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Abstract: This study deals with the mathematical modeling and numerical simulation of chemical
propulsion systems (CPSs). For this, we investigate and summarize a comprehensive collection of
the simulation modeling developments of CPSs in academic works, applications, and industrial
fields. Then, we organize and analyze the simulation modeling approaches in several ways. After
that, we organize differential-algebraic Equations (DAEs) for fundamental mathematical modeling
consisting of the governing Equations (ordinary differential equations, ODEs) for the components
and other equations derived from several physical rules or characteristics (algebraic equations or
phenomenological equations, AEs) and then synthesize and summarize the fundamental structures
of analytic mathematical modeling by types (liquid-propellant rocket engines, solid-propellant rocket
motors, and hybrid-propellant rocket motors) of CPSs.

Keywords: chemical propulsion system; solid-propellant rocket motor; hybrid-propellant rocket
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1. Introduction

Due to recent developments in space system technologies and expanded approaches
to space made possible by small satellite (SmallSat) technologies, new launch service
providers, and international collaborations, a new space age, sometimes called Space 2.0,
has emerged [1–3]. As a result, new technology encourages change in how the space indus-
try operates, and the market for commercial launch services has expanded to put satellites
into orbit. Therefore, one of the primary concerns is the low-cost commercialization and
management of space launch vehicles (SLVs) to strengthen the competitiveness of the new
space age [4–10]. However, the development cost for a new propulsion system is expensive,
and there is a risk of accidents in development and tests. Furthermore, as a reusable launch
vehicle (RLV) has become necessary, the maintenance of the RLV has also been a technical
issue for a competitive price [11].

In the new space age, as the space market has moved from government-centered
to commercial-centered, new requirements for new SLVs have emerged: long-life design
methodology, a technique to evaluate the remaining lifetime, non-destructive inspection
technology, and fault detection and diagnosis [12]. In developing a new SLV, numerous
tests of the new propulsion system under various conditions are required to construct a
dataset to satisfy these requirements. However, several tests cost a large expenditure of
money, and a severe accident may occur in tests. Furthermore, as the experiments are
repeated, inherent unknown damages can also accumulate from numerous tests. Further-
more, in the RLV case, as with aircraft engines, the RLV propulsion system must be ready
for the next flight quickly because its inspection process before launch generally requires
some disassembly, considering the tradeoff between reliability and maintenance costs. As a
result, the fault simulation using the system-level model-based simulation is essential to
reduce the number of tests by substituting the actual experiment and to generate a database
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for the failure mode and effect analysis (FMEA) for constructing a reliable health monitor-
ing system [12–18]. Therefore, the above advantages of developing a reliable simulation
program can be summarized:

• Shortening the development period and reducing development cost.
• Protect potential problems and predict propulsion performance in various conditions.
• Generate a database for the possible failure modes from FMEA and develop a reliable

health monitoring system.
• Reduce maintenance cost for RLVs.

Due to the above advantages, interest in simulation programs has increased signif-
icantly recently. However, developing a simulation program is difficult because of the
complexity of a chemical propulsion system (CPS), especially for a liquid-propellant rocket
engine (LPRE). Additionally, because system-level simulation models use reduced-order
models of each component and require specifying numerous model parameters, reliable
experimental data obtained from physical model testing are essential to ensure the relia-
bility of the simulation model. However, in the case of a CPS, it is difficult to obtain data
for each component due to security issues. Therefore, developing a reliable mathematical
simulation program requires collaboration with various research institutes or teams to
secure experimental data of an actual system, and it is challenging to conduct related
research because it takes a lot of time.

Many studies have been conducted with system-level mathematical modeling to
predict the performance of rocket propulsion systems. In the beginning, the primary use
of simulation modeling in LPREs is to predict the transient state and design point in the
preliminary and critical design process, while solid-propellant rocket motors (SPRMs) and
hybrid-propellant rocket motors (HPRMs) are generally for the design control system.
At that time, the RL10A-3-3A engine, employing an expander cycle, was often used to
verify system-level simulation modeling [12]. However, these days, as the computation
and rocket technical skills have been improved, the main objective of simulation modeling
has been expanded to make a dataset for upgrading and preparing the next-generation
engine or developing health monitoring systems. The system-level simulation modeling
has also been developed for various types of CPSs, such as LPREs, SPRMs, and HPRMs,
by applying diverse cycle types in LPREs, such as expander cycle, staged-combustion
cycle, gas-generator cycle (also called open-cycle), and recently, electric-pump-fed cycle.
However, there are no comprehensive studies showing that a CPS dynamics can be derived
from the same governing equations. Therefore, this study aims to investigate and analyze
system-level simulation modeling trends and synthesize and organize approaches to a CPS.

