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Abstract: To make measurement of end-wall flow between blade rows in a compact multistage
configuration possible, a miniature L-shaped five-hole probe was employed in this paper. This
compact tip structure, realized by laser-printing instead of the conventional machining technique,
reduces the blockage effect of this intrusive measurement on the flow and ensures high spatial
resolution. The zonal method is introduced to extend the usable flow angle range up to 60 degrees. A
local least-squares interpolation technique is utilized to acquire flow angle and static/total pressure.
In order to improve accuracy for the points located at the sector boundary, the overlap region method
is included in the interpolation. Additional test data indicate that the maximum error in flow angle
is nearly within 1 degree, and the maximum errors of total pressure and static pressure are 0.56%
and 1.9% respectively. The application in a low-speed multistage axial compressor indicates that the
zonal method can decrease the number of points exceeding the measurable flow range and is of great
significance for the end-wall flow measurement, especially for the near-stall condition. Compared
with the traditional method, the proportion of available data for the near-stall state measurement
was increased by 18% by using the zonal method.

Keywords: multistage axial compressor; end-wall flow; miniature five-hole probe; local least-squares

1. Introduction

The axial compressor, as a core component of aircraft engines, plays a dominant role
in engine performance. It is also well known that complex flow in the end-wall region is
the primary loss source for axial compressors and has a significant effect on stability. It is
necessary to obtain reliable measurements deep into the end wall region to understand the
flow in the end wall region. Some research, for example, that of [1] and [2], indicate that
about half of the loss is associated with the end-wall boundary layers, especially for the rear
stages of multistage axial compressors. Since about 1970, a great reduction in the aspect
ratio of blades has occurred in compressors [3], which makes this situation more acute.
Typically, the optimum aspect ratio is below 1.5 for modern axial compressors, under which
conditions no discernible freestream is visible in the flow field [4]. It is also evident that
there is a close relationship between the blockage of the end-wall region and compressor
stability from the work of Koch and Smith [2], and Koch [5]. Smith developed a correlation
between the maximum blockage and geometry and aerodynamic parameters [6]. Based on
the above literature review, it can be concluded that a reliable measurement deep into the
end-wall region is needed.

Although non-intrusive measurement techniques, such as PIV and LDV, are increas-
ingly widely employed in turbomachines recently, their application is restrained by some
limitations. For example, seeding particles into the closed end-wall region is not always pos-
sible and the adjustment for optical devices is highly complicated. Conventional multi-hole
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probe is still a common method to measure three-dimensional flow field in turbomachines
for their attractive features of robustness, ease of use, and relatively-low cost. Generally,
the multi-hole probe can be used both in a nulling and non-nulling way. Nulling method is
almost unrealistic for long time-consuming in practical application. Instead, a non-nulling
method is a better alternative. For non-nulling measurement, careful calibration of the
probe is needed before putting it into use in an unknown flow field.

Some features of end-wall flow in modern multistage high-pressure axial compressors
challenge the manufacturing, calibration, and data reduction of the probe a lot. These
features are reflected in the following four areas: (1) serious blockage, (2) high gradient,
(3) narrow axial gap, and (4) violently changing flow angle. Some of the literature related
to this challenge is cited to demonstrate the importance of the work in this paper. First,
the end-wall region blockage is already serious, even exceeding 70% pitch [7]. In the
measurement process, the presence of intrusive probes will aggravate the blockage [8,9]
and even change the airflow parameters near the probe, causing measurement errors.
Second, the multi-hole probe is usually calibrated in the uniform flow through a wind
tunnel. However, pressure and velocity gradient in the end-wall region induce greater
errors [10]. Third, for the purpose of reducing weight of the aeroengine and improving
efficiency, the axial gap between the rotating part (rotor blades) and the stationary part
(stator vanes) becomes narrower for modern multistage axial compressors. For example,
the axial gap of the test compressor modeled from a modern high-pressure compressor
in [11] is low to the value of 7 mm. Fourth, the flow angle in the end-wall region changes
violently. For the traditional way of calibration and data reduction, the usable flow range is
insufficient for some flows of interest. Taking these four aspects into account, it is urgent to
minimize the tip diameter and tip length of the five-hole probe as well as use advanced
calibration strategies to maximize the usable range of the five-hole probe in order to make
the five-hole probe measurement technology applicable in the inter-stage measurement of
small axial clearance compressors and to improve the accuracy of the measurement results
of the five-hole probe in the end wall area of the multistage compressor.

