developing
easy-to-use methods for tuning the EKF parameters. In a broader sense, the solutions to
the problem can be viewed in two ways. The most commonly employed method entails
the utilization of initially accessible data, specifically about the non-linear behavior of
the mathematical model (process noise) and sensor performance (measurement noise).
Furthermore, ground reference data, which are often lacking, are required to evaluate the
EKF performance with Q and R. If a need arises to further tune Q and R values, a very
time-consuming manual trial and error process has to be followed. Consequently, the main
limitation of such an approach lies in its inability to adapt to changes in system or sensor
behaviors. Non-adaptive approaches have been applied in several research works; for
instance, an auto-covariance least squares-based numerical tool was developed to compute
the noise covariance [7–9]. Similarly, other works, like in [9,10], proposed methods to
optimize the Kalman gain matrix and noise covariance matrices using the autocorrelation
function of the residuals between the measurement and the related predicted state. How-
ever, in the aforementioned least-squares-based approaches, the nonlinearity of the system
behavior could also limit their robustness. In a study by [11], the genetic algorithm was
applied to find the optimal noise covariance matrices, which also relied on ground truth
data for tuning.

On the other hand, other researchers devised adaptive noise-covariance matrix tuning
techniques [12,13]. In these approaches, covariance matrices (CMs) Q and R values need to
be tuned online while the EKF operates to improve the accuracy of the estimation, which
can be affected by system and environmental disturbances. Mauro et al. [14] applied
the recursive prediction error (RPE) algorithm to update the covariance values online.
Machine learning approaches have gained increased attention across various application
areas. In [15], an artificial neural network (ANN)-based learning algorithm was proposed
to continuously monitor the KF estimation error and adjust the measurement noise co-
variance accordingly. Furthermore, Lbest particle swarm optimization was also used for
power system applications to change the covariance values adaptively with performance
changes [16]. Nonetheless, in most cases, achieving robustness and adaptability to a wider
range of conditions was still a challenge. Moreover, the auto-tuning of the Kalman filter
with Bayesian optimization was proposed by Chen et al. [17,18], where the EKF innovation
statistics-based cost function was used for increased robustness, although the approach
used to tweak the CM values was not feasible for higher dimensions.

This study suggested a Bayesian optimization method for tuning the R and Q values
for the EKF-based UAV attitude and heading state estimation algorithm based on the EKF
innovation whiteness analysis, considered an EKF estimation performance evaluation met-
ric. The noise in each sensor measurement and the uncertainty in the process model were
considered uncorrelated; therefore, all off-diagonal components of the covariance matrices
Q and R are equal to zero. In addition, it is assumed that the variance of the sensor’s
measurement noise and the uncertainty of the process model, respectively, impact the
diagonal elements of Q and R. Moreover, we confirmed that scaling the diagonal elements
of the covariance matrices Q and R with different factors had an impact on the performance
of the EKF. However, when we simultaneously scaled both Q and R by the same factor,
there was only a minor difference in performance. Therefore, a Bayesian optimization
technique was designed for tuning the optimum scaling factor pair corresponding to Q
and R values. This approach of optimizing the EKF covariance matrix by adjusting scaling
factors rather than tuning the individual elements of the covariance matrices independently
makes our method scalable to systems of any size.

Bayesian optimization necessitates the definition of a search region to find optimal
values. We applied a method that dynamically adjusts the search region size based on
the optimization progress. The search region expands toward areas with high expected
improvement and contracts from areas with low expected improvement. This approach
ensures that the search is focused on the most promising regions.
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Generally, at first, the initial R and Q values were computed from the noise statistics
of raw sensor measurement data. Then, the suggested approach was employed to find the
best scaling factor pair for R and Q matrices to improve the EKF performance to the peak.
Our extensive tests on publicly available datasets revealed that the proposed approaches
could easily tune the optimum R and Q more robustly and accurately than the conventional
method-based approach. This approach is valuable for regular users and specialists who
readily optimize EKF parameters for different application areas [19].

