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Abstract: In addressing the morphing problem in vehicle flight, some scholars have primarily
employed reinforcement learning methods to make morphing decisions based on task. However, they
have not considered the constraints associated with the task process. The innovation of this article is
that it proposes an intelligent morphing decision method based on deep neural networks (DNNs)
for the autonomous morphing decision problem of hypersonic boost-glide morphing vehicles under
process constraints. Firstly, we established a dynamic model of a hypersonic boost-glide morphing
vehicle with a continuously variable sweep angle. Then, in order to address the decision optimality
problem considering errors and the heat flux density constraint problem during the gliding process,
interference was introduced to the datum trajectory in segments. Subsequently, re-optimization was
performed to generate a trajectory sample library, which was used to train an intelligent decision-
maker using a DNN. The simulation results demonstrated that, compared with the conventional
programmatic morphing approach, the intelligent morphing decision maker could dynamically
determine the sweep angle based on the current flight state, leading to improved range while still
adhering to the heat flux density constraint. This validates the effectiveness and robustness of the
proposed intelligent decision-maker.

Keywords: morphing flight vehicle; intelligent decision-making; hypersonic boost-glide vehicle

1. Introduction

Hypersonic vehicles operate across a wide speed range, encompassing various com-
plex tasks and processes. This speed domain spans from zero speed to subsonic, transonic,
supersonic, and eventually hypersonic. Additionally, the airspace covered ranges from
ground level, through the dense atmosphere, and extends to near space. The flight environ-
ment undergoes dramatic changes, involving horizontal takeoff, accelerated climb, cruise
flight, turning maneuvers, glide, and autonomous landing, among others. If a fixed aircraft
geometry is employed, it becomes challenging to meet the performance requirements of
each flight stage.

Compared to traditional fixed-wing aircraft, the literature [1–8] highlights numerous
advantages of variable geometry aircraft in adapting to different flight environments. Firstly,
these aircraft can adjust their geometry according to the flight conditions, thereby increasing
the lift–drag ratio to enhance range. Secondly, by undergoing morphing, they can alter their
trajectory shape, reduce the reflective area, and improve penetration performance. Thirdly,
the deformable mechanism can also serve as an auxiliary operation to coordinate control
with the attack angle and bank angle, thus enhancing the aircraft’s rapid response capability.

However, the literature [9–14] highlights that the shape-changing process of morphing
flight vehicles alters the aerodynamic characteristics and attitude control response, which
affects the flight dynamics process. This change increases the control requirements and
introduces additional constraints. It is necessary to study the optimal morphing timing
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and amplitude for comprehensive flight performance. Previous work [15] developed an
approximation algorithm based on the sparse approximation principle to fit aerodynamic
coefficients as functions of Mach, sweep angle, and attack angle. However, this approach
requires pre-designing according to specific task requirements. The development of com-
posite materials has opened up new possibilities for achieving morphing in aerospace
applications. Numerous scholars have explored the utilization of smart materials to enable
aircraft morphing. The authors of [16] investigated the application of soft polymeric ma-
terials in multi-axial morphing. The authors of [17] conducted finite element analysis on
a novel GATOR skin to explore the relationship between skin structure and mechanical
properties. The authors of [18] employed fused filament fabrication (FFF) 3D printing
technology to manufacture complex shapes. However, the morphing of flexible wings
presents significant challenges in terms of material requirements. The deformable skin must
be capable of facilitating continuous and smooth large-scale morphing while maintaining
adequate stiffness for preserving wing shape and bearing loads. Existing skin materials
face issues during morphing transitions, resulting in discontinuities on the wing surface,
imprecise morphing, and a negative impact on aerodynamic efficiency. Furthermore, there
are also concerns regarding morphing stiffness and reliability [19–23].

To achieve intelligence and autonomy in morphing flight vehicles, it is essential to
dynamically adjust the morphing strategy according to flight conditions and task demands.
Reinforcement learning algorithms provide an interactive learning framework between an
agent and its environment, enabling the agent to discover optimal actions through trial
and error to maximize rewards and adapt to changing environments. Consequently, rein-
forcement learning methods are often employed as effective approaches for determining
shape decisions in morphing flight vehicles. For instance, the authors of [24] employed an
AC algorithm based on reinforcement learning to solve optimal aircraft shapes. Another
study [25] approximated the KNN method with a continuous function and combined
Q-learning with nonlinear dynamic inverse control (NDI), yielding favorable control ef-
fects. Additionally, Q-learning was utilized in [26] to make decisions based on the forward
sweep angle of UAVs in the mission profile. In [27], an adaptive control method based
on Q-learning was proposed for variable sweep angle aircraft, determining optimal mor-
phing strategies for specific mission profiles. Moreover, [28,29] conducted semi-physical
simulation experiments on deformed wings using the deep deterministic policy gradient
algorithm (DDPG) to design optimal wing shapes. Furthermore, in [30], the DDPGwTC
algorithm was proposed, which employed a task classifier based on the long short-term
memory recurrent neural network (LSTM) theory. Corresponding reward functions were
designed to make decisions based on different task types. The aircraft’s state data are fed
into the input layer of the LSTM network. Utilizing information such as the current velocity,
altitude, instruction velocity, instruction altitude, and changes in velocity and altitude
during the given time period, the LSTM network classifies the aircraft’s present flight phase.
To mitigate overfitting, a dropout layer is incorporated before the fully connected layer.
Ultimately, the classification layer outputs the specific task type (e.g., climb, cruise).

