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Abstract: To achieve the low-cycle fatigue (LCF) lifetime prediction and reliability estimation of
turbine blisks, a Marine Predators Algorithm (MPA)-based Kriging (MPA-Kriging) method is de-
veloped by introducing the MPA into the Kriging model. To obtain the optimum hyperparameters
of the Kriging surrogate model, the developed MPA-Kriging method replaces the gradient descent
method with MPA and improves the modeling accuracy of Kriging modeling and simulation preci-
sion in reliability analysis. With respect to the MPA-Kriging model, the Kriging model is structured
by matching the relation between the LCF lifetime and the relevant parameters to implement the
reliability-based LCF lifetime prediction of an aeroengine high-pressure turbine blisk by considering
the effect of fluid–thermal–structural interaction. According to the forecast, when the allowable
value of LCF lifetime is 2957 cycles, allowing for engineering experience, the turbine degree of
reliability is 0.9979. Through the comparison of methods, the proposed MPA-Kriging method is
demonstrated to have high precision and efficiency in modeling and simulation for LCF lifetime
reliability prediction of turbine blisks, which, in addition to the turbine blisk, provides a promising
method for reliability evaluation of complicated structures. The work done in this study aims to
expand and refine mechanical reliability theory.

Keywords: turbine blisk; low cycle fatigue life; reliability prediction; Kriging model; marine predators
algorithm

1. Introduction

As critical components of an aviation engine, high-pressure turbine blisks operate
under severe environments of high temperature, corrosion, and strong centrifugal force.
As a result, fatigue failures are common problems for actual turbine blade applications
in the field [1,2]. Herein, the low-cycle fatigue (LCF) of the turbine blisk is a common
failure mode and directly affects the safety and reliability of aeroengine operation, which is
recently the main research focus [3,4]. Therefore, it is essential to exhaustively analyze the
reliability-based LCF lifetime forecast of turbine blisks for optimum performance.

In the field of structural reliability estimation, numerous analytical approaches have
been proposed, which include direct and indirect methods (also called surrogate model
methods). The direct methods mainly involve Monte Carlo (MC) [5], first-order second-
moment (FOSM) [6], advanced first-order second-moment (AFOSM) [7], and so on. The MC
method requires thousands of simulations to reliably achieve the study objective, which has
the weakness of being very time-consuming for the probabilistic analysis of structural finite
elements. The approximate analytical method (e.g., the FOSM and AFOSM) is suitable for
structural reliability analysis with known performance function. These traditional methods
have been widely used and have proven to be practicable and productive in a variety of
fields [8–11]. However, the reliability-based LCF lifetime prediction of the high-pressure
turbine blisk involves multi-discipline (heat, dynamics, vibration), multi-failure modes
(stress, strain, fatigue, and so on). For such complex causes, the traditional reliability
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approaches show limitations in computational accuracy and efficiency. Furthermore, to
predict the non-linear models of the fatigue lifetime and damage and overcome the existing
problems with the direct method in computational efficiency [12–15], the surrogate model-
ing methods like FOSM, FOR, SOR, SVM, ANN, and Kriging-based are then developed to
accomplish structural reliability analysis and are commonly utilized to execute the relia-
bility estimation of complicated structures’ LCF lifetime [16,17]. Although the surrogate
modeling methods enhance the computational effectiveness of the LCF lifetime reliability
evaluation, it is difficult to obtain an acceptable analytical precision in the LCF lifetime
reliability estimation of complex structures. It is critical that effective surrogate approaches
be developed with the goal of improving the LCF lifetime reliability estimation of complex
structures in computational accuracy.

Wherein, Kriging is a powerful surrogate model which can provide a high-accuracy
fitting function of the dependent variables and independent variables [18,19]. Lu et al. pro-
posed the BIMEM method based on Kriging, LSM, and MLS methods that is established for
the purpose of developing probability-based dynamic LCF estimation for turbine blisks [20].
Slot et al. used the PCE-based Kriging method to accomplish an LSF for measuring wind
turbine fatigue reliability [21]. Huang et al. explored the AK-TCR-SM method based on
the secant and Kriging model to solve the safety analysis issues [22]. These Kriging-based
surrogate modeling methods can significantly reduce the computational cost compared to
traditional surrogate models. However, the above-mentioned approaches, such as the least
squares method (LSM), are incapable of accurately reflecting the extreme correlation be-
tween the dependent variables and independent variables. That is because the accuracy and
efficiency of the method cannot meet the engineering requirement. Thus, it is significant to
propose an applicable optimization algorithm for establishing a surrogate model.