2. Mathematical Formulations

This section provides an overview of the mathematical methodologies utilized for
estimating the 3D orientation of an object through the implementation of the extended
Kalman filter (EKF) algorithm. Additionally, it discusses the advantages and challenges
associated with employing the EKF algorithm in this specific area. The subsequent section
will delve into the proposed solution for addressing the identified challenges.

2.1. Extended Kalman Filter (EKF) Equations

EKF is an iterative prediction/correction approach used for estimating the state of a
discrete-time process or measurement. Consider a discrete-time dynamic system described
by Equation (1).

xk = Fkxk−1 + ωk

zk = Hkxk + νk
(1)

where xk is the n× 1 state vector, Fk is the n× n state transition matrix, ωk is the n× 1
process noise vector, zk is the r× 1 measurement vector, νk is the r× 1 measurement noise
vector, and Hk is the r× n measurement matrix. In addition, the prediction error covariance,
Pk, is presented in Equation (2).

Pk = FkPk−1FT
k + Q (2)

where Fk and Q represent the state transition and process noise covariance matrices, re-
spectively. Then, at the last step of every single iteration of the EKF, the Kalman gain, K, is
calculated, and the states and prediction error covariance matrix are updated as shown in
Equation (3).

K = Pk HT
k (HkPk HT

k + R)−1

x+k = xk + K(zk − h(xk))

P+
k = (I − KHk)Pk

(3)

where R and I stand for the measurement noise and identity matrices, respectively. The co-
variance matrices (CMs) Q and R used in Equations (2) and (3) account for the uncertainties
due to noise in the process model and sensors measurement, respectively. Consequently, the
values of R and Q should be selected cautiously so that the reality is perfectly represented.
However, even when the process model and measurement function are precise, estimating
the noise effects can be challenging. A combination of different factors often causes the
noise [2], such as mis-modeled system and measurement dynamics; the presence of a
hidden state in the environment that the EKF does not model; errors from the discretization
of time; and approximations in the EKF, like the Taylor approximation commonly used
for linearization. As a result, determining the ideal values of R and Q is challenging. To
overcome a fundamental problem with the EKF, a fine-tuning Bayesian optimization-based
algorithm was applied to identify the best Q and R covariance matrices.

2.1.1. Attitude Propagation Model

The attitude of a rigid object can be expressed in terms of Euler’s three numbers (roll,
pitch, and yaw) or quaternion’s four numbers (qw, qx, qy, and qz) with respect to a given
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reference frame. Several researchers have suggested that attitude estimation in quaternion
form is commonly preferred because it avoids the gimbal lock problem. Consequently,
the quaternion estimation algorithms are presented in this work. A vehicle’s attitude and
heading values are usually predicted from the angular velocity readings of a gyroscope
sensor, which can potentially lead to drifting errors over time. In terms of the quaternion,
the approximated and discrete forms of the attitude and heading equation are given in
Equation (4).

qk =
(

I4×4 +
1
2 ΩkTs

)
qk−1 (4)

where

Ωk =
1
2

[
0 −ωT

ω −[ωx]

]
=

1
2


0 −ωx −ωy −ωz

ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

, [ωx] =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0



and the gyroscope reading of angular velocity ω =
[
ωx ωy ωz

]T . Also, qk, Ts, and
I4×4 represent the current time attitude prediction in the quaternion, sampling time, and
identity matrix, respectively. The derivation for Equation (4) can be found in [20]. Due to
the Taylor series approximation and discretization process applied in driving Equation (4),
inaccuracy in the model is inevitable. Moreover, the noise in the gyroscope measurement
aggravates the uncertainty of the prediction model, which imposes difficulty in determining
the process noise covariance (Q).

Process Noise Covariance Calculation

Assume that the gyroscope is of the same type along all axes and that the manufacturer
guarantees perfect orthogonality and uncorrelatedness between them. Then, the spectral
noise covariance matrix is constructed as follows:

Σω = kQ

σ2
ωx 0 0
0 σ2

ωy 0
0 0 σ2

ωz

 (5)

where σωx, σωy and σωz represent the noise standard deviation of the gyroscope measure-
ments along the X-, Y-, and Z-body axes, respectively. The scaling factor, kQ, is added for
the tuning purpose. The formula for Q is derived from the Jacobian of Equation (4) with
respect to the gyroscope readings, as given in Equation (6); finally, Q can be expressed as
shown in Equation (7).