In the actual morphing process, the continuous change in the aircraft’s shape poses a
challenge for the Q-learning method, which operates in discrete state and action spaces.
This limitation prevents it from fully leveraging its flight performance across variable
ranges. Additionally, there is a tendency for the DDPG to overestimate Q-values during
estimation. Moreover, the decision-making process determining the sweep angle through
reinforcement learning heavily relies on the choice of reward function, making training
convergence difficult to achieve. Furthermore, the aforementioned research solely focuses
on sweep angle decisions for the mission profile without considering morphing decisions
under process constraints. Hypersonic gliding aircraft experience a significant temperature
rise as a result of the conversion of a portion of their kinetic energy into internal energy
when passing through shockwaves, leading to severe aerodynamic heating challenges.
During the trajectory design phase, a morphing flight vehicle can adapt its aerodynamic
characteristics by adjusting the sweep angle. This morphing allows the hypersonic aircraft
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to evade limitations on heat flux density while simultaneously achieving the objective of
increasing gliding distance. In view of the above problems, this paper studies the morphing
timing and the morphing amplitude of the decision.

To address the aforementioned challenges and achieve the optimization goal of the
optimal glide range, this paper proposes an intelligent morphing decision-maker based on
deep neural networks (DNNs). This decision-maker takes into consideration the heat flux
density constraint during glide and incorporates the Gaussian pseudo-spectrum method.
The main innovations of this approach are as follows:

(1) Compared with reinforcement learning, the Gaussian pseudo-spectrum method can
obtain a continuous sequence of state quantities and control quantities while consid-
ering state constraints, giving full play to the full potential in the variable range of
sweep angle.

(2) Instead of fitting the sweep angle as a function of flight state quantity, a DNN es-
sentially realizes a mapping function from input to output, which is suitable for
solving problems with complex internal mechanisms. It can realize online rapid
decision-making of the sweep angle according to flight status.

(3) Compared with an ordinary glide vehicle, hypersonic boost-glide vehicles have
additional propulsion systems and control dimensions.

The structure of the paper is as follows: in Section 2, we establish the dynamic model
of the hypersonic morphing flight vehicle. In Section 3, we propose an intelligent morphing
decision method based on a DNN considering the heat flux density constraint during
gliding. In Section 4, the above method is verified by adding interference.

2. Hypersonic Morphing Vehicle Dynamics Modeling

This paper focuses on a hypersonic glide vehicle capable of continuously adjusting
its sweep angle. The variable sweep angle was accomplished through a spring-slider
mechanism. This mechanism comprised springs, sliders, and slide rods. The slide rod was
affixed to the wing, allowing the slider to move along the rod, with the spring connecting
the fuselage and the slider. When the aircraft was in flight, aerodynamic drag affected the
wing, causing the spring to compress and thereby altering the sweep angle. This design
obviated the necessity for a convoluted transmission system within the fuselage, thus
occupying minimal space.

The purpose of this research was to enhance aerodynamic performance during gliding
by modifying the sweep angle based on the vehicle’s flight state. Taking the center of mass
of the flight vehicle in its un-morphing state as the origin, we established a dynamic model
in the body coordinate system. The origin of the body coordinate system was fixed at the
center of the gravity position when the sweep angle was at its minimum, and the aircraft
was divided into the fuselage (including the tail) and the left and right wings. In the body
coordinate system, the expressions for the momentum P and the momentum moment H of
the morphing flight vehicle are as follows:

P = mVbody +
.
S + ω× S

H = S×V + I ·ω +
2
∑

i=1
( 1

mi
Si × δSi

δt + Iiωi)
(1)

In the above formula, the variables are defined as follows: m represents the total
mass of the morphing aircraft, Vbody = [u, v, w]T represents the airspeed of the morphing

aircraft, ω = [p, q, r]T denotes the angular velocity of the morphing aircraft about the
body axis with respect to the ground coordinate system. I represents the total moment
of inertia of the morphing aircraft in the body coordinate system, and S denotes the total
static moment of the morphing aircraft about the origin of the body coordinate system.
Specifically, Si =

∫
ridm represents the static moment of the left and right wings of the

morphing aircraft in the body coordinate system, while Ii represents the moment of inertia
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of the morphing components in the body coordinate system. Furthermore, ωi represents
the angular velocity of the morphing component.

According to the principles of momentum and angular momentum, the following can
be derived:

F =
.
P

M =
.

H + V ×
.
S

(2)

Substituting Equation (1) yields the dynamic vector equation for the morphing
aircraft as:

F = m(
.

