
Citation: Mason, J. J.;

Allen-Blanchette, C.; Zolman, N.;

Davison, E.; Leonard, N.E. Learning

to Predict 3D Rotational Dynamics

from Images of a Rigid Body with

Unknown Mass Distribution.

Aerospace 2023, 10, 921. https://

doi.org/10.3390/aerospace10110921

Academic Editor: Paolo Tortora

Received: 12 September 2023

Revised: 6 October 2023

Accepted: 10 October 2023

Published: 29 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Learning to Predict 3D Rotational Dynamics from Images of a
Rigid Body with Unknown Mass Distribution
Justice J. Mason 1,2,*,†, Christine Allen-Blanchette 1,*,†, Nicholas Zolman 2, Elizabeth Davison 2

and Naomi Ehrich Leonard 1

1 Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA;
naomi@princeton.edu

2 The Aerospace Corporation, El Segundo, CA 90245, USA; nicholas.f.zolman@aero.org (N.Z.);
elizabeth.davison@aero.org (E.D.)

* Correspondence: jjmason@princeton.edu (J.J.M.); ca15@princeton.edu (C.A.-B.)
† These authors contributed equally to this work.

Abstract: In many real-world settings, image observations of freely rotating 3D rigid bodies may be
available when low-dimensional measurements are not. However, the high-dimensionality of image
data precludes the use of classical estimation techniques to learn the dynamics. The usefulness of
standard deep learning methods is also limited, because an image of a rigid body reveals nothing
about the distribution of mass inside the body, which, together with initial angular velocity, is what
determines how the body will rotate. We present a physics-based neural network model to estimate
and predict 3D rotational dynamics from image sequences. We achieve this using a multi-stage
prediction pipeline that maps individual images to a latent representation homeomorphic to SO(3),
computes angular velocities from latent pairs, and predicts future latent states using the Hamiltonian
equations of motion. We demonstrate the efficacy of our approach on new rotating rigid-body
datasets of sequences of synthetic images of rotating objects, including cubes, prisms and satellites,
with unknown uniform and non-uniform mass distributions. Our model outperforms competing
baselines on our datasets, producing better qualitative predictions and reducing the error observed
for the state-of-the-art Hamiltonian Generative Network by a factor of 2.

Keywords: physics-based neural networks; 3D rigid-body dynamics

1. Introduction

The study and control of a range of systems can benefit from the means to predict
the rotational dynamics of 3D rigid bodies that are only observed through images. A
compelling example is the navigation and control of space robotic systems that interact
with resident space objects (RSOs). RSOs are natural or designed freely rotating rigid
bodies that orbit a planet or moon. Space robotic system missions that involve interaction
with RSOs include collecting samples from an asteroid [1], servicing a malfunctioning
satellite [2], and removing active space debris [3]. A challenge is that space robotic systems
may have limited information on the mass distribution of RSOs. However, they do typically
have onboard cameras to observe sequences of RSO movement. Thus, learning to predict
the dynamics of the RSOs from onboard images can make a difference for mission success.

Whether a freely rotating 3D rigid body tumbles unstably or spins stably depends on
the distribution of mass inside the body and the body’s initial angular velocity (compare
Figure 1a and Figure 1b). This means that to predict the body’s rotational dynamics,
it is not enough to know the external geometry of the body. That would be insufficient,
for instance, to predict the different behavior of two bodies with the same external geometry
and different internal mass distribution. Even if the bodies start at the same initial angular
velocity, one body could tumble or wobble while the other spins stably (compare Figure 1b
and Figure 1d).

Aerospace 2023, 10, 921. https://doi.org/10.3390/aerospace10110921 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10110921
https://doi.org/10.3390/aerospace10110921
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://doi.org/10.3390/aerospace10110921
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10110921?type=check_update&version=2

Aerospace 2023, 10, 921 2 of 19

Figure 1. Simulations illustrating how mass distribution and initial angular velocity determine
behavior. (a) Tumbling prism: uniform mass distribution (J = J1) and initial angular velocity near
an unstable solution. (b) Spinning prism: J = J1 and initial angular velocity near a stable solution.
(c) Spinning CALIPSO satellite: J = J1 and same initial angular velocity as (b). (d) Wobbling prism:
non-uniform mass distribution (J = J3) and same initial velocity as (b).

Figure 1 shows four simulations of a freely rotating rigid body that illustrate the role
of mass distribution and initial velocity. The distribution of mass determines J ∈ R3×3,
where J is the moment-of-inertia matrix for a 3D rigid body expressed with respect to the
body-fixed frame, i.e., an orthonormal reference frame B = {i, j, k} fixed to the body with
origin at the body’s center of mass (see Appendix A.1 for details). Figure 1a–c all have the
same moment-of-inertia matrix J = J1, which corresponds to that of a rectangular prism
with uniform mass distribution (see Table A1 in Appendix A.2). Steady spin about the
longest and shortest principal axes is stable and about the intermediate principal axis is
unstable (see Appendix A.1). So, if the initial angular velocity is near the unstable solution,
the body tumbles (Figure 1a), whereas if it is near the stable axis, the body spins (Figure 1b).
This is independent of the external geometry, which explains why the satellite in Figure 1c
spins identically to the prism in Figure 1b. In Figure 1d, mass is non-uniformly distributed,
such that J = J3 (see Table A1 in Appendix A.2) and the same initial velocity as in Figure 1b
is no longer close to a stable solution, which explains why the prism wobbles.

Predicting 3D rigid body rotational dynamics is possible if the body’s mass distribution
can be learned from observations of the body in motion. This is easier if the observations
consist of low-dimensional data, e.g., measurements of the body’s angular velocity and the
rotation matrix that defines the body’s orientation. It is much more challenging, however,
if the only available measurements consist of images of the body in motion, as in the case
of remote observations of a satellite or asteroid or space debris.

We address the challenge of learning and predicting 3D rotational dynamics from
image sequences of a rigid body with unknown mass distribution and unknown initial
angular velocity. To do so we design a neural network model that leverages Hamiltonian
structure associated with 3D rigid body dynamics. We show how our approach outperforms
applicable methods from the existing literature.

Deep learning has proven to be an effective tool to learn dynamics from images.
Previous work [4–6] has made significant progress in using physics-based priors to learn
dynamics from images of 2D rigid bodies, such as a pendulum. Learning dynamics of
3D rigid-body motion has also been explored with various types of input data [7–9]. We
believe our method is the first to use the Hamiltonian formalism to learn 3D rigid-body
rotational dynamics from images.

In this work, we introduce a model, with architecture depicted in Figure 2, that
(1) learns 3D rigid-body rotational dynamics from images, (2) predicts future image se-
quences in time, and (3) generates a low-dimensional, interpretable representation of the
latent state. During training, our model encodes a sequence of images (input) to a sequence
of latent orientations (Figure 2a). The sequence of orientations is processed by two path-

Aerospace 2023, 10, 921 3 of 19

ways. In one, the sequence is decoded to a sequence of images which are used to compute
the auto-encoding reconstruction loss (Figure 2c). In the other, the first element of the
sequence is processed by the dynamics pipeline. The resulting sequence is decoded to a
sequence of images, which are used to compute the dynamics-based reconstruction loss
(Figure 2d). During inference, our model encodes a pair of images (input) to a single latent
orientation (Figure 2b). This latent orientation is processed by the dynamics pipeline and
decoding pipeline resulting in a predicted image sequence (Figure 2d).