Wk =
∂f(qk−1, ωk)

∂ω

=
[

∂f(qk−1,ωk)
∂ωx

∂f(qk−1,ωk)
∂ωy

∂f(qk−1,ωk)
∂ωz

]

=
Ts
2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


(6)

Q =
kQTs2

4
WkΣωWT

k

=
kQTs2

4


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


σ2

ωx 0 0
0 σ2

ωy 0
0 0 σ2

ωz



−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


T

(7)
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2.1.2. Attitude and Heading Observation Modeling

The gravitational field vector measured in the accelerometer’s sensor body axes, [ax ay az]T ,
can be mapped to the vertical gravity field ([0 0 g]T) in the NED frame using the rotational
matrix, described in terms of quaternion parameters, denoted as Cn

b (q). Similarly, the
magnetic field measured by the magnetometer ([mx my mz]T) was also mapped to the
horizontal and vertical components of the Earth’s magnetic field ([hx hy hz]T). The cosine
direction matrix, which is used to rotate the accelerometer and magnetometer body frame
readings to align with the Earth’s gravitational and magnetic fields in the NED frame,
respectively, is presented in Equations (8).

Cn
b (q) =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (8)

The measurement modeling for EKF-based attitude estimation has been approached in
different ways in different research works [21–23]. In the paper by Robert V. et al. [22], the
quaternion parameters were considered as the observation states, even though they cannot
be directly observed by the sensors. Therefore, an indirect observation of the quaternion
from the accelerometer readings (ax, ay, az) and magnetometer readings (mx, my, mz) was
applied, as given in Equation (9). Consequently, the measurement transition matrix (H) is
equal to the identity matrix (I4×4).

qk =


qw
qx
qy
qz

 = qacc ⊗ qmag (9)

where

qacc =


[
λ1 − ay

2λ1

ax
2λ1

0
]T

, az ≥ 0[
− ay

2λ2
λ2 0 ax

2λ2

]T
, az < 0

, λ1 =

√
az + 1

2
, λ2 =

√
1− az

2

qmag =


[√

hN+hx
√

hN√
2hN

0 0 hy√
2
√

hN+hx
√

hN

]T
, hx ≥ 0[

hy√
2
√

hN−hx
√

hN
0 0

√
hN−hx

√
hN√

2hN

]T
, hx < 0

,

hx
hy
hz

 = Cn
b (qacc)

 1√
m2

x + m2
y + m2

z

mx
my
mz

, hN =
√

h2
x + h2

y

Similarly,in the paper by Guo S. et al. [23], the quaternion parameters were considered
as the observation states, but a different mathematical model was used for describing the
quaternions in terms of the accelerometer and magnetometer readings, as indicated in
Equation (10).

qk =
1
4
(Wa + I4x4)(Wm + I4x4)qk−1 (10)

where

Wa =


az ay −ax 0
ay −az 0 ax
−ax 0 −az ay

0 ax ay az

,
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Wm =


hNmx + hzmz hzmy hNmz − hzmx −hNmy

hzmy hNmx − hzmz hNmy hNmz + hzmx
hNmz − hzmx hNmy −hNmx − hzmz hzmy
−hNmy hNmz + hzmx hzmy −hNmx + hzmz

,

hz =

 1√
a2

x + a2
y + a2

z

ax
ay
az

 ·
 1√

m2
x + m2

y + m2
z

mx
my
mz

, hN =
√

1− h2
z ,

and I4×4 is the identity matrix. In another paper [21], the sensor’s measurement out-
put values were directly used as the observation states. In this case, the measurement
model transition matrix is a non-linear function in terms of the quaternions, as shown in
Equation (11). 

ax
ay
az
mx
my
mz

 =

[
Cn

b (q)
T 03×3

03×3 Cn
b (q)

T

]
︸ ︷︷ ︸

H



0
0
g

hN
0
hz

 (11)