V + ω×V) + δω
δt × S + 2ω× δS

δt + ω× (ω× S) + δ2S
δt

M = I · δω
δt + δI

δt ·ω + ω× (I ·ω) + S× δV
δt + S× (ω×V)

+
2
∑

i=1

{
Ii · δωi

δt + δIi
δt ·ωi + ωi × (Ii ·ωi) +

1
mi
[Si × δ2Si

δt2 + ω× (Si × δSi
δt )]

} (3)

Decompose the total external force F and external moment M acting on the morphing
sweep angle aircraft into the body coordinate system. Obtain the nonlinear dynamic
equations for the morphing sweep angle aircraft.

Fx = m(
.
u + qw− rv) +

.
qSz −

.
rSy + 2(q

.
Sz − r

.
Sy) + q(pSy − qSx)− r(rSx − pSz) +

..
Sx

Fy = m(
.
v + ru− pw) +

.
rSx −

.
pSz + 2(r

.
Sx − p

.
Sz) + r(qSz − rSy)− p(pSy − qSx) +

..
Sy

Fz = m(
.

w + pv− qu) +
.
pSy −

.
qSx + 2(p

.
Sy − q

.
Sx) + p(pSy − qSx)− q(qSz − rSy) +

..
Sz

(4)



Mx = Ix
.
p +

.
Ix p + q(Izr− Izx p)− rIyq + Sy

.
w− Sz

.
v + Syrw− Sxrw

+
2
∑

i=1

{
Iix

.
ωix − rIiyωiy +

1
mi

r(Six
.
Siz − Siz

.
Six)

}
My = Iy

.
q +

.
Iyq + r(Ix p− Izxr)− p(Izr− Izx p) + Sz

.
u− Sx

.
w + Sz pu− Sxrw

+
2
∑

i=1

{
Iiy

.
ωiy +

.
Iiyωiy +

1
mi
(Siz

.
Six − Six

.
Siz)

}
Mz = Iz

.
r +

.
Izr + pIyq− q(Ix p− Izxr) + Sx

.
v− Sy

.
w + Sxqv− Sy pu

+
2
∑

i=1

{
Iiz

.
ωiz + pIiyωiy +

1
mi

p(Siz
.
Six − Six

.
Siz)

}
(5)

In Equation (4), Sx, Sy, Sz represents the additional force generated by the movement of

the aircraft’s center of mass,
.
Sx,

.
Sy,

.
Sz denotes the additional force generated by the velocity

of the center of mass movement, and
..
Sx,

..
Sy,

..
Sz represents the additional force generated by

the acceleration of the center of mass movement. In Equation (5), Sx, Sy, Sz represents the

additional moment generated by the movement of the aircraft’s center of mass,
.
Sx,

.
Sy,

.
Sz

denotes the additional moment generated by the velocity of the center of mass movement,
and

..
Sx,

..
Sy,

..
Sz represents the additional moment generated by the acceleration of the center

of mass movement. Six, Siy, Siz(i = 1, 2) denotes the additional moment generated by
the change in the center of mass position of the aircraft due to the sweep of the wings,
.
Six,

.
Siy,

.
Siz,

..
Six,

..
Siy,

..
Siz(i = 1, 2) denotes the additional force generated by the velocity and

acceleration of the movement of the wing’s center of mass.
For a morphing sweep aircraft with longitudinal body symmetry and a synchronously

symmetric wing sweep, the center of mass of the aircraft, denoted as “r(x, y, z)” remains
unchanged along the Oy and Oz axes; i.e., ry = rz = 0, Sy = Sz = 0. The entire aircraft’s
center of mass changes only along the x-axis, Sx 6= 0. Furthermore, the wing’s center of
mass varies within the plane Oxy, with no variation along the z-axis, resulting in Siz = 0.
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Finally, by transforming the aforementioned dynamic equations into the ground
coordinate system, we can obtain: [31–33].

.
V = T cos α − D − mg sin θ

m
.
θ = T sin α + L − mg cos θ

mV
.
ψV = − (T sin α + L) sin γV

mV cos θ
.

X = V cos(θ) cos(ψV)·Re
r

.
Y = −V cos(θ) sin(ψV)·Re

r
.
h = V sin(θ)
.

m = − T
gIsp

ψV = asin(sin(γ) cos(θ))
cos ϑ

ϑ = α + θ

(6)

In the formula, V represents the speed, h represents the altitude, θ represents the
trajectory angle, ϑ represents the pitching angle, α represents the attack angle, m represents
the mass of the hypersonic morphing vehicle, Isp represents the momentum, and g repre-
sents the gravity coefficient. Due to the glide starting from near space, the gravitational
coefficient at the altitude of the aircraft differs from that on the ground. During the gliding
process, the influence of latitude is ignored, and it is assumed that the gravity experienced
by the aircraft is only related to its altitude, which can be represented as

→
g =

→
g (H). ψV

represents the trajectory declination angle, γ represents the bank angle, γV represents the
speed bank angle, X and Y respectively represent the displacement in two directions, D
represents the drag, and T and L respectively represent the engine thrust and lift. It is
believed that there is a proportional relationship between the throttle coefficient Kr and the
engine thrust; i.e., when Kr = 1, the engine thrust reaches its maximum value, and when
Kr = 0, the engine thrust is 0. Re represents the Earth’s radius, r = Re + h, and r is the
distance between the vehicle and the center of the Earth.