For conventional five-hole probes, the tip diameter is greater than 3 mm, such as the
cases of [12] (3.2 mm) and [13] (4 mm). Recently, Liu [14] processed a five-hole probe with
a tip diameter of 2 mm. However, it is necessary to continue to reduce the diameter of the
probe when the processing conditions permit. In this paper, a miniature five-hole probe
with a tip diameter of 1.5 mm and tip length of 4 mm, manufactured through laser printing,
which is almost unrealizable through conventional machining, was employed to conduct
end-wall flow measurements in a multistage axial compressor. The tiny tip diameter en-
sured the remission of the extra blockage due to intrusive measurement and improves
spatial resolution (i.e., reducing error induced by a strong flow gradient close to the casing).
The shorter tip length and wider usable flow range made it possible for end-wall flow mea-
surement to be conducted with high accuracy in a compact turbomachinery configuration.

This paper is mainly divided into four parts. The first part is an introduction that
details the calibration method of the probe. The second part demonstrates the measurement
uncertainty of the probe based on a large amount of additional test points. The third part
presents the corresponding results of applying this miniature five-hole probe to measure
the complex end-wall region of a multistage axial compressor. The last part presents a
summary of the work of this paper.

2. Calibration Strategy
2.1. Probe Structure and Angle Frames

The structure of the five-hole probe is presented in Figure 1. In order to make mea-
surement between blade rows in compact turbomachinery possible, the L-shaped structure
was adopted. The tip diameter of the probe was 1.5 mm, the cone angle of which was
60 degrees, and the distance between the probe tip and the axis of the probe stem was
3.2 mm. Laser printing technology was used in the manufacturing process of this miniature
five-hole probe. The material of the probe head was Inconel. Laser printing technology
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allowed for geometric tolerances of the five-hole probe within 0.05 mm. The diameter of
each hole was 0.4 mm. The central port (labeled as 1) was surrounded by four outer ports
on the conical surface (labeled as 2–5).
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Figure 1. The schematic of the five-hole probe structure.

There are two different angle frames used to describe low angularity and high angular-
ity, respectively, as shown in Figure 2. Pitch (α) and yaw (β) angle, defined in the Cartesian
coordinates, are used to describe low angularity, and cone (θ) and roll (φ) angle, defined in
the polar coordinates, are used to describe high angularity. In the calibration process, the
angle frame of the cone and roll angle was adopted. The transformation between these two
angle frames is as follows:

θ = arcos(cosαcosβ), (1)

φ = artan
(

sinα

tanβ

)
, (2)
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2.2. Angular Space Division

The zonal method was developed in the early 1980s to extend the usable flow range
to high angles [15–17]. Compared to other methods (such as the denominator-shift
method [18] and the generalized n-hole method [19]), the zonal method offers accurate
results both at low and high flow angles [20]. This method divides the whole angular
space into an inner sector and four outer sectors, in which different definitions of non-
dimensional coefficients are applied. The location where the different sectors intersect
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is called the sector boundary. It is worth mentioning that the number of outer sectors
depends on the number of ports of the specific multi-hole probes (for example, there are
6 outer sectors for seven-hole probes). Generally speaking, there are two different ways
to accomplish it, i.e., geometrical and aerodynamic division (as shown in Figure 3). The
geometrical division means that different sectors are defined through cone and roll angles.
For example, sector 1 is restrained to the region where the cone angle is lower than 25

◦
, and

sector 3 is restrained to the region where the cone angle is greater than 25
◦

and roll angle is
from 45

◦
to 135

◦
. Aerodynamic division is accomplished on the basis of the index of the

maximum pressure hole. For example, if port 1 for one specific calibration point senses
the largest pressure compared to 4 other ports, this point is allocated to sector 1. Due to
the manufacturing error, the sector boundary defined by the geometrical division does not
match that defined by the aerodynamic division exactly. The aerodynamic division method
was employed in this paper, considering its capability to reduce extrapolation error for the
data at sector boundary [21].
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2.3. Calibration Coefficients for Low Flow Angle