Measurement Noise Covariance Calculation

In most scientific articles, the measurement noise covariance is assumed to be time-
invariant and freely accessible from the measuring device’s datasheet [24]. If σ is the
measurement’s known time-invariant nominal standard deviation, a straightforward ap-
proach to express the measurement noise covariance matrix R is

R = kR JΣa,m JT

Σa,m = diag(
[
σ2

ax σ2
ay σ2

az σ2
mx σ2

my σ2
mz

]
)

(12)

where kR and J represent the scaling factor value and the Jacobian of the observation states
with respect to the sensors’ measurement (i.e., u = [ax, ay, az, mx, my, mz]). Alternatively,
experimental data can also be used to compute the noise variance. If measurements of
the accelerometer and magnetometer were taken at rest conditions, the variance could be
calculated using Equations (13) and (14).

σ2
a =

1
N − 1

 ∑N
i=1 a2

x,i
∑N

i=1 a2
y,i

∑N
i=1(az,i − g)2

 (13)

where σa, ax, ay, az, g, and N represent the accelerometer standard deviation; acceler-
ation along the X-, Y-, and Z-body axes, and gravity and the total number of samples,
respectively. And

σ2
m =

1
N − 1

∑N
i=1 (mx,i −mx,µ)2

∑N
i=1 (my,i −my,µ)2

∑N
i=1 (mz,i −mz,µ)2

 (14)

where σm, mx, y, mz, and mµ represent the magnetometer measurement’s standard deviation,
the Earth’s magnetic field along the X-, Y-, and Z-body axes, and the mean of the measured
magnetic field, respectively.
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However, the function to find the value of J depends on the chosen observation states.
For the measurement modeling approaches presented in Equations (9) and (10), J was
calculated using Equation (15).

J =
∂qk
∂u

=


∂qw
∂ax

∂qw
∂ay

∂qw
∂az

∂qw
∂mx

∂qw
∂my

∂qw
∂mz

∂qx
∂ax

∂qx
∂ay

∂qx
∂az

∂qx
∂mx

∂qx
∂my

∂qx
∂mz

∂qy
∂ax

∂qy
∂ay

∂qy
∂az

∂qy
∂mx

∂qy
∂my

∂qy
∂mz

∂qz
∂ax

∂qz
∂ay

∂qz
∂az

∂qz
∂mx

∂qz
∂my

∂qz
∂mz

 (15)

where the J value corresponding to Equation (11) is equal to the identity matrix (I6×6) since
the observation states chosen were identical to the sensors’ measurement output.

2.2. Bayesian Optimization

Bayesian optimization is an iterative process that begins with some prior beliefs about
the objective function to be estimated, such as its smoothness and other characteristics.
Over time, it collects more evidence through an acquisition function to update its initial
beliefs about the objective function. These prior beliefs are encoded in a probability
distribution function. The most widely used distribution function in Bayesian optimization
is the Gaussian process (GP) function. A Gaussian process is a collection of random
variables, each of which, when taken in any finite linear combination, follows a multivariate
normal distribution.

2.2.1. Gaussian Process (GP) Regression

A Gaussian process is a (potentially infinite) collection of random variables, where
the joint distribution of every finite subset of these random variables is a multivariate
Gaussian distribution:

f (x) ∼ GP(m(x), k(x, x′)). (16)

Initially, the mean was assumed to be zero for simplicity. The covariance (kernel) function,
represented by k(x,x′), models the joint variability of the Gaussian process random variables.
Preceding any data points observation, an infinite number of candidate functions (prior)
can fit the initial mean (m(x)) and covariance(k(x,x′)). The prior distribution represented
the expected outputs of the function over inputs x without any observation. When we start
to have observations, only functions that fit the observed data points are retained, referred
to as a posterior distribution. With new additional observations, the current posterior was
updated continuously toward improving the model function until a stooping criterion was
met. The joint distribution of the training output, f , and test data output, f?, with noisy
observation, is described as follows:[

y
f?

]
= N

(
0,
[

K(X, X) + σ2
n I K(X, X?)

K(X?, X) K(X?, X?)