Lift L and drag D can be expressed as follows:{
L = qSCL

D = qSCD
(7)

q = 1
2 ρV2 is the dynamic pressure in the environment, and S represents the reference

area of the hypersonic vehicle; ρ is the atmospheric density at the altitude of the hypersonic
vehicle, and CL and CD represent the lift coefficient and drag coefficient respectively.

For high-altitude, high-Mach number hypersonic aircraft, the lift coefficient is not
only related to the geometric configuration and Mach number of the aircraft itself but also
closely related to the Reynolds number, denoted as CL = f (Re, Ma, geometry). Similarly,
the drag coefficient follows the same pattern: CD = f (Re, Ma, geometry).

To study the influence of the sweep angle on the lift and drag, 7 Ma, 12 Ma, 15 Ma,
20 Ma, and 25 Ma were selected as the working points to analyze the lift coefficient and lift
coefficient at sweep angles of 63◦ and 78◦. The result is shown in Figure 1.

From the standpoint of lift requirements, aircraft commence gliding as they enter
near-space. Owing to the rarefied atmosphere and diminished dynamic pressure at high
altitudes, a small sweep angle is employed during gliding. As the aircraft’s altitude
and speed progressively diminish throughout the gliding phase, the air density escalates,
leading to a rise in dynamic pressure and a diminished need for lift surfaces, thereby
necessitating a larger sweep angle for flight.
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3. Intelligent Decision-Making Method Based on a DNN

The Gaussian pseudo-spectrum method can effectively plan an optimal trajectory that
satisfies given performance indices and constraints, even in the presence of initial value
deviation and arbitrary disturbance. This paper harnesses the strengths of the Gaussian
pseudo-spectrum method. A segmented trajectory sample library was generated based
on the datum trajectory with added perturbations. It leveraged the powerful learning
capabilities of a DNN to design an intelligent decision-maker for the sweep angle during
the glide phase of a boost-glide hypersonic morphing vehicle. The overall flow chart of
the proposed approach is illustrated below, where λ represents the sweep angle and Kr
represents engine throttle. The overall scheme is shown in Figure 2.
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3.1. Gaussian Pseudo-Spectral Principle

The heat flux density is a fundamental parameter that reflects the aerothermal effects
of a hypersonic vehicle. It is influenced by various factors, including the aircraft’s shape,
aerodynamic layout, flight attitude, and flight Mach number. Previous studies have demon-
strated that the leading-edge heat flux density of an aircraft decreases linearly as the sweep
angle increases. Utilizing the variable sweep method can enhance the aerothermal charac-
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teristics of hypersonic vehicle, with a highly swept wing exhibiting superior aerothermal
properties [30].

Q = kqρ0.5V3.15 ≤ Qmax (8)

In this equation, Q represents the heat flux of the aircraft, kq is a coefficient related to the
aircraft shape, ρ represents the atmospheric density, V represents the current flight velocity,
and Qmax represents the maximum tolerable heat flux. In this paper, Qmax = 5 MW/m2.

The essence of the Gaussian pseudo-spectral method is a direct approach that simulta-
neously considers discrete control variables and state variables. This method is also known
as the collocation method or DCNLP (direct collocation with nonlinear programming).
Eventually, the optimal control problem is transformed into a nonlinear programming
problem with constraints and solved using sequential quadratic programming. The basic
principle can be described as follows [33–35].

3.1.1. Time Domain Transformation

The time domain of continuous trajectory optimization problems is generally t ∈
[
t0, t f

]
,

while the pseudo-spectral method is used to distribute the discrete states and control
variables in the time domain t ∈ [−1, 1]. As a result, a transformation of the time interval
becomes necessary. The time domain transformation is expressed as follows:

τ =
2t

t f − t0
−

t f + t0

t f − t0
(9)

The optimal control problem can be expressed as follows:

J = M
(

x(τ0), τ0, x
(

τf

)
, τf

)
+

t f − t0
2

∫ τf
τ0

f (x(τ), u(τ))dτ

s.t.


.
x =

t f − t0
2 f̂(x(τ), u(τ), τ)

φ
(

x(τ0), x
(

τf

)
; t0, t f

)
= 0

C
(

x(τ), u(τ), τ; t0, t f

)
≤ 0 ; m = 1, 2

(10)

3.1.2. The Optimal Control Problem Is Parameterized to the NLP Problem

• State quantity discretization.