The following section briefly overviews of CPSs. Section 3 surveys and reviews the
dynamic simulation program of CPSs and analyzes the trends by perspectives. Then,
Section 4 summarizes and organizes the dynamic equations depending on the types of a
CPS. Finally, Section 5 concludes this study.

2. Overview of Chemical Propulsion Systems

The rocket propulsion system is a system that generates thrust by expelling exhaust
fluid accelerated at high speed through a nozzle using stored rocket propellants as the reac-
tion mass based on Newton’s third law of motion [19–21]. Rocket propulsion systems can
be classified into chemical (liquid, solid, and hybrid) and non-chemical (electrical, thermal,
solar, and nuclear) types, as shown in Figure 1. For high propulsion for launch, the most
useful energy source for rocket propulsion is CPSs because the systems have several advan-
tages for a multistage system: the propellants can be safely stored, the thrust–weight ratio
is generally higher than in non-chemical propulsion systems, and the combustion process
results in a great deal of heat being released, as shown in Table 1 [19–21].



Aerospace 2023, 10, 839 3 of 27

Figure 1. Classification of rocket propulsion systems (Reprinted with permission: El-Sayed, A.
F. Fundamentals of Aircraft and Rocket Propulsion, Copyright c© 2018 by the Springer with
permission [22].)

Table 1. Comparison of rocket propulsion systems [20,22].

Types Specific Impulse Thrust/Weight Ratio Thrust Duration

Chemical Rocket 170–465 1–10 Minutes
Electrothermal 300–1500 <10−3 Months (steady) Years (intermittent)

Electromagnetic 1000–10,000 <10−4 Months (steady) Years (intermittent)
Electrostatic 2000–100,000 <10−4–10−6 Months/years (steady)

Nuclear (thermal) 750–1500 1–5 Hours

The CPSs can be categorized into SPRMs, HPRMs, and LPREs, depending on the state
of the oxidizer and fuel, as shown in Figure 2 [19,21].

Figure 2. Classification of rocket propulsion systems.
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Liquid propellant rocket engines (LPREs) use liquid propellant supplied under pres-
sure or pumped from a tank into the thrust chamber. LPREs can consist of a single chemical
(a monopropellant) or a mix of two chemicals (a bipropellant). A monopropellant is
a single liquid containing both an oxidizer and a fuel species, whereas a bipropellant
consists of liquid fuel (e.g., kerosene, liquid hydrogen) and liquid oxidizer (e.g., liquid
oxygen) [19,21,23]. There are other ways to categorize them, such as based on propellants
(cryogenic, semi-cryogenic, and non-cryogenic) and cycles (pressure-fed, gas-generator,
expander, staged-combustion, and recently electric pump-fed), as shown in Figure 3 [23].
One of the powerful advantages of an LPRE is that it can be throttled in real time, and the
mixing ratio (ratio between oxidizer and fuel) can be controlled. It can also be shut down
and restarted using the appropriate ignition system.

(a) (b)

(c) (d)

Figure 3. Cont.
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(e)

Figure 3. Liquid-propellant rocket engine cycles. (a) Pressure-fed cycle. (b) Expander cycle.
(c) Gas-generator cycle. (d) Staged combustion cycle. (e) Electric-pump-fed cycle.

Solid propellant rocket motors (SPRMs) contain propellant to be burned within the
combustion chamber. The solid propellant charge is called the grain and has all the chemical
elements necessary for complete burning. Once ignited, it usually burns smoothly at a
predetermined rate over all exposed inner surfaces of the grain. As the propellant is burned
and consumed, the internal cavity grows, and the generated hot gas flows through a
supersonic nozzle to generate thrust until all the propellant is consumed [19,21,24].

Hybrid propellant rocket motors (HPRMs) use both liquid and solid propellants by
mixing a liquid oxidizer and a solid fuel [19,25]. This concept allows throttling, shutdown,
and restart until all the solid propellant is consumed, but this is not possible with SPRMs.
It is also possible to use a liquid fuel and a solid oxidizer, called a reverse HPRM [21].