(a) Encoding pipeline at training
(b) Encoding pipeline at inference

(c) Auto-encoding reconstruction
(d) Dynamics-based reconstruction

Figure 2. A schematic of the model’s forward pass at training time and inference.

Our model incorporates the Hamiltonian formulation of the dynamics as an inductive
bias to facilitate learning the moment-of-inertia matrix, Jϕ, and an auto-encoding map between
images and the special orthogonal group SO(3) =

{
R ∈ R3×3|RTR = I3, det(R) = +1

}
.

SO(3) represents the space of all 3D rotations: the orientation of the rigid body at time t is
described by the rotation matrix R(t) ∈ SO(3) that maps points on the body from body
frame coordinates to inertial frame coordinates at time t.

The efficacy of our approach is demonstrated through long-term image prediction on
synthetic datasets. Due to the scarcity of appropriate datasets, we have created publicly
available, synthetic datasets of rotating objects (e.g., cubes, prisms, and satellites) applicable
for evaluation of our model, as well as other tasks on 3D rigid-body rotation such as
pose estimation.

2. Related Work

A growing body of work incorporates Hamiltonian and Lagrangian formalisms to im-
prove the accuracy and interpretability of learned representations in neural network-based
dynamical systems forecasting [10–12]. Greydanus et al. [10] predict symplectic gradients

Aerospace 2023, 10, 921 4 of 19

of a Hamiltonian system using a Hamiltonian parameterized by a neural network. They
show that the Hamiltonian neural network (HNN) predicts the evolution of conservative
systems better than a baseline black-box model. Chen et al. [11] improve the long-term
prediction performance of [10] by minimizing the mean-squared error (MSE) between
ground-truth and predicted state trajectories rather than one-step symplectic gradients.
Cranmer et al. [12] propose parameterization of the system Lagrangian by a neural network
arguing that momentum coordinates may be difficult to compute in some settings. Each of
the aforementioned learn from sequences of phase-space measurements; our model learns
from images.

The authors of [4–6] leverage Hamiltonian and Lagrangian neural networks to learn
the dynamics of 2D rigid bodies (e.g., the planar pendulum) from image sequences. Zhong
and Leonard [4] introduce a coordinate-aware variational autoencoder (VAE) [13] with
a latent Lagrangian neural network (LNN) which learns the underlying dynamics and
facilitates control. Allen-Blanchette et al. [6] use a latent LNN in an auto-encoding neural
network to learn dynamics without control or prior knowledge of the configuration-space
structure. Toth et al. [5] use a latent HNN in a VAE to learn dynamics without control, prior
knowledge of the configuration-space structure or dimension. Similarly to Toth et al. [5],
we use a latent HNN to learn dynamics. Distinctly, however, we consider 3D rigid body
dynamics and incorporate prior knowledge of the configuration-space structure to ensure
interpretability of the learned representations.

Others have considered the problem of learning 3D rigid-body dynamics [7–9]. Byra-
van and Fox [7] uses point-cloud data and action vectors (forces) as inputs to a black-box
neural network to predict the resulting SE(3) transformation matrix, which represents the
motion of objects within the input scene. The special Euclidean group SE(3) =

{
(R, r)|R ∈

SO(3), r ∈ R3} represents the space of all 3D rotations and translations: the orientation
and position of the rigid body at time t is described by the rotation matrix and vector
pair (R(t), r(t)) ∈ SE(3) that maps points on the body from body frame coordinates to
inertial frame coordinates at time t. Peretroukhin et al. [8] create a novel symmetric matrix
representation of SO(3) and incorporate it into a neural network to perform orientation
prediction on synthetic point-cloud data and images. Duong and Atanasov [9] use low-
dimensional measurement data (i.e., the rotation matrix and angular momenta) to learn
rigid body dynamics on SO(3) and SE(3) for control.

The combination of deep learning with physics-based priors allows models to learn
dynamics from high-dimensional data such as images [4–6]. However, as far as we know,
our method is the first to use the Hamiltonian formalism to learn 3D rigid-body rotational
dynamics from images.

3. Background

3.1. The S2 × S2 Parameterization of 3D Rotation Group SO(3)

The S2 × S2 parameterization of the 3D rotation group SO(3) is a surjective and
differentiable mapping with a continuous right inverse [14]. Define the n-sphere: Sn ={

v ∈ R(n+1)| v2
1 + v2

2 + · · ·+ v2
n+1 = 1

}
. The S2 × S2 parameterization of SO(3) is given

by (u, v) 7→ (w1, w2, w3) with w1 = u, w2 = v− v〈u, v〉, w3 = w1 ×w2, where wi are
renormalized to have unit norm.

Intuitively, this mapping constructs an orthonormal frame from the unit vectors u and
v by Gram–Schmidt orthogonalization. The right inverse of the parameterization is given
by (w1, w2, w3) 7→ (w1, w2). Other parameterizations of SO(3), such as the exponential
map (so(3) 7→ SO(3)) and the quaternion map (S3 7→ SO(3)), do not have continuous
inverses and therefore are more difficult to use in deep manifold regression [14–17].

3.2. 3D Rotating Rigid-Body Kinematics

The orientation of a rotating 3D rigid body R(t) ∈ SO(3) changing over time t can be
computed from body angular velocity ΩΩΩ(t) ∈ R3, i.e., the angular velocity of the body ex-
pressed with respect to the body frame B, at time t ≥ 0 using the kinematic equations given

Aerospace 2023, 10, 921 5 of 19

by the time-rate-of-change of R(t) shown in Equation (A3). For computational purposes,
3D rigid-body rotational kinematics are commonly expressed in terms of the quaternion
representation q(t) ∈ S3 of the rigid-body orientation R(t). The kinematics (A3), written
in terms of quaternions [18], are

dq(t)
dt

= Q(ΩΩΩ(t))q(t), Q(ΩΩΩ) =

(
−ΩΩΩ× ΩΩΩ

−ΩΩΩT 0

)
, (1)

where ΩΩΩ× is the 3× 3 skew-symmetric matrix defined by (ΩΩΩ×)y = ΩΩΩ× y for y ∈ R3.

3.3. 3D Rigid-Body Dynamics in Hamiltonian Form

The canonical Hamiltonian formulation derives the equations of motion for a mechan-
ical system using only the symplectic form and a Hamiltonian function, which maps the
state of the system to its total (kinetic plus potential) energy [19]. This formulation has been
used by several authors to learn unknown dynamics: the Hamiltonian structure (canonical
symplectic form) is used as a physics prior and the unknown dynamics are uncovered by
learning the Hamiltonian [5,10,20–22]. Consider a system with configuration space Rn and
a choice of n generalized coordinates that represent configuration. Let z(t) ∈ R2n represent
the vector of n generalized coordinates and their n conjugate momenta at time t. Define the
Hamiltonian functionH : R2n 7→ R such thatH(z) is the sum of the kinetic plus potential
energy. Then, the equations of motion [19,23] derive as

dz
dt

= Λcan∇zH(z), Λcan =

(
0n In
−In 0n

)
(2)

where 0n ∈ Rn×n is the matrix of all zeros and Λcan is the matrix representation of the
canonical symplectic form.