The aim of this paper is to develop the Marine Predators Algorithm (MPA)-based
Kriging (MPA-Kriging) method by introducing MPA for calculating the optimal parameters
in Kriging, to improve the modeling and simulation accuracies of the Kriging model for
exploring the reliability-based LCF lifetime prediction of the turbine blisk, with regard to
fluid–thermal–structural interaction. In addition, the proposed MPA-Kriging method is
validated by comparison with many methods. MPA is a new nature-inspired metaheuristic
algorithm [23], used as an estimation technique for the Kriging model’s parameters to
estimate these parameters accurately. Islam et al. applied MPA and probabilistic models
to assess reliability accurately for open-source software [24]. Mohamed et al. proposed a
novel enhanced MPA for parameter identification of static and dynamic PV models [25].
These works show the wide application of MPA.

The remainder of this paper is organized as follows: theory and methods, case study,
methods validation, and conclusions. In Section 2, the basic theory of the MPA-Kriging
method is investigated, involving the Kriging method, MPA, and the mathematical model
of the MPA-Kriging method. Section 3 gives the implementation process for LCF lifetime
reliability prediction using the proposed MPA-Kriging method. Section 4 conducts the LCF
lifetime reliability prediction, comprising deterministic analysis, modeling, and reliability
estimation. Section 5 validates the proposed methods by comparing them to methods such
as the RSM and the traditional Kriging model, in terms of modeling ability and simulation
capability. Finally, the conclusions of this study are summarized in Section 6.

2. Theory and Methods
2.1. Kriging Method

The revised Manson-Coffin model is often used for structural LCF lifetime predic-
tion [26,27], i.e.,

∆εt

2
=

∆εe

2
+

∆εp

2
=

σ′f − σm

E

(
2N f

)b
+ ε′f

(
2N f

)c
(1)

where ∆εt is the general values of strain amplitude; ∆εe denotes the elastic strain amplitude;
∆εp indicates the plastic strain amplitude; E expresses the material elastic modulus; σ′f and
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ε′f stand for the strength and ductility coefficients, respectively; σm is the mean stress; N f is
the turbine blisk LCF; b and c are the fatigue strength and ductility exponents.

From Equation (1), we can find that the LCF lifetime of turbine blisk is related to the
strain amplitude, mean stress, strength coefficient, ductility coefficient, fatigue strength
exponent, and fatigue ductility exponent.

The MPA-Kriging method is developed from the Kriging model and MPA, in which
the MPA is employed to replace the gradient descent methods to search the optimal values
of hyperparameters in the Kriging model. In this paper, the LCF lifetime prediction model
of turbine blisk is established based on the Kriging model, and the relevant parameters of
this model [13,28] are expressed by N f (x) = f (x) = a0 + b0x + xTc0x + z(x)

x =
(

∆εt, σm, σ′f , ε′f , b, c
)T (2)

In Equation (2), the model consists of two components: linear and stochastic. The
linear model can be written as a quadratic polynomial. Herein, a0 is the constant term, b0 is
the vector of the linear term, and c0 is the matrix of the quadratic term. And the symbols b0
and c0 can be described as

b0 =
(

b0,1 b0,2 b0,3 b0,4 b0,5 b0,6
)

c0 =



c0,11 c0,12 c0,13 c0,14 c0,15 c0,16
c0,21 c0,22 c0,23 c0,24 c0,25 c0,26
c0,31 c0,32 c0,33 c0,34 c0,35 c0,36
c0,41 c0,42 c0,43 c0,44 c0,45 c0,46
c0,51 c0,52 c0,53 c0,54 c0,55 c0,56
c0,61 c0,62 c0,63 c0,64 c0,65 c0,66


(3)