3. Simulation Modeling Trend of Chemical Propulsion Systems
3.1. Literature Review

Various studies have been conducted to develop mathematical simulation models
of a CPS, and simulations have been applied to collect data under various conditions for
low development costs and multiple purposes. In addition, the simulation approach can
prevent an unknown inherent defect that accumulates over numerous repeated actual tests
and can cause a severe fault in-flight.

In previous research and space-advanced countries, mathematical simulation models
have been developed mainly focusing on an LPRE, because an LPRE is much more complex
than others, and most developed simulation models have focused on large thrust with
controllability. In the case of SPRMs or HPRMs, since the system structure of SPRMs or
HPRMs is relatively safe and simple compared to LPREs, a simulation model has been
developed to use experimental approaches or realistic systems simultaneously or to design
control systems. Then, because more than 30% of the engine failures occurred during the
start-up process, such as propellant feed system failure, turbopump failure, and defective
welding of the seam holding a cover, researchers have begun to recognize the importance
of accurately modeling under a transient state, especially the start-up process [26,27].
Therefore, we investigate simulation models for LPREs, SPRMs, HPRMs, and the transient
state in this subsection.
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3.1.1. Liquid-Propellant Rocket Engines

The space-advanced countries developed simulation programs mostly for LPREs by
developing their own SLVs. Typical examples are rocket engine transient simulation (RO-
CETS) developed by Pratt & Whitney in the U.S., consisting of thirteen component modules,
and the rocket engine dynamic simulator (REDS) by Japan Aerospace eXploration Agency
(JAXA), which is an upgrade version of ROCETS using partial differential Equation (PDE)
to obtain nonlinear mass flow rate and heat transfer characteristics in the pipeline [28,29].
EcosimPro is also one of the representative programs used for a commercial program called
European Space Propulsion System Simulation (ESPSS), employing a set of libraries con-
taining various types of components that can be interconnected to model complex dynamic
systems in Europe [30,31]. Using the libraries of the ESPSS, the SPRMs and HPRMs can
also be developed [32].

Additionally, many research groups in institutes and universities have developed their
own program or improved each component model and added it to the libraries through
research focusing on each component through numerical simulation and experiment. In the
U.S., Rocketdyne developed a thermodynamic model for the space shuttle main engine
(SSME) [33]. In Ref. [33], although the equations were purely descriptive, there was no
analysis and understanding of the physical phenomena of the engine, such as several
constant coefficients meaning in dynamic equations and not clarifying the origin of the
equations. For this, the Massachusetts Institute of Technology (MIT) analyzed and de-
rived the dynamic equations and applied them to develop a fault detection and diagnosis
(FDD) algorithm [34–36]. However, since the models focused on only a steady state or
quasi-steady state, the Aerospace Corporation developed an accurate transient state simu-
lation model considering the water hammer phenomenon [37]. In Europe, in addition to
ESPSS, research was also conducted to develop simulation models. The German Aerospace
Center (DLR) researched simulation modeling to simulate the start-up of an LPRE con-
sidering various fluid flow phenomena (two-phase flow) and the numerical resolution
of these phenomena [38,39]. Additionally, the France Space Agency (CNES) developed
a simple thermodynamical simulator of an open-cycle LPRE in MATLAB/SIMULINK to
capture a transient behavior and verified with the Vulcane 1 engine to design a thrust
control algorithm [40,41]. In Russia, the Moscow Aviation Institute (MAI) presented a
simulation program based on ANASYN for commercial programs to analyze transient
behavior [42]. The NPO Energomash, a major Russian rocket engine manufacturer, also
developed a self-production program using a simple dynamic equation complemented
with experimental-based empirical Equations [43]. China also has started to study de-
veloping a simulation model in various institutes. The National University of Defense
Technology (NUDT) developed a simple mathematical model for an open-cycle LPRE
to study FDD algorithms [44–46]. After that, the university developed a tool called the
Modularization Modeling and Simulation Software for the Transients of Liquid Propellant
Rocket Engines (LRETMMSS) to study rocket engine transient states based on the decom-
position method [47]. Huazhong University of Science and Technology (HUST) developed
an LPRE model library in Modelica language that contains component models, such as
pipes, valves, tanks, turbo-pumps, combustion chambers, nozzles, injectors, gas generators,
etc. [48]. Using the library, various LPRE models, including gas-pressurized and pumped
systems, can be established in a transient state [48]. The Beijing University of Aeronautics
and Astronautics (BUAA) also developed a simulation model for quantitative analysis
of an open-cycle LPRE and SSME with a modular approach. In the component library
(including the thrust chamber, gas generators, turbines, pumps, pipelines, and valves),
the stationary macroscopic behavior (typically including the pressure, temperature, flow
rate, and power) of each module is simulated by the basic zero-dimensional analytical
model with some empirical correlations [49–53]. In Brazil, the Institute of Aeronautics and
Space (IAE) developed and reported a steady-state modeling and simulation program for an
open-cycle LPRE using C++ programming [54]. In the case of the fluidic resistance element,
the pressure loss was modeled through an empirical equation as a constant multiple of
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the combustion chamber pressure, and the pump, turbine, and combustion chamber were
modeled through the logarithmic equation. It was verified with Vulcain, HM7B, and SSME
engines and showed a low error rate despite the simple modeling method with an aver-
age of 4%, 2%, and 6% performance errors per component unit [54]. In Korea, the Korea
Aerospace Research Industry (KARI) developed a simulation model of open-cycle LPRE in
steady-state using a linearization approach and transient state using in-house code [55–57]
and of staged combustion cycle LPRE using energy balance equations to check operating
points [58]. Korea Aerospace University (KAU) also developed a simulation program
using two kinds of LPRE, a steady state of staged-combustion cycle and a transient state of
open-cycle LPREs, and modulized each component of the program [59–62]. In addition,
to analyze the start-up characteristics of a staged-combustion engine, a staged-combustion
engine power pack has been developed at Chungnam National University (CNU) [63,64].
As small-size LPRE has become necessary recently [65], Inha University also developed a
simulation program focusing on an electric-pump-fed cycle engine and verified it with a
water flow test [66,67]. In addition to that, The Khajeh Nasir Toosi University of Technology
(KNTU) in Iran also developed a simulation model of an open-cycle LPRE using Borland C
to predict the effects of changes in the design of considered engine and apply it to other
LPREs and a staged combustion cycle LPRE collaborated with BUAA in China [52,68,69].