The Hamiltonian equations of motion for a freely rotating 3D rigid body evolve on
the six-dimensional space T∗SO(3), the co-tangent bundle of SO(3). However, because of
rotational symmetry in the dynamics, i.e., the invariance of the dynamics of a freely rotating
rigid body to the choice of inertial frame, the Hamiltonian formulation of the dynamics can
be reduced using the Lie–Poisson Reduction Theorem [24] to the space R3 ∼ so∗(3), the Lie
co-algebra of SO(3). These reduced Hamiltonian dynamics are equivalent to (A2), where
the body angular momentum is Π(t) = JΩΩΩ(t) ∈ so∗(3) for t ≥ 0. The invariance can be seen
by observing that the rotation matrix R(t), which describes the orientation of the body at
time t, does not appear in (A2). R(t) is calculated from the solution of (A2) using (A3).

The reduced Hamiltonian h : so∗(3) 7→ R for the freely rotating 3D rigid body (kinetic
energy) is

h(Π) =
1
2

Π · J−1 Π. (3)

The reduced Hamiltonian formulation [24] is

dΠ

dt
= Λso∗(3)(Π)∇Πh(Π), Λso∗(3)(Π) = Π×, (4)

which can be seen to be equivalent to (A2). Equation (4), called the Lie–Poisson equation,
generalizes the canonical Hamiltonian formulation. The generalization allows for different
symplectic forms, i.e., Λso∗(3) instead of Λcan in this case, each of which is only related
to the latent space and symmetry. Our physics prior is the generalized symplectic form
and learning the unknown dynamics means learning the reduced Hamiltonian. This is a
generalization of the existing literature, where dynamics of canonical Hamiltonian systems
are learned with the canonical symplectic form as the physics prior [5,10–12]. Using the
generalized Hamiltonian formulation allows extension of the approach to a much larger
class of systems than those described by Hamilton’s canonical equations, including rotating

Aerospace 2023, 10, 921 6 of 19

and translating 3D rigid bodies, rigid bodies in a gravitational field, multi-body systems,
and more.

4. Materials and Methods

In this section, we outline our approach for learning and predicting rigid-body dy-
namics from image sequences. The multi-stage prediction pipeline maps individual images
to an SO(3) latent space where angular velocities are computed from latent pairs. Future
latent states are computed using the generalized Hamiltonian equations of motion (4)
and a learned representation of the reduced Hamiltonian (3). Finally, the predicted latent
representations are mapped to images giving a predicted image sequence.

4.1. Notation

N denotes the number of image sequences in the dataset, and T + 1 is the length
of each image sequence. Image sequences are written xk = {xk

0, . . . , xk
T}, sequences of

latent rotation matrices are written Rk = {RRRk
0, . . . ,RRRk

T} with Rk
i ∈ SO(3), and quaternion

latent sequences are written qk = {qk
0, . . . , qk

T} with qk
i ∈ S(3). Each element yk

i represents
the quantity y at time step t = i for sequence k from the dataset, where k ∈ {1, . . . , N}.
Quantities generated with the learned dynamics are denoted with a hat (e.g., q̂).

4.2. Embedding Images to an SO(3) Latent Space

In the first stage of our prediction pipeline, we embed image observations of a freely
rotating rigid body to a low-dimensional latent representation to facilitate computation of
the dynamics. The latent representation is constrained to have the same SO(3) structure
as the configuration space of the rigid body, making learned representations interpretable
and compatible with the equations of motion. Our embedding network Φ is given by
the composition of functions Φ := f ◦ π ◦ Eφ : I 7→ SO(3). The convolutional encoding
neural network Eφ : I 7→ R6 parameterized by φ maps image observations from image
space I to a vector z ∈ R6. The projection operator π : R6 7→ S2 × S2 decomposes the
vector z into the vectors u, v ∈ R3 and normalizes them, i.e., π(z) = (u/‖u‖, v/‖v‖).
Finally, the function f : S2 × S2 7→ SO(3) maps the normalized vectors u and v to the
configuration space using the surjective and differentiable S2 × S2 parameterization of
SO(3) (see Section 3.1).

4.3. Computing Dynamics in the Latent Space

In the second stage of our prediction pipeline, we compute the dynamics of the
freely rotating rigid body using a Hamiltonian with a learned moment-of-inertia tensor,
Jϕ. The moment-of-inertia tensor, Jϕ, is parameterized by the vectors ϕ1,ϕ2 ∈ R3,
representing the diagonal and off-diagonal components of the matrix, and computed
using the Cholesky decomposition [25].

To compute the dynamics, we first construct an initial condition (RRRk
0, Πk

0) ∈ T∗SO(3).
Given the sequential pair (RRRk

0,RRRk
1) = (Φ(xk

0), Φ(xk
1)), we perform this in two steps. First,

we compute the angular velocity ΩΩΩk
0 by Algorithm 1. Then, we compute the angular

momentum by the matrix product of the learned moment-of-inertia and angular velocity,
i.e., Πk

0 = JϕΩΩΩk
0. With the initial condition (RRRk

0, Πk
0), subsequent angular momenta {Π̂k

i }T
i=1

are computed using the Lie–Poisson Equation (4) and the reduced Hamiltonian formed
using the learned momentum-of-inertia Jϕ. We integrate the Lie–Poisson equations forward
in time using a Runge–Kutta fourth-order (RK45) numerical solver [26].

Subsequent rotations {R̂RRk
i }T

i=1 are computed in two steps. First, we compute the
sequence of quaternions {q̂k

i }T
i=1 by Equation (1), using the quaternion representation qk

0
of the initial rotation RRRk

0 and the initial angular velocity ΩΩΩk
0. We integrate Equation (1)

forward in time using an RK45 solver with a normalization step [18] that ensures ele-
ments of the resulting sequence are valid quaternions. Then, we transform the sequence

of quaternions {q̂k
i }T

i=1 to a sequence of rotations rotations {R̂RRk
i }T

i=1 using a modified
Shepperd’s algorithm [27].

Aerospace 2023, 10, 921 7 of 19

Algorithm 1: An algorithm to calculate the body angular velocity given two
sequential orientation matrices and the time step in between them.

Data: RRRt,RRRt+1, ∆t
Result: ΩΩΩt = RRRt

(
θ

∆t u
)

Rprod ← RRRt+1
(
RRRT

t
)
;

u× ← RRRT
prod −RRRprod;

θ ← arccos
(Trace(RRRprod)−1

2
)
;

if u× = 0 then
if θ = 0 then

u←
(
1, 1, 1

)
;

u← normalize(u);
else

if θ = π then
u← column

(
RRRprod + I3

)
;

u← normalize(u);
end

end
else

if u× 6= 0 then
u← skew−1(u);
u← normalize(u);

end
end

4.4. Decoding SO(3) Latent States to Images

In the final stage of our prediction pipeline, we decode the sequence of SO(3) latent
states produced by the dynamics pipeline to a sequence of images (see Figure 2d). Our
decoding network Ψ is given as the composition of functions Ψ := Dψ ◦ π−1 ◦ f−1 :
SO(3) 7→ I , where the convolutional decoding network Dψ : R6 7→ I parameterized by ψ
maps a vector z = (u, v), where (u, v) ∈ S2 × S2, to the image space I .

4.5. Training Methodology

In this section, we describe the loss functions used to optimize our model: the auto-
encoding reconstruction loss (Lae), the dynamics-based reconstruction loss (Ldyn), the
latent orientation loss (Llatent, R), and latent momentum loss (Llatent, Π). Lae ensures the em-
bedding to SO(3) is sufficiently expressive to represent the entire image dataset, and Ldyn
ensures correspondence between the input image sequences and the images sequences
produced by the learned dynamics. The latent loss functions, Llatent, R and Llatent, Π, en-
sure consistency between the latent states produced by the encoding pipeline and those
produced by the dynamics pipeline.