])
(17)

A conditional probability is applied to obtain the posterior distribution over a function
that agrees with the observed data points.

f?|X, y, X? ∼ N ( f̄?, cov( f?)), where

f̄?
∆
= E[ f?|X, y, X?] = K(X?, X)[K(X, X) + σ2

n I]−1y,

cov( f?) = K(X?, X?)− K(X?, X)[K(X, X) + σ2
n I]−1K(X, X?).

(18)

One of the most common kernels in modeling Gaussian processes is the exponentiated
quadratic kernel, also known as the Gaussian kernel, mathematically presented in Equation (19).

K(X1, X2) = σ2 exp

(
−‖X1 − X2‖2

2`2

)
(19)
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where σ and l represent the variance and length scale, respectively.

2.2.2. Acquisition Function

The Bayesian optimization algorithm starts with preliminary information about the
function to be modeled and optimized. It updates the objective function progressively as
new knowledge comes in from the newly sampled data. The sampling point was bravely
selected using the expected improvement acquisition function. The expected improvement
acquisition function is one of the most widely selected methods among other acquisition
function techniques for Bayesian optimization implementation. A good acquisition function
should trade off exploration and exploitation. The acquisition function considers the
expected mean and variance at each point along the objective function domain to compute
the value that indicates how desirable it is to sample next at that position. Suppose we
would like to minimize f(x), and the best solution so far is x?, then, the equation of expected
improvement (EI) is defined as Equation (20).

EI(x; ξ) =

{
( f (x?)− µ(x)− ξ)Φ

(
f (x?)−µ(x)−ξ

σ(x)

)
+ σ(x)φ

(
f (x?)−µ(x)−ξ

σ(x)

)
, σ(x) > 0

0, σ(x) ≤ 0
(20)

Equation (20) can be represented in a simplified form as in Equation (21).

EI(z) =

{
σ(x)(zΦ(z) + φ(z)), σ(x) > 0
0, σ(x) ≤ 0

(21)

where z = d
σ(x) and d = f (x?) − µ(x) − ξ. The symbols d, σ, µ, ξ, Φ, and φ represent

the difference between the predicted and observed mean, the expected mean uncertainty,
expected mean, trade-off control for exploration and exploitation, normal probability
distribution function (pdf), and normal cumulative distribution function (cdf), respectively.
The EI algorithm was further elaborated graphically in Figure 1.

Figure 1. Cont.
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Figure 1. The graphical illustration of the Bayesian optimization algorithm, showing the sample data
points, expected function, uncertainty region shown in a gray area, true function, normal probability
distribution function indicated by φ(z) corresponding to the test point xtest at the top image, normal
cumulative distribution function shaded in light red and indicated by Φ(z) corresponding to the
test point at the top image, EI shown in a light blue area, and the functions plot of EI’s component
computed corresponding to the search space shown at the bottom image.

3. Process and Measurement Noise Covariance Tuning With Bayesian Optimization

The system block diagram for tuning R and Q is shown in Figure 2. The system
consists of three sub-blocks: the EKF sub-block, the performance evaluator sub-block, and
the Bayesian-based optimization sub-block.

The EKF sub-block continuously predicted the attitude and heading of the UAV using
the gyroscope’s readings. The prediction was then updated with the indirect measurement
of attitude and heading from the accelerometer and magnetometer readings. The perfor-
mance evaluator sub-block buffered the deviation between the sensor’s measurements and
the predicted referred to as innovation.

The proposed algorithm’s implementation necessitates buffering a sequence of EKF
innovation values for a specific duration N. Then, the autocorrelation of the innovation data
was computed for several time lags, which helped to find the optimization cost function that
is explained more in Section 3.2. Furthermore, the Bayesian optimization algorithm begins
by considering the initially trained data of the kR and kQ pair along with the cost values to
compute the prior expected function and its uncertainty. Then, new data sampling was
conducted through the expected improvement (EI) acquisition function guidance within
the allowed kR and kQ search domains. Further discussion about the implementation of
EI is found in Section 2.2.2. Similarly, the posterior expected mean and the corresponding
uncertainty computation followed by incorporating the new sample data. This process
iteration continued until the optimum kR and kQ values were found.