Additionally, the stochastic model is a Gaussian random field, which satisfies

Cov
[
z
(
xi), z

(
xj)] = σ2R

(
θ, xi, xj)

R
(
θ, xi, xj) = 6

∏
k=1

Rk

(
θk, xi

k − xj
k

)
E[z(x)] = 0
Var[z(x)] = σ2

θ =
(

θ1 θ2 θ3 θ4 θ5 θ6
)

(4)

in which k = 1, 2, . . . , 6 is the number of input parameters; i, j = 1, 2, . . . , m, m is the
number of samples; σ2 is the variance; R(•) is the correlation function; θ is the vector of
hyperparameter in the Kriging meta-model; Rk

(
θk, xi

k − xj
k

)
is the kth kernel function of

the correlation function.
Then, Gaussian kernel is employed in this case because of its high processing capabil-

ity [29]. The correlation function is

R
(

θ, xi, xj
)
= exp

(
−

6

∑
k=1

θk

(
xi

k − xj
k

)2
)

(5)

The gradient descent method (GDM) is employed to resolve the hyperparameters, i.e.,

max
θ

L(θ) = −
(

m ln
(

σ̂2
)
+ ln|R|

)
(6)

where σ̂2 is the prediction variance.
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2.2. Marine Predators Algorithm

In the traditional Kriging method, the GDM is unable to ensure to be a Globally
Optimal Solution (GOS) for high-nonlinear problems. To address this issue, the MPA is
applied to settle the minimizing optimization into which the maximizing optimization of
high-nonlinear solution is transformed, i.e.,

min
θ

ϕ(θ) = |R|
1
m σ̂2

s.t. θk > 0
(7)

With respect to Ref. [30], the detailed processes of searching the optimal hyperparame-
ters with the MPA are summarized in Figure 1. The optimization process of using MPA to
search for the hyperparameters of the Kriging model is described as follows:
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Figure 1. The flowchart for searching the optimal hyperparameters with the MPA.

Step 1: Set relevant parameters and initialize the population;
Step 2: Calculate the fitness value, and record the optimal position;
Step 3: Predators select the corresponding update method to update the predator

position according to the iteration stage;
Step 4: Compute the fitness value and update the optimal position,
Step 5: Jump to Step 3 to update the fitness and predator position when the results do

not meet the requirement of precision or the stop conditions. Otherwise, jump to Step 6.
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Step 6: Output the optimal hyperparameters when the analytical results satisfy the
stop conditions.

2.3. Marine Predators Algorithm-Based Kriging Method

In line with the obtained hyperparameters, the LSM is used to resolve the unknown
matrix d, i.e.,

d =
(

FTR−1F
)−1

FTR−1Z (8)

in which d = (a0, b0, c0); both F and Z are the matrix of basis functions and the vector of
outputs, respectively, with respect to m samples with the samples.

In addition, the stochastic model at a point x∗ is represented as

z(x∗) = rT
z (x∗)R

−1(Z− Fd) (9)

Here, rz(x∗) is the correlation matrix of x∗ and x. And rz(x∗) is described as

rz(x∗) =
(

R
(
θ, x∗, x1) R

(
θ, x∗, x2) · · · R(θ, x∗, xm)

)
(10)

Through the above analysis, the MPA-Kriging model is derived, and then it will be
applied to accomplish the LCF prediction of turbine blisks.

3. LCF Lifetime Reliability Estimation Methods for Turbine Blisks
3.1. Reliability Estimation Principles

In the MPA-Kriging model, the turbine blisk reliability estimation LSF is

g(x) = N f (x)− N f ,allow (11)

where N f ,allow is the maximum allowable lifetime. If g(x) ≥ 0, the turbine blisk structure is
safety; otherwise, g(x) < 0 illustrates that the structure is failure.

In this paper, the MC sampling method [31] is used for determining the turbine blisk
lifetime degree of reliability by LSF. Additionally, the degree of reliability pr is

pr =
∫

r g(x)dx =
∫

Ir(g(x))g(x)dx
= E[Ir(g(x))] = 1

N ∑ Ir(g(x)) = Nr
N

s.t. Ir(g(x)) =
{

0, g(x) < 0
1, g(x) ≥ 0

(12)

in which r is the margin of safety; Ir(•) is the indicator function for the margin of safety;
Nr is the number of samples located in the margin of safety; N is the general number
of samples.