For notational convenience, we denote the encoding pipeline E : I 7→ S3 and the
decoding pipeline D : S3 7→ I . Quantities computed in the encoding pipeline use sub-
script ae (e.g., RRRk

aei), while those computed in the dynamics pipeline use subscript dyn
(e.g., RRRk

dyni
).

4.5.1. Reconstruction Losses

The auto-encoding reconstruction loss is the mean squared error (MSE) between the
ground-truth image sequence and the reconstructed image sequence without dynamics:

Lae =
1

NT

N

∑
k=1

T−1

∑
i=0

∥∥ xk
i − (D ◦ E)

(
xk

i
) ∥∥2

2 .

Aerospace 2023, 10, 921 8 of 19

The dynamics-based reconstruction loss is the MSE between the ground-truth image
sequence and the image sequence produced by the dynamics pipeline:

Ldyn =
1

NT

N

∑
k=1

T

∑
i=1

∥∥ xk
i −D

(
qk

dyni

) ∥∥2
2 .

4.5.2. Latent Losses

We define LlatentR as the SO(3) distance [19] between the 3× 3 identity matrix and
right-difference of orientations produced in the encoding pipeline and the orientations
produced in the dynamics pipeline:

LlatentR =
1

NT

N

∑
k=1

T

∑
i=1

∥∥ I3 −
(
RRRk

aei
)T RRRk

dyni

∥∥2
F .

We define LlatentΠ as the MSE between the angular momenta estimated in the encod-
ing pipeline and the angular momenta computed in the dynamics pipeline (see Figure 2):

LlatentΠ =
1

NT

N

∑
k=1

T

∑
i=1

∥∥Πk
aei − Πk

dyni

∥∥2
2 .

The hyperparameters we use to train our model are given in Table A2 in Appendix A.3.
We train our model for 500 epochs, on a single NVIDIA A100 SXM4 GPU. Our training
time is approximately 12 h, and our inference time is approximately 300 milliseconds.

4.6. 3D Rotating Rigid-Body Datasets

To evaluate our model, we introduce six synthetic datasets of freely rotating objects.
Previous efforts in learning dynamics from images [4–6,10] consider only 2D planar systems
(e.g., the simple pendulum, Acrobot, and cart-pole); existing datasets of freely rotating
rigid bodies in 3D such as SPEED [28,29], SPEED+ [30], and URSO [31], contain random
image-pose pairs rather than sequential pairs needed for video prediction and dynamics
extraction. Our datasets showcase the rich dynamical behaviors of 3D rotational dynamics
through images, and can be used for 3D dynamics learning tasks. Specifically, we introduce
the following five datasets (see Table A1 in Appendix A.2 for moment-of-inertia matrices):

• Uniform mass density cube: a multi-colored cube of uniform mass density;
• Uniform mass density prism: a multi-colored rectangular prism with uniform mass

density;
• Non-uniform mass density cube: a multi-colored cube with non-uniform mass

density;
• Non-uniform mass density prism: a multi-colored prism with non-uniform mass density;
• Uniform density synthetic-satellites: renderings of CALIPSO and CloudSat satellites

with uniform mass density.

For each dataset, N = 1000 trajectories are created. Each trajectory consists of an
initial condition x0 = (R0, Π0) that is integrated forward in time using a Python-based
Runge–Kutta solver for T = 100 time steps with spacing ∆t = 10−3. Initial conditions are
chosen such that (R0, Π0) ∼ Uniform

(
SO(3)× S2) with Π0 scaled to have ‖Π0‖2 = 50.

The orientations q̂ from the integrated trajectories are passed to Blender [32] to render
images of 28× 28 pixels (as shown in Figure 1).

The synthetic image datasets are generated using Blender [32] with ideal and fixed
lighting conditions. Models trained on this dataset may exhibit sensitivity to variations in
lighting conditions, and may not generalize to real data.

Aerospace 2023, 10, 921 9 of 19

5. Results

Figures 3 and 4 show the model’s performance on the datasets for both short- and
long-term predictions. Figure 3 results show that the model is capable of predicting into
the future at least five fold longer than the length of the time horizon used at training time.
Figure 4 results show that the model is capable of predicting the future with images of
more complex geometries and surface properties, i.e., those of the CALIPSO and CloudSat
satellites, at least ten fold longer than the length of the time horizon used at training time.
The model’s performance on the datasets is indicative of its capabilities to predict dynamics
and map them to image space.

Figure 3. Predicted sequences for uniform and non-uniform mass density cube and prism datasets
given by our model. The figure shows predicted images at time steps τ = 0 to 5 and τ = 45 to 50.

Figure 4. Predicted sequences for the CALIPSO satellite (top) and CloudSat satellite (bottom) with
uniform mass densities given by our model. The figure shows predicted images at every 10th time
step from τ = 0 to 90.

The uniform mass density cube and prism datasets are used to demonstrate baseline
capabilities of our approach for image prediction. The non-uniform mass density datasets
validate the model’s capability to predict a mass distribution that may not be visible from
the exterior, e.g., for an asteroid or space debris or as part of failure diagnostics on a satellite
where there may be broken or shifted internal components. The satellite datasets are used
to validate the model’s capability to handle bodies with less regular and more realistic
external geometries.

Aerospace 2023, 10, 921 10 of 19

We compare the performance of our model to three baseline models: (1) the Long Short
Term Memory (LSTM) network, (2) the Neural ODE [33] network, and (3) the Hamiltonian
Generative Network (HGN) [5]. Recurrent neural networks like the LSTM-baseline provide
a discrete dynamics model. Neural ODE can be combined with a multi-layer perceptron to
predict continuous dynamics. HGN is a generative model with a Hamiltonian inductive
bias. Architecture and training details for each baseline are given in Appendix A.4. The pre-
diction performances of our model and the baselines are shown in Table 1. Our model
has the lowest MSE on the majority of our datasets with good prediction performance on
all of our datasets. Our model outperforms the state-of-the-art HGN model, reducing the
expected MSE by nearly half on all datasets. Overall, our model outperforms the baseline
models on the majority of the datasets with a more interpretable latent space, continuous
dynamics, and fewer model parameters.

Table 1. Average pixel mean square error over a 30-step prediction on the train and test data
on six datasets. All values are multiplied by 1 × 103. We evaluate our model and compare to
three baseline models: (1) recurrent model (LSTM [34]), (2) Neural ODE ([33]), and (3) HGN ([5]).

Dataset Ours LSTM-Baseline Neural ODE-Baseline HGN
TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

Uniform Prism 2.66 ± 0.10 2.71 ± 0.08 3.46 ± 0.59 3.47 ± 0.61 3.96 ± 0.68 4.00 ± 0.68 4.18 ± 0.0 7.80 ± 0.30
Uniform Cube 3.54 ± 0.17 3.97 ± 0.16 21.55 ± 1.98 21.64 ± 2.12 9.48 ± 1.19 9.43 ± 1.20 17.43 ± 0.00 18.69 ± 0.12
Non-uniform Prism 4.27 ± 0.18 6.61 ± 0.88 4.50 ± 1.31 4.52 ± 1.34 4.67 ± 0.58 4.75 ± 0.59 6.16 ± 0.08 8.33 ± 0.26
Non-uniform Cube 6.24 ± 0.29 4.85 ± 0.35 7.47 ± 0.51 7.51 ± 0.50 7.89 ± 1.50 7.94 ± 1.59 14.11 ± 0.13 18.14 ± 0.36
CALIPSO 0.79 ± 0.53 0.87 ± 0.50 0.62 ± 0.21 0.65 ± 0.22 0.69 ± 0.26 0.71 ± 0.27 1.18 ± 0.02 1.34 ± 0.05
CloudSat 0.64 ± 0.45 0.65 ± 0.29 0.89 ± 0.36 0.93 ± 0.43 0.65 ± 0.22 0.66 ± 0.25 1.48 ± 0.04 1.66 ± 0.11

Number of Parameters 6 52,400 11,400 -

In Appendix A.5, we present the results of ablations studies and provide discussion.
We find that the latent losses improve performance. However, the model may be over
constrained with both the dynamics-based and auto-encoding based reconstruction losses.