3.1. Adaptive Search Region for Bayesian Optimization

Bayesian optimization is a powerful technique for optimizing functions, but the size
of the search space can significantly impact its efficiency. To address this challenge, a
method was developed that leverages historical information about the objective function’s
performance over a specific interval of iterations. This method intelligently adapts the
search space to improve the optimization process.

The approach identifies regions within the search space where promising optimal
values have previously been discovered. It then makes precise adjustments to the search
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space size based on these insights. These adjustments can take the form of expansion,
contraction, or zooming, depending on certain conditions.

Figure 2. EKF noise covariance matrix tuning algorithm block diagram.

If the minimum sampled values found so far have been at and near the boundary of
the search area, the method would expand the search space from that boundary side, given
that relatively higher sampled values have been observed at the opposite boundary of the
search space. On the other hand, if the sampled values have been relatively high at and
near the edge of the search space, the algorithm would contract the search space from that
side. In cases where the minimum sampled values are concentrated around the middle
of the search space, and both of the opposite edges exhibit maximum values, the method
would employ a “zooming” strategy. This proactive adjustment ensures that the algorithm
explores potentially fruitful regions more extensively.

In summary, the method offers a dynamic approach to adapting the search space in
Bayesian optimization, harnessing historical knowledge to guide the optimization process
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effectively. By expanding, contracting, or zooming the search space intelligently, it can
expedite the discovery of optimal solutions while conserving computational resources.

3.2. Optimization Cost Function

In most cases, knowing the underlying truth about the system state for performance
comparison is difficult or impossible. As a result, in this research, the EKF performance
measures were analyzed in terms of innovation, which is always available and easy to
access. If proper EKF parameters have been set, innovation denoted by νk should be zero
mean and white with a covariance of Sk. Using Equation (22), we can test the whiteness of
the innovation by checking its autocorrelation (Rxx) which should be zero at all lag times
except where τ = 0, within an allowable statistical error.

Rxx(τ) =
1

Rxx(0)

N−τ−1

∑
k=0

νT
k νk+τ (τ ≥ 0) (22)

where τ and N represent the time lag and total number of EKF innovation samples. In
practice, the autocorrelation of a white EKF innovation at zero lag should be unity for
the normalized case and nearly zero as the lag increases from zero in both directions
symmetrically. As a consequence, the sum of autocorrelation values at zero and near-zero
lags will be significantly larger compared to the sum at the remaining lags for signals that
are more white than for those that are less white.

Therefore, the optimization effort is equivalent to pushing all the autocorrelation
values at non-zero lags to zero, as illustrated in Figure 3, to narrow and center the function
graph at zero lag. As a result, the good cost function (J) for the Bayesian optimization
should be the ratio of the area under the autocorrelation function within the time lag
ranges [−m, −L) and (L, m] to the area under the curve within the time lag range [−L, L],
which is described in Equation (23). The L value can be selected to map the cost value at a
manageable range.

J =
A2 + A3

A1
=

∑−L−1
τ=−m Rxx(τ) + ∑m

τ=L+1 Rxx(τ)

∑L
τ=−L Rxx(τ)

(23)

where A and m represent the shaded area under the curve at the corresponding time
range and the choice of maximum lag for whiteness testing, respectively. Minimizing the
cost function corresponds to choosing covariance matrices R and Q that produce whiter
(narrower) EKF innovations.

Figure 3. Autocorrelation function graph shape comparison and reshaping action illustration.
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4. Testing

Our algorithm’s effectiveness was tested based on two publicly available datasets
published by Laidig et al. [25] and Caruso M. et al. [26]. The specifications of the sensors
used to obtain the datasets are summarized in Table 1.

Table 1. IMU sensors datasheet noise specification.

Sensors Specs
Datasets

BOARD [25] SASARI [26]

Accel noise (σastd ) [0.044 0.050 0.074] m/s2 [0.86 0.80 0.85] m/s2

Gyro noise (σωstd ) [0.10 0.09 0.12] deg/s [0.38 0.39 0.37] deg/s

Mag noise (σmstd ) [0.71 0.70 0.68] µT [0.06 0.04 0.04] µT

Model myon aktos-t Xsens-MTx

Based on the noise information from the given sensors, Σω is represented as shown in
Equation (24).