3.2. The Flowchart for LCF Lifetime Reliability Estimation with the MPA-Kriging Method

To establish the MPA-Kriging-based LCF lifetime prediction model, we obtained the
optimal two-part parameters of Kriging and conducted the turbine blisk LCF lifetime
reliability analysis based on the prediction model. The flowchart for turbine blisk LCF
lifetime prediction and reliability analysis using the MPA-Kriging method is shown in
Figure 2. The detailed procedures for the reliability-based LCF lifetime prediction of turbine
blisks using the MPA-Kriging method are described as follows:
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Figure 2. The flowchart for LCF lifetime reliability prediction using the MPA-Kriging method.

Step 1: Establish the three-dimensional (3D) model of turbine blisk and operating
ambience.

Step 2: Generate their finite element (FE) models.
Step 3: Set boundary conditions and loading parameters.
Step 4: Derive deterministic analysis of turbine blisk using the close-coupling method,

and the blisk lifetime is obtained by simulation calculation.
Step 5: Determine the numerical features of the input parameters to extract their

samples using the LHS method [32,33] and obtain their LCF lifetime.
Step 6: Divide the samples into training and test sequences.
Step7: Based on the MPA method, the hyperparameters of the Kriging model are

found through the training sequences.
Step 8: Adopt the optimal hyperparameters to obtain the values of unknown coeffi-

cients and develop the MPA-Kriging model.
Step 9: Validate the advantages of the MPA-Kriging model through the testing se-

quences, from modeling efficiency and precision. If this model satisfies the requirements,
jump to Step 10; conversely, return to Step 7.
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Step 10: Conduct the reliability analysis of the LCF lifetime using the established
MPA-Kriging model and the MC method.

4. The LCF Lifetime Reliability Estimation of Turbine Blisks
4.1. Deterministic Analysis of Turbine Blisk LCF Lifetime

A turbine blisk is a cyclically symmetric structure that is subject to complicated loads
from multiple physical sources. To simulate the LCF lifetime, we built a 3D model of a 1/48
turbine blisk and flow field covering three blades as the study objects. The blisk and flow
field were established with tetrahedron elements as shown in Figure 3.
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Figure 3. 3D model of turbine blisk and flow field.

We constructed five meshes with various element sizes to look into the convergence
analysis of the FE model. The purpose was to acquire the credibility finite element model
for dynamic deterministic analysis. Table 1 and Figure 4 display the analytical findings.

From Table 1 and Figure 4, it is denoted that the turbine blisk simulation results
converge to a constant (Stress ≈ 9.8717× 108Pa, Strain ≈ 5.5378× 10−3m/m) with the
decrease in the number of elements, and the turbine blisk LCF lifetime converges to a
constant of 4719 with the increase in the number of elements.

Table 1. Validation of FE model with different element sizes.

Cell Sizes, m
Number of Cells Maximum Values of Intermediate Outputs

Blisk Flow Field Stress, ×108 Pa Strain, ×10−3 m/m

0.03 2725 189 9.3825 5.1325
0.02 8066 1428 9.5614 5.3253
0.01 59,877 8826 9.7034 5.4762
0.008 115,429 16,299 9.8716 5.5376
0.005 467,470 37,863 9.8717 5.5378
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By weighting the computation complexity, the dynamic deterministic analysis of the
turbine blisk is carried out using a unit size of 0.008 m and a total number of units of 131,725.
This is because the analytic error of turbine blisk LCF lifetime is 011% in comparison with
the finest element size.

To obtain turbine blisk LCF lifetime, the time domain [0 s, 215 s] is regarded in this
study, which includes 12 critical points [34]. GH4133 is considered to be the material of
the turbine blisk, and the density, elastic modulus, and Poisson’s ratio of the material are
8560 kg/m3, 1.61 × 1011 Pa, and 0.3224, respectively. Inlet velocity and inlet pressure are
assumed to be 124 m/s and 588,000 Pa, respectively. Additionally, the gas temperature and
rotational velocity are time-dependent variables, as shown in Table 2.