Construct Lagrange polynomials, then select Gaussian discrete points τ1, τ2. . . τN ; they
are the roots of the Lagrange polynomial. The value of the state quantity at these N points
is X(τ1), X(τ2). . . X(τN). The state variable approximated by the Grange interpolation
polynomial is abbreviated as:

XN−1(τ) =
N

∑
i=1

li(τ)X(τi) (11)

In order to find the derivative of state quantity at discrete point τ1, τ2. . . τN , take the
derivative of the above formula to obtain the derivative value at the Gaussian discrete point:

X(τ) =
N

∑
i=0

.
`i(τk)X(τi) k = 0, . . . , N (12)

Among them, the state differential matrix
.
`ki is as follows:

.
`ki =



LN−1(tk)
LN−1(ti)

1
(tk−ti)

, k 6= i,

−N(N − 1)
4 , k = i = 1,

N(N − 1)
4 , k = i = N,

0, k, i is else

(13)
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Then the differential equation in Equation (10) becomes

N

∑
i=0

.
`i(τk)x(τi) =

t f − t0

2
f (x(τk), u(τk), τk) (14)

• Performance indicators discretization.

The integral part of the performance index function adopts the Gaussian quadrature
method, and the numerical integral is expressed as follows:

∫ −1

1
f (x(τ), u(τ), τ)dτ =

N

∑
k=0

f (τk)wk (15)

In the formula, wk is the Gaussian weight

wk =
2

n(n + 1)
1

[Ln(τk)]
2

k

(16)

Then, the performance indicator in Equation (10) becomes

J(x, u, t f ) =
t f − t0

2

N

∑
k=0

f (τk)wk (17)

• Discretization of boundary conditions.

The boundary conditions φ(x0, u0,−1; xn, un, 1) = 0 can be written as

φ(x0) = x(τ0) φ(u0) = u(τ0)
φ(xn) = x(τn) φ(un) = u(τn)

(18)

Finally, we obtain

min J(x, u, t f ) = M(xn, 1) +
t f − t0

2

N
∑

k=0
f (τk)wk

s.t.



N
∑

i=0

.
`i(τk)x(τi) =

t f − t0
2 f (x(τk), u(τk), τk)

φ(x0) = x(τ0) φ(u0) = u(τ0)

φ(xn) = x(τn) φ(un) = u(τn)

C(xi, ui, τi) ≤ 0, i = 0, 1 · · · n

(19)

Through the above transformation, the optimal control problem can be transformed
into a constrained nonlinear programming problem for sequential quadratic programming.

3.2. Segmentation Optimization Based on Gaussian Pseudo-Spectrum Method

During the gliding process of a hypersonic vehicle, thermal effects pose significant chal-
lenges to the structural integrity. The Gaussian pseudo-spectral method can be employed to
plan optimal trajectories that meet mission objectives while considering process constraints.

Due to interference during actual flight, the morphing strategy designed under the
initial entry condition cannot guarantee that the hypersonic vehicle will maintain its optimal
sweep angle after deviations in altitude or speed. Moreover, when altitude and velocity
deviate, the reference trajectory obtained from optimizing the nominal entry condition may
no longer be the optimal trajectory for the current state. Therefore, when deviations occur,
the hypersonic vehicle should not adhere to the reference trajectory, but instead redesign
the trajectory based on the current state. However, the Gauss pseudo-spectral method poses
a significant computational burden when solving for optimal trajectories. This burden
may exceed the capabilities of onboard computers, hindering real-time trajectory planning.
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Therefore, a method is proposed to offline segment the reference trajectory, accounting for
potential disturbances that the aircraft may encounter. Height and velocity disturbances are
incorporated into each segment, resulting in multiple sets of entry conditions influenced by
disturbances. These disturbed trajectories are then optimized to obtain the optimal control
inputs. Simultaneously, the optimized interference trajectories satisfy the constraint of heat
flux density. All sample trajectories meet the heat flux density constraint, ensuring that
the trained neural network exhibits this characteristic. To facilitate rapid decision-making
during the online phase of the aircraft, a DNN network is trained.

To ensure the optimal determination of the subsequent sweep angle, interference is
introduced to the altitude and speed at regular intervals (n km) on the basis of the reference
entry condition’s optimized datum trajectory. The re-optimization process (as shown in
Figure 3 is conducted. The state quantities (H, V) on the disturbed trajectory and the datum
trajectory obtained through the pseudo-spectrum method are utilized as input parameters
for the neural network. The output parameters consist of the sweep angle λ, attack angle α,
and throttle Kr. The overall flow chart is displayed in Figure 4.
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Overall program implementation steps:

(1) Based on the optimized reference trajectory for entry conditions, height and velocity
disturbances are applied to the hypersonic aircraft every 3 km, resulting in multiple
entry conditions.
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(2) Based on the multi-group deviation entry conditions, the Gaussian pseudo-spectrum
method is employed to optimize the trajectory multiple times. This process generates
data pairs, consisting of the state quantity (H, V) and the output quantity [λ, α, Kr], at
each moment. These data pairs are then used to construct a trajectory sample library.