ΣBOARD
w = kQ

 π

180

0.10 0 0
0 0.09 0
0 0 0.12


ΣSASARI

w = kQ

 π

180

0.38 0 0
0 0.39 0
0 0 0.37


(24)

Similarly, the value of Σa,m mentioned in Equation (12) can be obtained by referencing
Table 1, applying the necessary conversions to ensure compatibility with the measurement
units and accounting for any scaling caused by normalization.

4.1. Test Results

This section presents the results that justify the selection of the proposed method and
its performance. As stated in Section 3.2, testing the performance of the EKF-based AHRS
estimation method for every process noise and measurement noise covariance combination,
which in this study is controlled by kR and kQ values, would be exceedingly time- and
resource-intensive. Additionally, ground truth data may only be available in some real-time
operations for comparison. Therefore, we employed the Bayesian optimization technique to
efficiently explore the parameter space defined by kR and kQ. By sampling a limited number
of data points within this range, a mathematical model was constructed that accurately
captured the underlying trends. Through iterative and guided sampling, the optimal point
was quickly found.

Furthermore, as reference data would typically not be available to calculate the attitude
and heading estimation error in most real-time applications, the attitude and heading RMS
error values were not used to optimize the measurement and process noise parameters.
Instead, our algorithm relied on innovation data, which are always available. To test the
proposed algorithm, an AHRS developed by [23] and the datasets presented in Table 1
were used. The results obtained for the two datasets are presented as follows.

4.1.1. Case BOARD Dataset:

Figures 4–6 show the Bayesian-based data fitting and optimization results to determine
the ideal kR and kQ values for iteration numbers twenty-one, seventy-one, and one hundred
seventy-four, respectively.
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Figure 4. Bayesian optimization progress for the initial 21 samples, displaying the 3D plots of the
objective function prediction and corresponding expected improvement results for the specified
ranges of kR and kQ values.

Figure 5. Bayesian optimization progress for the 71 samples, displaying the 3D plots of the objective
function prediction and corresponding expected improvement results for the specified ranges of kR

and kQ values.

Figure 6. Bayesian optimization progress for the 174 samples, displaying the 3D plots of the objective
function prediction and corresponding expected improvement results for the specified ranges of kR

and kQ values.
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The attitude and heading estimation accuracy improvement when optimized EKF
parameters were used, in terms of angle and quaternion errors, are also depicted in
Figures 7 and 8, respectively.
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Figure 7. The angle estimation error with respect to the reference for non-optimized and optimized
EKF parameters.
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Figure 8. Quaternion estimation errors with respect to the references for non-optimized and optimized
EKF parameters.

4.1.2. Case SASARI Dataset:

Figures 9–11 show the Bayesian-based data fitting and optimization results to de-
termine the ideal kR and kQ values for iteration numbers twenty-one, seventy-one, and
eighty-five, respectively.
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Figure 9. Bayesian optimization progress for the initial 21 samples, displaying the 3D plots of the
objective function prediction and corresponding expected improvement results for the specified
ranges of kR and kQ values.

Figure 10. Bayesian optimization progress for the 71 samples, displaying the 3D plots of the objective
function prediction and corresponding expected improvement results for the specified ranges of kR

and kQ values.

Figure 11. Bayesian optimization progress for the 85 samples, displaying the 3D plots of the objective
function prediction and corresponding expected improvement results for the specified ranges of kR

and kQ values.
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The attitude and heading estimation accuracy improvement when optimized EKF pa-
rameters were used, in terms of angle and quaternion errors, are depicted in
Figures 12 and 13, respectively.
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Figure 12. Angle estimation error with respect to the references for non-optimized and optimized
EKF parameters.
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Figure 13. Quaternion estimation errors with respect to the references for non-optimized and opti-
mized EKF parameters.