Table 2. The change in gas temperature and rotational velocity in time domain [0, 215 s].

Time, s 0 10 95 100 130 140 150 160 165 200 205 215

Gas temperature, K 50 468 573 782 697 838 924 1052 1200 1200 998 998
Rotate speed, m/s 0 420 448 656 748 852 654 1054 1168 1168 950 950

In light of the material parameters and loads, the transient deterministic analysis of the
turbine blisk was adopted by the coupling technique and finite volume method considering
the effect of fluid, thermal, and structural loads. The multi-physical coupling analysis
technique was developed in [35–37]. The simulation result (stress and strain) distributions
during the time domain [0 s, 215 s] are acquired in Figure 5.
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As the gas temperature and rotation speed increase, the stress and strain on the
turbine blisk increase, and their maximums are in the rising stage in [165 s, 200 s] in
Figure 5. Therefore, t = 175 s is regarded as the time point to probe into the turbine blisk
stress, strain, and LCF lifetime distributions, the nephograms of which are displayed in
Figure 6. In Figure 6, σ and ε are the turbine blisk’s stress and strain. Additionally, the root
of blade takes on the maximum of turbine blisk stress and strain in Figure 6.
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4.2. Turbine Blisk LCF Lifetime Modeling

Actually, during the design and operation of aeroengine blisk, the above influence
factors indeed have much randomness. This is the reason that probabilistic analysis
is necessary for the LCF lifetime analysis of turbine blisks in terms of the randomness
of these parameters involving material performance parameters and load parameters.
According to engineering experience, it is deduced that the input variates are random.
These variables for turbine blisk LCF lifetime comprised the inlet velocity v, outlet pressure
pout, gas temperature tg, material density ρ and rotational velocity ω, strength coefficient
σ′f , ductility coefficient ε′f , fatigue strength exponent b, and fatigue ductility exponent c. As
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shown in Table 3, which lists the numerical attributes and distributional properties, total
input variables are assumed to be independent of each other.

Table 3. Numerical attributes and distributional properties of input parameters.

Variables Mean Std. Dev. Distribution

Inlet Velocity v, m/s 124 16 Normal
Outlet Pressure pout, Pa 588,000 58,800 Normal
Gas Temperature tg, K 1200 120 Normal
Density ρ, kg/m3 8560 428 Normal
Rotational Velocity w, rad/s 1168 68 Normal
Strength coefficient σ′f ,×106 Pa 1318 68 Normal
Ductility coefficient ε′f 0.976 0.096 Lognormal
Fatigue strength exponent b −0.084 0.006 Normal
Fatigue ductility exponent c −0.94 0.08 Normal

In line with the numerical features and distribution features in Table 3, the Latin
Hypercube Sampling method is adopted to extract a pool of 150 input samples. Turbine
blisk LCF lifetime is obtained via deterministic analysis. We randomly selected 100 samples
as the training samples to derive the mathematical model of turbine blisk LCF lifetime
using the MPA-Kriging method, and the remaining sequences are treated as the testing
sequences to validate the accuracy of the proposed MPA-Kriging model.

Combined with the theory shown in Section 2.2, we can build the MPA-Kriging model
of turbine blisk LCF lifetime with the 50 training samples, which is as follows:

a0 = −0.4380
b0 =

(
0.6833 0.5731 0.9298 0.1369 −0.2149 −0.4119

)

c0 =



0.1583 0.0623 0.1912 0.0258 −0.0623 −0.0615
0.0623 0.1333 0.0485 0.0440 −0.0153 −0.0094
0.1912 0.0485 0.2117 0.0130 −0.0767 −0.0652
0.0258 0.0440 0.0130 −0.1305 −0.0051 0.0088
−0.0623 −0.0153 −0.0767 −0.0051 0.1209 −0.0963
−0.0615 −0.0094 −0.0652 0.0088 −0.0963 0.2462


r =

(
0.0439 0.0785 · · · −0.1105

)
1×100

(13)

4.3. Reliability Estimation of Turbine blisk LCF Lifetime

The MC method is used to run 10,000 simulations in accordance with the LSF to
accomplish the dependability calculation of the turbine blisk’s LCF lifetime. The analysis
results are displayed in Figure 7.