As mentioned above, the angle frame of pitch and yaw was employed in low-flow
angle conditions. In this condition, all five ports were in the attached flow region, which
implies that all five readings are reliable and can be used to define calibration coefficients.
Pitch, yaw, total pressure, and static pressure coefficients are defined as follows, respec-
tively [15,22]:

bα =
P2 − P3

q
, (3)

bβ =
P4 − P5

q
, (4)

bt =
P1 − Pt

q
, (5)

bs =
q

Pt − Ps
, (6)

where q represents dynamic pressure actually and for simplicity is replaced by the value:

q1 = P1 −
(P2 + P3 + P4 + P5)

4
, (7)

This simplification is used universally in open in the literature [15,22].
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2.4. Calibration Coefficients for High Flow Angle

For high flow angle conditions, the angle frame of the cone and roll is used to describe
flow angularity. In this condition, some port is in a separate flow region and becomes
insensitive to flow angle. The port in the separate flow region provides meaningless
reading and is not adopted to define calibration coefficients. Based on the reference [23],
the separation point of a cylinder in a turbulent flow is over 100

◦
. For this probe with a

conical tip, the separation point is likely to extend downstream further, which means at
least 4 ports can be used to define calibration coefficients. Figure 4 demonstrates the flow
diagram over the probe tip at a high flow angle, in which condition port 2 is located at the
separate flow region. Therefore, ports 1, 3, 4, and 5 were employed to define calibration
coefficients. Generally speaking, the calibration coefficients at high flow angles are defined
as follows [15,22]:

bθ =
Pi − P1

q
, (8)

bφ =
Pi+ − Pi−

q
, (9)

bt =
Pi − Pt

q
, (10)

bs =
Pi − Ps

q
, (11)

where i denotes the port index with the maximum reading and i+/i− denotes the adjacent
port of the clockwise/anti-clockwise direction. Similarly, dynamic pressure q is replaced
for simplicity by the following value:

q2 = Pi −
Pi+ + Pi−

2
. (12)
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2.5. Calibration Results

The pressure signal of the five-hole probe was collected by an electronic pressure
scanner system (Figure 5). The system consists of a power supply, sensors, and pressure
scanners. The sensor range used in the calibration process was 1 PSI, and its measurement
accuracy was ±0.05% of the range. During the calibration process, the probe moved
according to the preset angle driven by a two-axis traverse system (Figure 6) until the data
acquisition of all calibration points was completed. The resolution of the rotation angle of
the two-axis traverse system was within 1 degree. The yaw angle and pitch angle were
changed by the motor driving the probe to rotate along axis 1 and axis 2. The direction of
the air source was vertical to the plane of the picture.
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Although some of the literature indicates that the compressibility effect is significant,
the probe was only calibrated at the Mach number of 0.1 in this paper, considering the
fact that end-wall flow investigated is subsonic and incompressible. Figure 7 shows the
calibration grid of the probe. In the calibration process, the angle frame of the cone and
roll was used. The cone angle was up to 60

◦
, and roll angle distributed uniformly from

−180
◦

to 180
◦

for each cone angle. Figure 8 demonstrates the calibration results of sector 1
and sector 3 as an example, and the corresponding results of the other 3 outer sectors are
omitted for clarity. In Figure 8 and the remainder of this paper, bα and bθ are referred to as
b1, and bβ and bφ are referred to as b2.
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3. Error Evaluation Based on Test Data

Once the calibration was completed, the probe could be inserted into an unknown flow
field to measure flow direction, static pressure, and total pressure. In the data reduction
process, the angle frame of pitch and yaw was adopted in order to avoid discontinuity at
180

◦
or −180

◦
roll. The data reduction procedure to acquire flow direction and static/total

pressure based on the sensed pressure of five ports is outlined in Figure 9. As indicated
in Figure 9, the local least-squares algorithm was adopted in this paper. The first-order
polynomial was used.

y = a0 + a1b1 + a2b2, (13)
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where y denotes α, β, bt or bs. The coefficients a0, a1 and a2 are determined based on the
criteria of minimizing the error between the predicted and real value, which means:

ε = ∑4
1(yi − [a0 + a1b1i + a2b2i])

2 = minimum, (14)
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It yields: a1
a2
a0

 =
(

KTK
)−1

KT


y1
y2
y3
y4

, (15)

where

K =


k11 k12 1
k21 k22 1
k31 k32 1
k41 k42 1

, (16)

The definitions of b1 and b2 are largely dependent on the sector where the test point
is located, and the primary error source is from this. In order to reduce the error at
the sector boundary, the overlap region method was employed. The overlapping region
method is described in reference [24]. If the maximum pressure was no larger than 90%
that of the other four ports for a specified test point, it was judged that the test point
was located at the sector boundary. The zonal method selects points from both the sector
with the highest pressure (the primary sector) and two adjacent sectors. The adjacent
sectors use the non-dimensional coefficient definitions in the primary sector to make the
independent coefficients (b1 and b2) from different sectors comparable. In the process of
interpolation, the calibration database was from the above-mentioned primary sector and
two adjacent sectors.

In the calibration process, an additional 298 points were measured to inspect the
accuracy of the probe. These test points covered the whole calibration space and were
distributed uniformly in the cone-roll space, as shown in Figure 10. The pre-mentioned
data reduction procedure was applied to calculate flow angle, total, and static pressure.
The deviation between the calculated value and the real value is presented in Figure 10 and
the relevant statistical analysis for 5 sectors is shown in Figure 10. As shown in Figure 11,
the maximum errors of the pitch angle, yaw angle, total pressure, and static pressure
were 0.93◦, 1.24◦, 0.56%, and 1.9%, respectively. For the five-hole probe manufactured in
the literature [14], the maximum errors of its pitch angle, yaw angle, total pressure, and
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static pressure were 0.95◦, 0.60◦, 2.0%, and 4.0%, respectively. Thus, the probe and data
reduction procedure in this paper has obvious advantages in measuring total pressure and
static pressure. It can be concluded from Figure 12 that the main error source in total and
static pressure was from sector 1. However, even in sector 1, the predicting ability of the
data reduction procedure was satisfactory because the mean absolute deviations of pitch
angle, yaw angle, total pressure, and static pressure were 0.23◦, 0.41◦, 0.17%, and 0.78%,
respectively. Correspondingly, the standard deviations were 0.1◦, 0.25◦, 0.13% and 0.44%.
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4. Application in End-Wall Flow Measurement for a Low-Speed Repeating-Stage
Axial Compressor

In this part, the corresponding results of the end-wall flow measurement through the
calibrated miniature five-hole probe are presented. The measurement was conducted on a
low-speed repeating-stage axial compressor, which is a model of a modern high-pressure
compressor exit stage. Drawings of the experimental test facility are shown in Figure 13.
The test rig consisted of a bell mouth, inlet ducts, test compressor, volute, valve, etc. There
are four stages for the test compressor; the first two stages and the fourth stage provide inlet
and outlet boundary conditions for the model stage (third stage). The valve was adapted
to adjust the operating point of the compressor. Some necessary parameters of the test
compressor are listed in Table 1.
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In the course of this experiment project, an area traverse was performed at the inter-
face between the S3 exit and the R4 inlet. Measurements were taken using the calibrated
five-hole pneumatic probe. Based on the preliminary work, the end-wall separation oc-
curred at the casing region. For the consideration of reducing experiment time, the measure-
ment was conducted from 44% to 99% span. There are 11 radial locations (clustered towards
the casing), 19 measurement points for each radial location that covers 1 stator pitch, and a
total of 209 measurement points. The picture of the area traverse and measurement grid is
presented in Figure 14.
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Figure 15 presents the total-to-total pressure rise characteristic of the test compressor.
The total-to-total pressure rise coefficient, ΨTT , and flow coefficient, Φ, are defined as
follows, respectively:

ΨTT =
Pt,outlet − Pt,inlet

0.5ρU2
m

, (17)

Φ =
Vz

Um
, (18)
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The measurement was conducted both at design point (DP) and near-stall conditions
(NS), which are characterized by solid symbols in Figure 15.