5. Discussion

To validate and assess the effectiveness of our proposed approach in computing the
optimum values of kR and kQ, we utilized openly available published datasets, along with the
recently released attitude and heading reference system (AHRS) algorithm by Guo S. et al. [23].
The rationale behind employing different datasets lies in recognizing the inherent variability
introduced by data originating from different devices and recorded under varying conditions,
leading to distinct noise behaviors. By subjecting our optimization algorithm to such hetero-
geneous datasets, we aim to enhance the robustness and credibility of the results obtained.
For this purpose, we consider the BOARD [25] and SASARI [26] datasets, each acquired using
the sensor specifications, as shown in Table 1.
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At the core of our research lies a Bayesian-based optimization algorithm. The algorithm
starts by generating twenty initial samples, randomly selected from the specified range
of kR and kQ values. Subsequently, the acquisition function intelligently explores the
parameter space to identify the most optimistic kR and kQ pair for the next test point.
Throughout the iterative process, the algorithm progressively narrows the search space,
ultimately converging on the optimal kR and kQ pair in less than two hundred iterations.
This systematic approach ensures that the best pair is efficiently determined, thereby
contributing to the overall effectiveness of our proposed methodology.

Figures 4–6 depict the progress of the objective function prediction along with the
output of the expected improvement (EI) data acquisition function at the given search
space for iteration numbers twenty-one, seventy-one, and one hundred seventy-four,
respectively, while utilizing the dataset BOARD. The crossing-dotted line in each figure
indicates the maximum value of EI, signifying the next sampling point. In particular,
Figures 5 and 6 showcase the continuous improvement of the estimated model function
as the number of samples gradually increases. Remarkably, even with a relatively small
number of iterations, a nearly accurate objective function model is obtained, which closely
represents the observed data. Notably, the model obtained at the seventy-one iteration
demonstrates an excellent representation of the observed data. Similarly, Figures 9–11
show the progress of the optimization process when the SASARI dataset was utilized. The
findings illustrate how the application of Bayesian optimization allowed us to efficiently
accomplish a task that typically required a long time and considerable effort, using only
minimal samples. The optimal kR and kQ values discovered at the eighty-fifth iteration
have excellent EKF performance, as was validated with experimental test results depicted
in Figures 7, 8, 12, and 13 for two dataset utilization cases. The accuracy of attitude and
heading estimation improved markedly when using the optimized kR and kQ values,
compared to when non-optimized parameters (i.e., kR = 1 and kQ = 1) were used.

The performance comparison of EKF for optimized and non-optimized values of kR
and kQ are graphically presented in Figures 7, 8, 12, and 13, and summarized in Table 2.

Table 2. RMS error of attitude and heading estimation in quaternion and axis angle representa-
tions analyzed using BOARD and SASARI datasets for non-optimized and optimized EKF parameter
selection cases.

Datasets kR kQ

Quaternion Estimation

Error (RMS)

Angle Axis

Representation

qw qx qy qz Angle Error (RMS)

BOARD

1 1 0.0140 0.0115 0.0110 0.0147 2.8941

1.22 7.3 0.0074 0.0067 0.0047 0.0087 1.4832

Improvement 47.14 % 41.74% 57.27% 40.82% 48.75%

SASARI

1 1 0.0326 0.0287 0.0372 0.0413 7.8811

0.1 10.0 0.0138 0.0113 0.0091 0.0129 2.2604

Improvement 57.67% 60.63% 75.54% 68.77% 71.32%

6. Conclusions

In conclusion, we presented a novel Bayesian-based optimization algorithm for tuning
the process and measurement noise covariance in EKF-based UAV AHRS estimation
applications. The algorithm is built upon EKF-innovation consistency analysis, which is
always accessible. Our approach fine-tunes the scaling factor values of the covariance
matrices as a whole, allowing scalability to higher-dimensional systems. Furthermore, we
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designed an objective function that is both well-behaved and easy to optimize, along with
an adaptive search space adjustment strategy. These combined features facilitate rapid and
efficient convergence of our algorithm.

The performance of the proposed method was evaluated using openly available
datasets. The results showed that the EKF-based AHRS estimation performance signifi-
cantly improved with the measurement and process noise covariance matrices determined
by the proposed algorithm. The method is also general and can be applied to a wide range
of AHRS applications.
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