Based on the distribution rules of input parameters, we input a set and randomized
them to the established MPA-Kriging model, and then we could obtain one sample of
turbine blisk LCF lifetime. Therefore, using the MC method, 10,000 sets of randomized
parameters were transmitted to the model, and the LCF lifetimes of turbine blisk were
recorded in Figure 7a. To obtain the rule of the 10,000 sampling LCF lifetimes, we count the
times of each lifetime in Figure 7a and describe the distribution histogram of the data in
Figure 7b, which is used for obtaining the distribution characteristics of the lifetime.

From Figure 7, the turbine blisk LCF life follows a lognormal distribution with a
mean value of 1.7764 × 104 cycles and a standard deviation of 4.932 × 103 cycles, and the
turbine blisk LCF lifetime’s degree of reliability is 0.9979 computed by Equation (7), as the
allowable lifetime is 2957.
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We adopted five different samples to validate the chosen reliability allowable lifetime
based on the MC method. The evaluation results are shown in Table 4, and the turbine
blisk LCF lifetime’s degree of reliability under 105 samples is regarded as the precision
calculation standard.

Table 4. The turbine blisk LCF lifetime’s degree of reliability for different MC samples.

MC Samples Degree of Reliability Precision, %

102 0.960 3.86
103 0.983 1.751
104 0.9987 0.01
105 0.9986 —

Table 4 shows that the degree of reliability converges to 0.9986 as the number of
samples increases. Compared with 105 samples, the degree of reliability with 104 samples
is closest to 0.9987, which has a precision of 0.01%. Therefore, 0.9987 is selected as the
precision calculation standard (104 samples) for evaluating the turbine blisk.

5. Validation of MPA-Kriging Performance
5.1. Modeling Performance

To demonstrate the advantages of the MPA-Kriging method in modeling ability, the
time consumption of modeling and prediction accuracy were validated with 50 testing
samples by comparison of the RSM and Kriging models. The predictive precision was
assessed by root mean squared error (denoted by RMSE), and the real LCF lifetimes of
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turbine blisk using the direct simulation method were treated as the standard. Addition-
ally, the efficiency and accuracy improvement of the Kriging and MPA-Kriging methods
are discussed based on the analysis results of the RSM method. The results are shown
in Table 5.

Table 5. Modeling ability of RSM, Kriging, and MPA-Kriging methods.

Methods Modeling Time, s Improved Efficiency, % RMSE Improved Precision, %

RSM 1.67 — 412.4581 —
Kriging 1.46 12.57 268.1544 34.98

MPA-Kriging 0.79 52.69 102.4512 75.16

As demonstrated in the second and third columns in Table 5, the modeling time
consumptions for the proposed MPA-Kriging method (0.79 s) is about half those for the RSM
and Kriging methods (1.67 s and 1.46 s). Moreover, compared with the RSM and Kriging
methods, the modeling time of the MPA-Kriging method is less by 52.69% and 40.12%.

As shown in the last two columns of Table 5, the RMSE of the proposed MPA-Kriging
method (102.4512 cycles) is less than for the RSM and Kriging methods (412.4581 cycles and
268.1544 cycles), and the precision of this MPA-Kriging method is enhanced by 75.16% and
40.18% with regard to the RSM and MPA-Kriging methods. Therefore, the proposed MPA-
Kriging method has been presented to have better modeling accuracy and efficiency than
the traditional gradient descent method since (1) the Kriging method can learn efficient data
from training sequences and build the relationship between the dependent and independent
variables, and (2) the MPA method can obtain the optimal variable values.

According to the analytical results, the developed MPA-Kriging approach shows
distinct advantages in modeling speed and accuracy.

5.2. Simulation Capability

To elaborate the feasibility of the MPA-Kriging method for simulation capability, the
direct simulation, RSM, and Kriging models were applied to accomplish the reliability
estimation of turbine blisk LCF lifetime under 102, 103, and 104 simulations. In addition,
the results of direct simulation are regarded as the standard for researching the simulation
accuracy and efficiency. The results of simulation efficiency and precision are listed in
Tables 6 and 7.