(3) Use the neural network to approximate the complex nonlinear model between the
state quantity and the control quantity; that is, [λ, α, Kr] = f (H, V), where f represents
neural network approximation. Steps (1)~(3) are completed offline.

(4) The neural network intelligent morphing decision-maker and the hypersonic vehicle
motion model form a closed loop. The neural network decision-maker receives the
flight state data, and output the sweep angle and other control quantities.

3.3. DNN Training Based on Trajectory Sample Database

Deep neural networks (DNNs) are a type of multi-layer unsupervised neural network
that utilizes the output features from the previous layer as input for the next layer, enabling
feature learning (As shown in Figure 5). In practice, deep modeling can accurately and
efficiently represent complex nonlinear problems, surpassing shallow modeling approaches.
By increasing the number of hidden layers, the DNN reduces the total number of hidden
layer neurons and significantly improves training efficiency. The relationship between
height, Mach number, and sweep angle is not simply linear, thereby requiring the deep
network structure of DNN to effectively solve complex nonlinear problems. Given the
abundance of trajectory data, the DNN network is employed for training to achieve a good
fitting effect of complex nonlinear relations [36–40].

Aerospace 2023, 10, x FOR PEER REVIEW 11 of 19 
 

 

enabling feature learning (As shown in Figure 5). In practice, deep modeling can accu-
rately and efficiently represent complex nonlinear problems, surpassing shallow model-
ing approaches. By increasing the number of hidden layers, the DNN reduces the total 
number of hidden layer neurons and significantly improves training efficiency. The rela-
tionship between height, Mach number, and sweep angle is not simply linear, thereby 
requiring the deep network structure of DNN to effectively solve complex nonlinear prob-
lems. Given the abundance of trajectory data, the DNN network is employed for training 
to achieve a good fitting effect of complex nonlinear relations [36–40]. 

 
Figure 5. Deep neural network diagram. 

3.3.1. Forward Propagation 
Starting from the second layer, each neuron receives input from all the neurons in the 

layer above it. Assuming a total of m neurons in layer 1l − , the output l
ja  of the thj  

neuron in layer l  can be expressed as follows: 

1

1
( ) ( )

m
l l l l l
j j jk k j

k
a z a bσ σ ω −

=

= = +  (20) 

In the above formula, σ   represents the activation function, generally an S-type 
function, usually sigmoid or tanh, l

jkw  represents the weight, l
jb  represents the devia-

tion, and 1l
ka
−  represents the network output of the previous layer. 

3.3.2. Error Backpropagation 
A DNN usually chooses the mean square error as a loss function, expressed as fol-

lows: 
2

2

1( , , , )
2

LJ W b x y a y= −  (21) 

Among these, La  and y  are vectors with output layer feature dimension outn , and 

2
S  is the L2 norm of S . x  represents the input vector, y  represents the output vec-

tor. 
After the loss function is obtained, the gradient descent method is used to iterate W  

and b  of each layer. 
The first output layer is layer l . Note that W  and b  of the output layer satisfy the 

following formula: 
1( ) ( )L L L L La z W a bσ σ −= = +  (22) 

For the parameters of the output layer, the loss function becomes 

Figure 5. Deep neural network diagram.

3.3.1. Forward Propagation

Starting from the second layer, each neuron receives input from all the neurons in the
layer above it. Assuming a total of m neurons in layer l − 1, the output al

j of the jth neuron
in layer l can be expressed as follows:

al
j = σ(zl

j) = σ(
m

∑
k=1

ωl
jkal−1

k + bl
j) (20)

In the above formula, σ represents the activation function, generally an S-type function,
usually sigmoid or tanh, wl

jk represents the weight, bl
j represents the deviation, and al−1

k
represents the network output of the previous layer.
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3.3.2. Error Backpropagation

A DNN usually chooses the mean square error as a loss function, expressed as follows:

J(W, b, x, y) =
1
2

∥∥∥aL − y
∥∥∥2

2
(21)

Among these, aL and y are vectors with output layer feature dimension nout, and ‖S‖2
is the L2 norm of S. x represents the input vector, y represents the output vector.

After the loss function is obtained, the gradient descent method is used to iterate W
and b of each layer.

The first output layer is layer l. Note that W and b of the output layer satisfy the
following formula:

aL = σ(zL) = σ(WLaL−1 + bL) (22)

For the parameters of the output layer, the loss function becomes

J(W, b, x, y) =
1
2

∥∥∥aL − y
∥∥∥2

2
=

1
2

∥∥∥σ(WLaL−1 + bL)− y
∥∥∥2

2
(23)

Solving the gradient of W and b, we obtain

∂J(W, b, x, y)
∂WL = [(aL − y)σ′(zL)](aL−1)

T

∂J(W, b, x, y)
∂bL = (aL − y)σ′(zL)

(24)

After calculating the gradient of the output layer, it is also necessary to calculate the
gradient of the previous layers. Note that

∂J(W, b, x, y)
∂WL =

∂J(W, b, x, y)
∂zL ∗ ∂zL

∂WL (25)

In the above formula, zl is the output of layer l, the gradient of layer l can be obtained
by calculating the value of ∂J(W, b, x, y)

∂zl .