6. Summary and Conclusions
6.1. Summary

In this work, we have presented the first physics-informed deep learning framework
for predicting image sequences of 3D rotating rigid-bodies by embedding the images
as measurements in the configuration space SO(3) and propagating the Hamiltonian
dynamics forward in time. We have evaluated our approach on new datasets of free-
rotating 3D bodies with different inertial properties, and have demonstrated the ability
to perform long-term image predictions. We outperform the LSTM, Neural ODE and
Hamiltonian Generative Network (HGN) baselines on our datasets, producing better
qualitative predictions and reducing the error observed for the state-of-the-art HGN by a
factor of 2.

6.2. Conclusions

By enforcing the representation of the latent space to be SO(3), this work provides
the advantage of interpretability over black-box physics-informed approaches. The extra
interpretability of our approach is a step towards placing additional trust into sophisticated
deep learning models. This work provides a natural path to investigating how to incorpo-
rate and evaluate the effect of classical model-based control directly to trajectories in the
latent space.

7. Future Work

Although our approach so far has been limited to embedding RGB-images of rotating
rigid-bodies with configuration spaces in SO(3), there are natural extensions to a wider
variety of problems. For instance, this framework can be extended to embed different
high-dimensional sensor measurements, such as point clouds, by modifying the feature
extraction layers of the autoencoder. The latent space can be chosen to reflect generic rigid

Aerospace 2023, 10, 921 11 of 19

bodies in SE(3) or systems in more complicated spaces, such as the n-jointed robotic arm
on a restricted subspace of Πn

i=1(SO(3)). Another possible extension includes multibody
systems, i.e., systems with rigid and flexible body dynamics, which would have applications
to systems such as spacecraft with flexible solar panels and aircraft with flexible wings.

Author Contributions: J.J.M. and C.A.-B. are the lead authors of this manuscript. Both assisted in
conceptualization, methodology, investigation, writing, and editing of the manuscript. J.J.M. also con-
tributed analyses and led software development associated with the model and assisted in software
development for data generation. C.A.-B. also contributed compute resources and assisted in software
development, and served in a supervisory role. N.Z. contributed to methodology, investigation,
and writing and editing of the manuscript, and led data curation and software development for
data generation. E.D. provided resources, served in a supervisory role, and assisted in writing and
editing of the manuscript. N.E.L. was the principal investigator, contributed to conceptualization,
methodology, investigation, writing, and editing the manuscript, and served in a supervisory role
and acquired funding. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the Office of Naval Research grant number #N00014-
18-1-2873 and in part by funding provided by The Aerospace Corporation. The APC was funded by
The Aerospace Corporation.

Data Availability Statement: The code used to create and train our model is available https://github.
com/CAB-Lab-Princeton/Learning-RBD-from-Images (accessed on 11 September 2023). The dataset
generation code is available https://github.com/jjmason687/rbnn_data_generation (accessed on
11 September 2023).

Acknowledgments: Justice Mason and Christine Allen-Blanchette would like to thank Yaofeng
Desmond Zhong and Juncal Arbelaiz for their helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Rigid Body Rotational Dynamics and Stability

Let J ∈ R3×3 denote the moment-of-inertia matrix for a 3D rigid body. The matrix J
depends on how mass is distributed inside the body and can be understood to play a role
in rotational dynamics that is analogous to, but more complicated than, the role played in
translational dynamics of the scalar total body mass m.

Define an orthonormal reference frame B = {i, j, k} fixed to the body with origin at
the body’s center of mass. Let r = (x, y, z) be a point on the body expressed with respect to
B. The distribution of mass inside the rigid body is encoded by density ρ(r), i.e., mass per
unit volume of the body at the point r. Let V be the total volume of the body and denote by
⊗ the outer product. J is computed [19] with respect to body frame B as

J =
∫∫∫

V
ρ(r)(‖r‖2I3 − r⊗ r)dxdydz. (A1)

J is a symmetric positive definite matrix, which means that it can always be diagonal-
ized. If the frame B is chosen so that J is diagonal, the axes of B are called the principal axes
and the three diagonal elements of J are called the principal moments of inertia.

Consider, for example, the rectangular prism of Figure 1a,b, which has uniformly
distributed mass, i.e., ρ(r) = ρ0 for every point r in the body. Let B be chosen with its first,
second, and third axes aligned with the long, intermediate, and short axes of the prism,
respectively. Then, the axes of B are the principal axes, J = J1 is diagonal, and the first,
second, and third principal moments of inertia (the diagonal elements of J1) are ordered
from smallest to largest. For the very same rectangular prism but with the non-uniform
distribution of mass used in Figure 1d, the moment-of-inertia matrix J3, with respect to
the same frame B, is no longer diagonal and its principal moments of inertia are different
from those in the uniform case. J1 and J3 as well other moment-of-inertia matrices used for
experiments in this work are given in Appendix A.2.

https://github.com/CAB-Lab-Princeton/Learning-RBD-from-Images
https://github.com/CAB-Lab-Princeton/Learning-RBD-from-Images
https://github.com/jjmason687/rbnn_data_generation

Aerospace 2023, 10, 921 12 of 19

Let ΩΩΩ0 = ΩΩΩ(0) be the initial body angular velocity. Euler’s equations [19] describe the
rotational dynamics of the body, i.e., the evolution over time t of Π given J and ΩΩΩ0:

dΠ(t)
dt

= Π(t)× J−1Π(t), Π(0) = JΩΩΩ0, (A2)

where × is the vector cross product. The corresponding evolution of body angular velocity
over time is ΩΩΩ(t) = J−1Π(t), where Π(t) is the solution of (A2).

Given ΩΩΩ(t), t ≥ 0, the evolution of orientation over time is computed from the rigid
body kinematics equations:

dR(t)
dt

= R(t) ΩΩΩ×(t), (A3)

where ΩΩΩ× is the 3× 3 skew-symmetric matrix defined by (ΩΩΩ×)y = ΩΩΩ× y for y ∈ R3.
For the rotational dynamics (A2), there are three equilibrium solutions, i.e., where

dΠ(t)/dt = 0, corresponding to steady spin about the short principal axis, intermediate
principal axis, and long principal axis, respectively. Steady spin about the short axis and
long axis is stable, which means that an initial angular velocity near either of these solutions
yields a spinning behavior, independent of exterior geometry (see Figure 1b,c). Steady spin
about the intermediate axis is unstable, which means that an initial angular velocity near
this solution yields a tumbling behavior (see Figure 1a).