Table 6. Simulation efficiency of reliability estimation of turbine blisk LCF lifetime for four methods.

Method
Number of Simulations

102 103 104

Direct simulation 56,845 s 624,464 s —
RSM 1.02 s 1.74 s 4.36 s

Kriging
0.44 s 0.75 s 2.18 sMPA-Kriging method

Table 7. Simulation precision of reliability estimation for four different methods.

Simulation

Degree of Reliability Simulation Precision, %

Direct
Simulation RSM Kriging MPA-Kriging

Method RSM Kriging MPA-Kriging
Method

102 0.99 0.82 0.90 0.94 88.89 90.91 94.95
103 0.997 0.894 0.927 0.986 89.67 92.98 98.89
104 — 0.9398 0.9658 0.9979 — — —
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From Table 6, it is demonstrated that the consumption time for modeling with different
methods, namely the RSM, Kriging meta-model, and MPA-Kriging methods, is far less
than that for direct simulation. The MPA-Kriging method is better than the RSM method in
simulation efficiency. This can be explained by (1) surrogate models (they include RSM,
Kriging, and MPA-Kriging), which are far smaller and outperform direct simulations (MC),
(2) simulation time consumption of surrogate models is much less than for direct simulation
as the number of simulation samples increases, and (3) the MPA-Kriging method is the
minimal time consumption method among the three modeling methods due to introducing
the MPA.

As shown in Table 7, the MPA-Kriging method holds the highest precision (96.92%)
compared with the RSM and Kriging methods (89.28% and 91.95%). Additionally, due to
the advantages with introducing the MPA, the MPA-Kriging method results in optimal
parameter values with limited samples, which is almost equal to the direct simulation
degree of reliability.

Therefore, the proposed MPA-Kriging method has apparent advantages in accuracy
and efficiency.

6. Conclusions

This paper proposed a novel LCF lifetime prediction and reliability analysis MPA-
Kriging method for turbine blisks based on the MPA and Kriging models. In this method,
the gradient descent optimization method is replaced by MPA, which solves the hyperpa-
rameters of the Kriging model and is more accurate and efficient. In addition, we adopted
the Latin Hypercube Sampling method to obtain 150 sets of input parameters in the LCF
lifetime deterministic analysis of the turbine blisk based on FE simulation. Then, the
reliability of the allowable LCF lifetime was calculated via the MC method. Ultimately,
to verify the advantages of the MPA-Kriging method in terms of accuracy and efficiency
capability, we compared it with three different conventional methods (direct simulation,
RSM, and Kriging). Major conclusions are summarized as follows:

(1) To accomplish the dynamic deterministic analysis of the credibility finite element
model, we chose the fittest element mesh size via the investigated convergence of the
turbine blisk. The turbine blisk simulation results converge to a constant in which the LCF
lifetime is 4719 cycles as the number of elements increases.

(2) To establish the fast and efficient MPA-Kriging surrogate model, the turbine blisk
lifetimes were obtained by the FE and finite volume methods and by considering the effect
of fluid, thermal, and structural loads. Therein, the turbine blisk analysis nephograms
of FE simulation show that the root of blade takes on the maximum stress and strain,
corresponding to the minimum lifetime.

(3) The hyperparameters of the Kriging model were calculated by considering it to be
the optimization objective of MPA. The degree of reliability is 0.9979, computed by the MC
method, while the allowable value of turbine blisk LCF lifetime is 2957, which can be used
for structural strength reliability evaluation of the turbine blisk.

(4) Compared with other well-known models (direct simulation, RSM, and Kriging),
the developed MPA-Kriging method outperformed all methods using different evaluation
metrics. We can conclude that the developed MPA-Kriging method is an efficient Surrogate
model that improves on the performance of the traditional Kriging model and enhances its
prediction accuracy.

The efforts of this paper provide a promising way for the LCF lifetime reliability
analysis of turbine blisks with high modeling precision and simulation efficiency, which
have significance in mechanical reliability theory.
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