∂J(W, b, x, y)
∂W l = ∂J(W, b, x, y)

∂zl ∗ ∂zl

∂W l =
∂J(W, b, x, y)

∂zl ∗ (al−1)
T

∂J(W, b, x, y)
∂bl = ∂J(W, b, x, y)

∂zl ∗ ∂zl

∂bl =
∂J(W, b, x, y)

∂zl

(26)

At this point, all the gradients of the first layer are calculated, and the back propagation
can be carried out according to the gradient value.

In a DNN, the error is obtained through forward propagation, and the weights are
adjusted through reverse propagation. This process continues with subsequent iterations
of forward and reverse propagation until the optimal solution is obtained.

The entire process of intelligent morphing decision-making can be represented by the
following pseudo-code, as shown in Table 1.

In the generation of trajectory samples, the trajectory is segmented based on a refer-
ence trajectory. Disturbances are introduced at the segment points, and the trajectory is
optimized once again. Subsequently, the trajectory samples are trained using a deep neural
network. The network weights are continuously adjusted based on training errors until the
desired level of precision is achieved. Upon completion of the training process, the trained
decision-maker is applied to the online phase. It receives the flight status of the aircraft as
input and outputs control commands.
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Table 1. Intelligent morphing decision pseudo-code.

Intelligent Morphing Decision-Making Based on a DNN

Generate trajectory sample

while Descend to terminal altitude
if Follow the reference trajectory descend >3 km

Add interference
Update initial conditions
Trajectory optimization

end
end

Neural network training

Input: Trajectory sample
1. The linear relation coefficient matrix W and deviation vector b
of each hidden layer and output layer are initialized as a
random value.
2. For iter from 1 to MAX

2.1 For i = 1 to m
(a) Set the input al to DNN to x

(b) For i = 2. . . L, forward propagation computation
(c) Calculate the output layer output by the loss function

(d) For i = 2. . . L, backpropagate the error
2.2 For i = 2. . . L, update the W l and bl of layer l

2.3 If all of the changes in W and b are less than the threshold for
stopping the iteration, the loop goes to step 3
3. The linear relation coefficient matrix W and bias vector b of
each hidden layer and output layer are output.

Intelligent decision process

Input: V and H of the current state of the hypersonic vehicle
Process: Intelligent decision-making computing
Output: Sweep angle command

Attack angle command
Throttle command

4. Hypersonic Vehicle Morphing Decision Simulation
4.1. Generation of Datum Trajectory and Interference Trajectory

For conventional three-dimensional trajectory optimization, there are four optimal
control parameters: attack angle, bank angle, throttle coefficient, and sweep angle mor-
phing rate. By presetting the fixed bank angle instruction, the optimization dimension is
reduced, and only other control quantities are optimized, thus improving the optimization
speed. The simulation boundary constraints of the Gaussian pseudo-spectrum method for
generating reference trajectory are shown in the Table 2.

Table 2. Optimize boundary condition settings.

Quantity of State Initial Boundary Constraint Terminal Boundary
Constraint

Altitude (km) 80 45
Velocity (Ma) 26.52 7

X-direction displacement (km) 0 18,000
Y-direction displacement (km) 0 8000

The control constraints include attack angle α, sweep angle morphing rate
.
λ, throt-

tle coefficient Kr, and process constrained heat flux density Qmax.X f and Yf represent
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the terminal point displacement in both directions, and the optimization objective is the
displacement distance is the farthest:

J = max(Z f + Yf )

s.t


0◦ ≤ α ≤ 40◦

−2.2◦ ≤
.
λ ≤ 2.2◦

0 ≤ Kr ≤ 1
Qmax ≤ 5 MW/m2

(27)

The optimized datum trajectory is shown in Figure 6.
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Figure 6. The datum trajectory obtained from the nominal entry condition.

The hypersonic morphing vehicle’s reference trajectory descends from an altitude of
80 km to 45 km. The altitude decreases by 3 km each time, then introducing a disturbance
of ±100 m/s in speed and ±500 m in altitude. The disturbance points are re-optimized,
resulting in a total of 44 optimized disturbance trajectories. The state quantity (H, V) of all
trajectories is taken as a network input, and the sweep angle λ, attack angle α, and throttle
coefficient Kr are taken as network outputs. Neural network training is conducted, and the
structure and training results of the neural network are shown in Table 3 and Figure 7.

Table 3. Neural network training parameter settings.

Structure Name Parameter Setting

Number of layers and number of neurons [36,36,12]
Number of iterations 1500

Learning rate 0.01
Maximum number of failures 12

Target mean square error 0.0004
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Figure 7. DNN network prediction output and error.

Using the same dataset, training was separately conducted on DNN and BPNN models
with identical settings for training parameters, except for the network structures. After
completing the training, the same test set was used for evaluation, and the root mean square
error (RMSE) values obtained from the two networks’ fittings are shown in the Table 4.
Due to its deeper network structure, the DNN exhibited better training performance. The
RMSE values for all predictions were lower compared to those of the BP network.