Figure 1a,b shows that for the same prism with the same (uniform) mass distribution,
and thus the same moment-of-inertia matrix J1, different values of initial body angular
velocity result in very different behavior: an unstable tumble in Figure 1a and a stable
spin in Figure 1b. Figure 1b,d shows that for the same prism with the same initial angular
velocity, different mass distributions yield different behaviors, a steady spin in (b) when
J = J1 and a wobble in (d) when J = J3. Figure 1b,c shows that the rotational dynamics
of a rigid body with the same moment-of-inertia matrix J1 and same initial body angular
velocity yield the same behavior, despite different exterior geometries, i.e., the prism in (b)
and the CALIPSO satellite in (d).

These cases illustrate that without a way of inferring the underlying mass distribution
and estimating initial conditions, there is no way to predict the dynamics from images.

Appendix A.2. Dataset Generation Parameters

Appendix A.2.1. Uniform Mass Density Cube

The moment-of-inertia tensor and its inverse for the uniform mass density cube are
given by the matrices J0 and J−1

0 in Table A1. The principal axes of rotation expressed in
the body-fixed reference frame are also given in Table A1, showing the principal axes and
body-fixed reference frame are aligned.

Table A1. Table containing the moment-of-inertia tensors, inverse moment-of-inertia tensors,
and principal axes used to generate training data for each object.

Object Moment-of-Inertia Tensor Inverse Moment-of-Inertia Tensor Principal Axes

Uniform Cube J0 = 1
3

(1 0 0
0 1 0
0 0 1

)
J−1

0 =
(3 0 0

0 3 0
0 0 3

) {(1
0
0

)
,
(0

1
0

)
,
(0

0
1

)}
Uniform Prism J1 =

(0.42 0 0.
0 1.41 0
0 0 1.67

)
J−1

1 =
(2.40 0 0

0 0.71 0
0 0 0.60

) {(1
0
0

)
,
(0

1
0

)
,
(0

0
1

)}
Non-uniform Cube J2 =

(0.17 0 −0.56
0 0.17 −0.99
−0.56 −0.99 0.17

)
J−1

2 =
(4.53 −2.62 −0.44
−2.62 1.34 −0.78
−0.44 −0.78 −0.13

) {(−0.35
−0.62
−0.71

)
,
(−0.87

0.49
0

)
,
(−0.35
−0.62
0.71

)}
Non-uniform Prism J3 =

(0.47 0 −0.28
0 1.61 −0.49
−0.28 −0.49 1.83

)
J−1

3 =
(2.37 0.12 0.39

0.12 0.68 0.20
0.39 0.20 0.66

) {(−0.35
−0.62
−0.71

)
,
(−0.87

0.49
0

)
,
(−0.35
−0.62
0.71

)}
CALIPSO J4 =

(0.33 0 0
0 0.50 0
0 0 1.0

)
J−1

4 =
(3.0 0 0

0 2.0 0
0 0 1.0

) {(1
0
0

)
,
(0

1
0

)
,
(0

0
1

)}
CloudSat J5 =

(0.33 0 0
0 0.50 0
0 0 1.0

)
J−1

5 =
(3.0 0 0

0 2.0 0
0 0 1.0

) {(1
0
0

)
,
(0

1
0

)
,
(0

0
1

)}

Aerospace 2023, 10, 921 13 of 19

Appendix A.2.2. Uniform Mass Density Prism

The moment-of-inertia tensor and its inverse for the uniform mass density prism are
given by the matrices J1 and J−1

1 in Table A1. The principal axes of rotation expressed in
the body-fixed reference frame are also given in Table A1, showing the principal axes and
body-fixed reference frame are aligned.

Appendix A.2.3. Non-Uniform Mass Density Cube

The moment-of-inertia tensor and its inverse for the non-uniform mass density cube
are given by the matrices J2 and J−1

2 in Table A1. The principal axes of rotation expressed
in the body-fixed reference frame are also given in Table A1, and are not aligned with
body-fixed reference frame.

Appendix A.2.4. Non-Uniform Mass Density Prism

The moment-of-inertia tensor and its inverse for the non-uniform mass density prism
are given by the matrices J3 and J−1

3 in Table A1. The principal axes of rotation expressed
in the body-fixed reference frame are also given in Table A1, and are not aligned with
body-fixed reference frame.

Appendix A.2.5. CALIPSO

The moment-of-inertia tensor and its inverse for the CALIPSO satellite are given by the
matrices J4 and J−1

4 in Table A1. The principal axes of rotation expressed in the body-fixed
reference frame are also given in Table A1, i.e., the principal axes and body-fixed reference
frame are aligned.

Appendix A.2.6. CloudSat

The moment-of-inertia tensor and its inverse for the CloudSat satellite are given by the
matrices J5 and J−1

5 in Table A1. The principal axes of rotation expressed in the body-fixed
reference frame are also given in Table A1, i.e., the principal axes and body-fixed reference
frame are aligned.

Appendix A.3. Hyperparameters

The hyperparameters used to train our model are given in Table A2. Hyperparameters,
distinct from model parameters, control the training process. We optimize over the model
parameters using the Adam optimizer [35].

Table A2. Hyperparameters used to train model for the non-uniform mass density prism experiment.
Only values differing from default values are given in the table.

Experiment Hyperparameters

Parameter Name Value

Random seed 0
Test dataset split 0.2
Validation dataset split 0.1
Number of epochs 1000
Batch size 256
Autoencoder learning rate 1× 10−3

Dynamics learning rate 1× 10−3

Sequence length 10
Time step 1× 10−3

Appendix A.4. Performance of Baseline Models

We compare the performance of our model against three baseline architectures:
(1) LSTM, (2) Neural ODE [33], and (3) Hamiltonian Generative Network (HGN) [5]. LSTM

Aerospace 2023, 10, 921 14 of 19

and Neural ODE baselines are trained using the same autoencoder architecture as our
model, while HGN is trained with the autoencoder architecture described in Toth et al. [5].
The LSTM- and Neural ODE-baseline differ from our approach in how the dynamics are
computed, emphasizing the beneficial role of Hamiltonian structure as well as our SO(3)
latent space.

Appendix A.4.1. LSTM-Baseline

The LSTM-baseline uses an LSTM network to predict dynamics in the latent space.
The LSTM-baseline is a three-layer LSTM network with an input dimension of 6 and a
hidden dimension of 50. The hidden state and cell state are randomly initialized and
the output of the network is mapped to a six-dimensional latent vector by a linear layer.
The LSTM-baseline predicts a single step forward using the nine previous states as input.
We train the LSTM by minimizing the sum of the auto-encoding and dynamics-based
reconstruction losses, Lae and Ldyn as defined in Section 4.5. At inference, we use a
recursive strategy to predict farther into the future using previously predicted states to
predict subsequent states. The qualitative performance of the LSTM-baseline is given in
Figure A1, and the quantitative performance is given in Table 1. The total number of
parameters in the network is 52,400. The LSTM-baseline has poorer performance than our
proposed approach on all evaluated datasets.

Figure A1. Predicted sequences for uniform/non-uniform prism and cube datasets given by the
LSTM-baseline. The figure shows time steps τ = 10 through τ = 20. These are the first 11 predictions
of the model.