The measured flow fields of axial velocity and yaw angle are shown in Figures 16 and 17,
where both the results for the DP and NS conditions are presented. As shown in Figure 16,
the corner separation under the condition of DP occurs at the suction side (SS) of stator blades
and was confined to the casing region (about from 60% to 100% span), where the stator wake
is also visible. With the compressor throttled to the stall boundary, the situation differs a
lot. Under the condition of the NS, corner separation almost extends to the whole spanwise
range and the stator wake also thickens. Due to these aspects, the stator wake is no longer
discernible from the corner separation. Within the separation region, this implies complex
secondary flow and that the situation is more terrible for the NS condition. It can be concluded
from Figure 17 that the flow angle varies sharply in the stator wake, especially for the NS
condition. For the condition of DP, the flow angle of the nearly entire flow field is restricted to
the range from −30◦to 30◦, which means the flow angle lies in the range of sector 1 (Figure 3).
Therefore, the traditional method instead of the zonal method is sufficient for this condition.
However, the situation becomes more complex for the NS condition, where 46 points (about
22% of total points) exceed the measurable range of sector 1 (i.e., the traditional method).
After the zonal method is used, which is put forward to enlarge the measurable flow range,
only 7 points (about 3% of total points) exceed the measurable flow range.
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Figure 18 shows the radial distribution of flow parameters at the outlet of the vane
suction surface. At the design point, the decrease in velocity and the increase in flow angle
at 60% to 80% span indicate that there is corner separation here. At the near-stall point, the
corner separation spreads across the entire span, so that the flow parameters are then more
uniformly distributed in the radial direction.
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5. Summary and Discussion

Throughout the work of this paper, a miniature five-hole pneumatic probe, with a tip
diameter and length of 1.5 mm and 3.2 mm, respectively, was manufactured, calibrated,
and applied in the end-wall flow measurement in a low-speed, multistage axial compressor.
To manufacture such a compact tip structure, the conventional machining technique was
almost impossible and the state-of-the-art laser-printing technique was adopted. The
summary of this paper contains two parts:

1. Data reduction and error analysis of the miniature five-hole probe.

The application of the laser printing technique enables for the successful manufacturing
of this miniature probe, which is nearly impossible for traditional machining. The compact tip
structure of the probe reduced the effect of probe blockage on the flow field and enhanced the
spatial resolution. The local least-squares interpolation technique and overlap region method
were employed to reduce the calibration errors. It shows that the maximum errors of the
pitch angle, yaw angle, total pressure, and static pressure were 0.93◦, 1.24◦, 0.56%, and 1.9%.
Compared with the previous literature, the probe and data reduction procedure in this paper
reduce the measurement error of total pressure and static pressure. Also, the zonal method
was adopted to enlarge the measurable flow range, up to ±60

◦
.

All of these aspects guarantee the application of the probe in the end-wall flow mea-
surement between blade rows in multistage axial compressors.

2. Application in end-wall flow measurement in a multistage axial compressor.

The measurement results from a low-speed, multistage axial compressor indicate that
the probe can distinguish the corner separation and stator wake clearly and reflect the
deterioration of the corner separation with the compressor throttled to the stall bound-
ary. Also, the zonal method is of great significance in decreasing the number of points
exceeding the measurable flow range for the traditional method, especially for the near-
stall condition. Compared with the traditional method, the proportion of available data
for the near-stall state measurement was increased by 18% by using the zonal method.
However, in order to extend the probe to high-speed compressor flow field measurement,
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more research is needed in the future, such as on the influence of Reynolds number on
measurement accuracy.
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Nomenclature

bs, bt Static and total pressure coefficients
bα, bβ, bθ , bφ Pitch, yaw, cone, and roll angle coefficients
P1,. . .,P5 Pressure measured at port 1, . . ., 5
Pt,inlet, Pt,outlet Total pressure at inlet and outlet
q1, q2 Dynamic pressure for low-angles and high-angles
Um Rotational speed at mid span
Vz Axial velocity
α, β, θ, φ Pitch, yaw, cone, and roll angle
ε Error between the measured and true value
ρ Density
Φ Flow coefficient
ΨTT Total-to-total pressure rise
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