Table 4. Test set RMSE for DNN and BPNN.

Attack Angle Sweep Angle Throttle Coefficient

BP 0.0262 0.0031 5.61 × 10−6

DNN 0.0085 6.28 × 10−4 3.12 × 10−6

4.2. Intelligent Morphing Decision and Instruction Morphing Decision Comparison Simulation

The conventional morphing decision is a programmed decision approach that involves
utilizing the prior aerodynamic data of the morphing hypersonic vehicle. This method
calculates the optimal aerodynamic shape for different tasks and switches to the corre-
sponding shape based on the specific environmental requirements during task execution.
The control instructions for program decisions comprise the sweep angle command, attack
angle, and throttle command derived from the reference trajectory. The control instructions
for programmed decision-making refer to the benchmark trajectory control instructions
optimized using the Gaussian pseudo-spectral method discussed in Section 4.1. Intelligent
decision-making is implemented during actual flight processes, where the aircraft adapts
and makes real-time decisions based on its own state, aiming to improve range under
uncertain conditions. In order to validate the performance of the intelligent decision-maker,
5% lift disturbance and drag disturbance were respectively introduced during the gliding
process. The programmatic morphing utilized control commands optimized through the
Gaussian pseudo-spectral method, while the intelligent morphing relied on real-time con-
trol commands output by the intelligent decision-maker. A comparison of the gliding range
between the two methods is presented in Table 5, Figures 8 and 9.
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Table 5. Comparison of displacement distance between intelligent morphing and program morphing.

Lift Is Reduced
by 5%

Lift Is Increased
by 5%

Drag Reduced
by 5%

Drag Increased
by 5%

Program morphing
displacement (km) 18,533 20,468 20,529 18,557

Intelligent morphing
displacement (km) 18,733 21,708 21,686 18,914
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This simulation study was conducted using MATLAB 2021. When employing deep
neural networks (DNNs) for decision-making on the sweep angle under four different
interference conditions, an average of 3548 decisions were made within 15.1 s, with each
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decision taking 0.004 s. The decision speed was exceptionally fast. Furthermore, the increase
in time cost compared to procedural decision-making remained within an acceptable range.

As seen in the table above, the intelligent morphing decision-making method demon-
strated a greater glide range compared to the program decision-making method when lift
and drag were interfered with. Specifically, when the lift was increased by 5%, the intel-
ligent morphing method exhibited the highest gain compared to the program morphing
method, resulting in an extended range of approximately 1240 km, which corresponded
to a 6% increase. On the other hand, when the lift was reduced by 5%, the programmed
morphing reached a maximum peak heat flux density of 3.4 MW/m2. In contrast, the intel-
ligent morphing showed a significantly lower peak heat flux density of only 3.05 MW/m2

under the same interference. This reduction in peak heat flux amounted to approximately
10.2%, highlighting the robustness of the intelligent decision-making morphing method.

5. Conclusions

This paper proposes an intelligent morphing decision-making method based on DNNs
for morphing the sweep of wings in hypersonic glide vehicles. The objective of this method
is to achieve maximum displacement while considering the process constraints during
the glide process. The simulation results demonstrated that by incorporating the same
interference into the glide process, the hypersonic morphing vehicle could intelligently
determine the optimal sweep angle based on its current flight state. The glide range could
be increased compared to the program decision method. Additionally, the heat flux density
remained within the specified constraints, thus proving the effectiveness and robustness of
the intelligent decision-maker.

6. Limitations and Potential Future Directions

Hypersonic morphing vehicles represent the future development trend of advanced
aircraft, carrying immense potential and research value. This paper focuses on the study
of morphing decision-making for hypersonic morphing vehicles and has yielded signif-
icant results. However, to further advance this research, the following aspects require
additional investigation:

(1) Integration of control methods: While this paper primarily concentrates on shape
decision-making, it is crucial to acknowledge that shape changes can significantly
impact the aircraft’s aerodynamic characteristics. Subsequent research should involve
the design of advanced control methods, such as LPV control and adaptive control, to
improve the tracking effect and enhance the morphing stability of the aircraft.

(2) Conducting physical experiments: The research on hypersonic morphing vehicles
in this paper is primarily based on simulation experiments. However, achieving
favorable decision-making results in simulations does not guarantee the same effec-
tiveness when implemented in practical engineering. Therefore, it is necessary for
future research to construct physical models of hypersonic morphing vehicles and
validate the designed decision-making system’s effectiveness on these models.

This paper investigates the problem of determining the optimal range for morphing
the sweep angle in flight during the gliding phase while considering constraints on heat
flux density. Additionally, the research methodology presented here can be applied to other
transformation methods, such as morphing span wings and folding wings. For various
mission phases such as climbing and cruising, corresponding trajectory optimization
objectives can be defined. These objectives may include minimizing climb time or reducing
fuel consumption during cruising. Trajectory samples can then be generated for training
neural networks.
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