Appendix A.4.2. Neural ODE [33]-Baseline

The Neural ODE-baseline uses the Neural ODE [33] framework to predict dynamics in
the latent space. The Neural ODE-baseline is a three-layer multilayer perceptron (MLP) that
uses the ELU [36] nonlinear activation function. The baseline has an input dimension of 6,
a hidden dimension of 50, and an output dimension of 6. The Neural ODE-baseline predicts
a sequence of latent states using a single initial latent state. We train the Neural ODE-
baseline by minimizing the sum of the auto-encoding and dynamics-based reconstruction
losses, Lae and Ldyn, as defined in Section 4.5. We use the RK4-integrator to integrate
the learned dynamics. The qualitative performance for the Neural ODE-baseline is given
in Figure A2, and the quantitative performance is given in Table 1. The total number of
parameters in the network is 11,406. The Neural ODE-baseline has poorer performance
than our proposed approach on all evaluated datasets.

Aerospace 2023, 10, 921 15 of 19

Figure A2. Predicted sequences for uniform/non-uniform prism and cube datasets given by the
Neural ODE-baseline.

Appendix A.4.3. Hamiltonian Generative Network (HGN)

HGN [5] uses a combination of a variational auto-encoding (VAE) neural network
and Hamiltonian dynamics to perform video prediction. When testing HGN as a baseline,
we use the implementation provided by Balsells Rodas et al. [37]. We train HGN on
our datasets using the hyperparameters, loss function, and integrator described in Toth
et al. [5]. The qualitative performance for the HGN-baseline is given in Figure A3, and
the quantitative performance is given in Table 1.

Appendix A.5. Ablation Studies

In our ablation studies, we explore the impact of the reconstruction losses and latent
losses on the performance of our model (see Sections 4.5.1 and 4.5.2 for the definition of our
losses). The ablated models are trained similarly to the proposed model, but parts of the loss
functions are removed. In the first ablation study, only the dynamics-based reconstruction
loss (Ldyn) is used , i.e., the auto-encoding reconstruction loss (Lae) and latent losses
(LlatentR and LlatentΠ) are removed from the total loss function. In the second ablation study,
only the auto-encoding reconstruction and dynamics-based reconstruction losses (Lae and
Ldyn) are used, i.e., the latent losses (LlatentR and LlatentΠ) are removed from the total loss
function. In the final ablation study, only the dynamics-based reconstruction and latent
losses are used (Ldyn, LlatentR, and LlatentΠ), i.e., the auto-encoding reconstruction loss (Lae)
is removed from the total loss function. These ablation studies demonstrate the prediction
performance of the model when trained with (1) the dynamics-based reconstruction loss
only, (2) the auto-encoding reconstruction and dynamics-based reconstruction losses, and
(3) the dynamics-based reconstruction loss and latent losses. In the first two cases of the
ablation study, the prediction performance worsens on the majority of the datasets, but
in the third case, the prediction performance improves over the proposed model on the
majority of the datasets. It may be that model is over constrained with both the dynamics-
based and auto-encoding based reconstruction losses. From Table A3 and Figure A4, it can
be inferred that only using the dynamics-based reconstruction loss negatively affects the
prediction performance of our proposed model (although it is still better than the baselines
in Table 1).

Aerospace 2023, 10, 921 16 of 19

Figure A3. Predicted sequences for all datasets given by the Hamiltonian Generative Network (HGN)
baseline. The figure shows timesteps τ = 0 through τ = 10.

Figure A4. Evaluation of the image prediction performance of an ablated version of our model trained
with only the dynamics-based reconstruction loss (Ldyn) from Section 4.5.1. The ablated model has
poorer performance than the proposed approach over all datasets. The prediction performance
worsens earlier than the proposed model’s performance, as shown in Figure 3.

Aerospace 2023, 10, 921 17 of 19

Table A3 and Figures A5 and A6 also demonstrate the positive impact of the latent
losses on prediction performance for our model. We see worsened average pixel MSE
and prediction with the latent losses removed. These results are further corroborated in
the literature [6,38]. Furthermore, Figure A6 show a better prediction performance when
the auto-encoding reconstruction loss is removed. This could indicate that the Lae loss is
over-constraining the proposed model.

Table A3. Average pixel MSE over a 30-step unroll on the train and test data on four datasets for our
ablation study.

Dataset Ltotal Ldyn Ldyn + Lae Ldyn + Llatent
TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

Uniform Prism 3.03 ± 1.26 3.05 ± 1.21 3.99 ± 1.21 3.74 ± 0.93 3.99 ± 1.50 3.85 ± 1.45 4.82 ± 1.32 5.09 ± 1.53
Uniform Cube 4.13 ± 2.14 4.62 ± 2.02 5.73 ± 0.51 5.87 ± 0.56 7.11 ± 2.63 6.95 ± 2.41 2.80 ± 0.18 2.80 ± 0.20
Non-uniform Prism 4.98 ± 1.26 7.07 ± 1.88 4.27 ± 1.28 3.89 ± 1.10 3.86 ± 1.38 3.66 ± 1.27 4.16 ± 1.27 5.09 ± 1.53
Non-uniform Cube 7.27 ± 1.06 5.65 ± 1.50 6.23 ± 0.88 5.93 ± 0.85 - - 8.78 ± 0.93 8.64 ± 1.14
CALIPSO 1.18 ± 0.43 1.19 ± 0.63 2.00 ± 0.78 1.85 ± 0.58 1.73 ± 0.73 1.62 ± 0.50 0.49 ± 0.07 0.54 ± 0.18
CloudSat 1.32 ± 0.74 1.56 ± 1.01 0.96 ± 0.17 1.39 ± 0.48 0.87 ± 0.29 1.40 ± 0.40 0.28 ± 0.06 0.28 ± 0.06

Figure A5. Evaluation of the image prediction performance of an ablated version of our model
trained with only the auto-encoding reconstruction and dynamics-based reconstruction losses (Lae

and Ldyn) from Section 4.5.1. The ablated model has poorer performance than the proposed approach
over all datasets—even failing to predict after ∼30 time steps for the non-uniform cube dataset.

Aerospace 2023, 10, 921 18 of 19

Figure A6. Evaluation of the image prediction performance of an ablated version of our model trained
with only dynamics-based reconstruction losses and latent losses (Ldyn, LlatentR, and LlatentΠ) from
Section 4.5.1. The ablated model has better performance than the proposed approach on the majority
of the datasets– implying that the proposed model may be over constrained.

References
1. Williams, B.; Antreasian, P.; Carranza, E.; Jackman, C.; Leonard, J.; Nelson, D.; Page, B.; Stanbridge, D.; Wibben, D.;

Williams, K.; et al. OSIRIS-REx Flight Dynamics and Navigation Design. Space Sci. Rev. 2018, 214, 69. [CrossRef]
2. Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S. A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci.

2014, 68, 1–26. [CrossRef]
3. Mark, C.P.; Kamath, S. Review of active space debris removal methods. Space Policy 2019, 47, 194–206. [CrossRef]
4. Zhong, Y.D.; Leonard, N.E. Unsupervised Learning of Lagrangian Dynamics from Images for Prediction and Control. In

Proceedings of the Conference on Neural Information Processing Systems 2020, Virtual, 6–12 December 2020.
5. Toth, P.; Rezende, D.J.; Jaegle, A.; Racanière, S.; Botev, A.; Higgins, I. Hamiltonian Generative Networks. In Proceedings of the

International Conference on Learning Representations 2020, Addis Ababa, Ethiopia, 26–30 April 2020.
6. Allen-Blanchette, C.; Veer, S.; Majumdar, A.; Leonard, N.E. LagNetViP: A Lagrangian Neural Network for Video Prediction.

arXiv 2020, arXiv:2010.12932.
7. Byravan, A.; Fox, D. SE3-nets: Learning Rigid Body Motion Using Deep Neural Networks. In Proceedings of the International

Conference on Robotics and Automation 2017, Singapore, 29 May–3 June 2017.
8. Peretroukhin, V.; Giamou, M.; Rosen, D.M.; Greene, W.N.; Roy, N.; Kelly, J. A Smooth Representation of Belief over SO(3) for

Deep Rotation Learning with Uncertainty. arXiv 2020, arXiv:2006.01031.
9. Duong, T.; Atanasov, N. Hamiltonian-based Neural ODE Networks on the SE(3) Manifold For Dynamics Learning and Control.

In Proceedings of the Robotics: Science and Systems, Virtual, 12–16 July 2021.
10. Greydanus, S.; Dzamba, M.; Yosinski, J. Hamiltonian Neural Networks. In Proceedings of the Conference on Neural Information

Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.

http://doi.org/10.1007/s11214-018-0501-x
http://dx.doi.org/10.1016/j.paerosci.2014.03.002
http://dx.doi.org/10.1016/j.spacepol.2018.12.005

Aerospace 2023, 10, 921 19 of 19

11. Chen, Z.; Zhang, J.; Arjovsky, M.; Bottou, L. Symplectic Recurrent Neural Networks. In Proceedings of the International
Conference on Learning Representations 2020, Addis Ababa, Ethiopia, 26–30 April 2020.

12. Cranmer, M.; Greydanus, S.; Hoyer, S.; Battaglia, P.W.; Spergel, D.N.; Ho, S. Lagrangian Neural Networks. In Proceedings of the
International Conference on Learning Representations 2020, Addis Ababa, Ethiopia, 26–30 April 2020.

13. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114.
14. Falorsi, L.; de Haan, P.; Davidson, T.R.; Cao, N.D.; Weiler, M.; Forré, P.; Cohen, T.S. Explorations in Homeomorphic Variational

Auto-Encoding. In Proceedings of the International Conference of Machine Learning Workshop on Theoretical Foundations and
Application of Deep Generative Models, Stockholm, Sweden, 14–15 July 2018.

15. Levinson, J.; Esteves, C.; Chen, K.; Snavely, N.; Kanazawa, A.; Rostamizadeh, A.; Makadia, A. An analysis of svd for deep rotation
estimation. Adv. Neural Inf. Process. Syst. 2020, 33, 22554–22565.

16. Brégier, R. Deep regression on manifolds: A 3D rotation case study. In Proceedings of the 2021 International Conference on 3D
Vision (3DV), London, UK, 1–3 December 2021; pp. 166–174.

17. Zhou, Y.; Barnes, C.; Lu, J.; Yang, J.; Li, H. On the Continuity of Rotation Representations in Neural Networks. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 5738–5746.

18. Andrle, M.S.; Crassidis, J.L. Geometric Integration of Quaternions. AIAA J. Guid. Control 2013, 36, 1762–1772. [CrossRef]
19. Goldstein, H.; Poole, C.P.; Safko, J.L. Classical Mechanics; Addison Wesley: Boston, MA, USA, 2002.
20. Zhong, Y.D.; Dey, B.; Chakraborty, A. Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control. In Proceedings of the

International Conference on Learning Representations 2020, Addis Ababa, Ethiopia, 26–30 April 2020.
21. Zhong, Y.D.; Dey, B.; Chakraborty, A. Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into

Deep Learning. In Proceedings of the ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations,
Addis Ababa, Ethiopia, 26–30 April 2020.

22. Finzi, M.; Wang, K.A.; Wilson, A.G. Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints.
Conf. Neural Inf. Process. Syst. 2020, 33, 13.

23. Lee, T.; Leok, M.; McClamroch, N.H. Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds; Springer: Cham,
Switzerland, 2018.

24. Marsden, J.E.; Ratiu, T.S. Introduction to Mechanics and Symmetry; Texts in Applied Mathematics; Springer: New York, NY,
USA, 1999.

25. Lin, Z. Riemannian Geometry of Symmetric Positive Definite Matrices via Cholesky Decomposition. SIAM J. Matrix Anal. Appl.
2019, 40, 1353–1370. [CrossRef]

26. Atkinson, K.A. An Introduction to Numerical Analysis; John Wiley & Sons: Hoboken, NJ, USA,1989.
27. Markley, F.L. Unit quaternion from rotation matrix. AIAA J. Guid. Control 2008, 31, 440–442. [CrossRef]
28. Kisantal, M.; Sharma, S.; Park, T.H.; Izzo, D.; Martens, M.; D’Amico, S. Satellite Pose Estimation Challenge: Dataset, Competition

Design, and Results. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4083–4098. [CrossRef]
29. Sharma, S.; Beierle, C.; D’Amico, S. Pose estimation for non-cooperative spacecraft rendezvous using convolutional neural

networks. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–12. [CrossRef]
30. Park, T.H.; Märtens, M.; Lecuyer, G.; Izzo, D.; D’Amico, S. SPEED+: Next-Generation Dataset for Spacecraft Pose Estimation

across Domain Gap. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022;
pp. 1–15. [CrossRef]

31. Proença, P.F.; Gao, Y. Deep Learning for Spacecraft Pose Estimation from Photorealistic Rendering. In Proceedings of the 2020 IEEE
International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 6007–6013. [CrossRef]

32. Community, B.O. Blender—A 3D Modelling and Rendering Package; Blender Foundation, Stichting Blender Foundation: Amsterdam,
The Netherlands, 2018.

33. Chen, R.T.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D.K. Neural ordinary differential equations. Adv. Neural Inf. Process. Syst.
2018, 31, 1–13.

34. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
35. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
36. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv

2015, arXiv:1511.07289.
37. Balsells Rodas, C.; Canal Anton, O.; Taschin, F. [Re] Hamiltonian Generative Networks. ReScience C 2021, 7. [CrossRef]
38. Watter, M.; Springenberg, J.T.; Boedecker, J.; Riedmiller, M. Embed to control: A locally linear latent dynamics model for control

from raw images. Adv. Neural Inf. Process. Syst. 2015, 27, 1–9.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2514/1.58558
http://dx.doi.org/10.1137/18M1221084
http://dx.doi.org/10.2514/1.31730
http://dx.doi.org/10.1109/TAES.2020.2989063
http://dx.doi.org/10.1109/AERO.2018.8396425
http://dx.doi.org/10.1109/AERO53065.2022.9843439
http://dx.doi.org/10.1109/ICRA40945.2020.9197244
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.5281/zenodo.4835278

	Introduction
	Related Work
	Background
	The S2 x S2 Parameterization of 3D Rotation Group SO(3)
	3D Rotating Rigid-Body Kinematics
	3D Rigid-Body Dynamics in Hamiltonian Form

	Materials and Methods
	Notation
	Embedding Images to an SO(3) Latent Space
	Computing Dynamics in the Latent Space
	Decoding SO(3) Latent States to Images
	Training Methodology
	Reconstruction Losses
	Latent Losses

	3D Rotating Rigid-Body Datasets

	Results
	Summary and Conclusions
	Summary
	Conclusions

	Future Work
	Appendix A
	Appendix A.1
	Dataset Generation Parameters
	Uniform Mass Density Cube
	Uniform Mass Density Prism
	Non-Uniform Mass Density Cube
	Non-Uniform Mass Density Prism
	CALIPSO
	CloudSat

	Hyperparameters
	Performance of Baseline Models
	LSTM-Baseline
	Neural ODE chen2018neural-Baseline
	Hamiltonian Generative Network (HGN)

	Ablation Studies

	References