3.1.2. Solid-Propellant Rocket Motor

SPRMs have simple structures consisting of a case, nozzle, grain (solid propellant),
and igniter and are suitable for long-term storage without propellant degradation compared
to other types of propellant systems, so they have been used for various applications,
such as sounding rockets, missiles, and orbital rockets [19,70]. In the past, since the
mathematical model of SPRMs was simple and easy to develop, it was sufficient to construct
a simulation model assuming a first- or second-order linear system [19,20,22,24]. However,
over the past two or three decades, as the study on a variable-thrust solid-propellant
rocket motor (VTSRM) using a pintle valve has been conducted, as shown in Figure 4
[71–76], it has become essential to develop a mathematical simulation model to solve some
uncertainties in changing system parameters by the moving pintle and limited range of
the pintle motion, as shown in Figure 5 [77,78]. Therefore, several institutes developed
a mathematical simulation model considering the combustion chamber volume change
as combusting progressed and verified by a cold gas test to design a pressure and thrust
control system [77–84]. Additionally, using the characteristics, it can be extended to a
multi-nozzle system for divert and attitude control as a reaction control system (RCS), so
a simulation model was also developed considering each nozzle throat area, and various
control systems were designed through the simulation approach [85–91].

Figure 4. Pintle nozzle technology to control thrust by chamber pressure and throat area [73].
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Figure 5. Discharge mass flow rate and pressure based on pintle position of a single-nozzle
system [78].

Furthermore, recently, by applying a VTSRM, a simulation model of the ramjet or
scramjet system, called dual-mode ramjet (DMRJ) or solid-fuel rocket scramjet (SFRSCRJ),
has been developed and studied as a gas generator to generate and control the fuel-rich
combustion gas, as in Figure 6 [92]. Since the fuel-rich combustion gas, generated from
a VTSRM, is controlled by the pintle and makes variable thrust in the ram combustor,
the characteristics of the system drive are one of several challenges in the DMRJ or SFRSCRJ,
so a simulation model of SPRMs has been conducted to design an accurate control system
for combustion gas flow rate [92–95].

Figure 6. Schematic of a throttleable ducted rocket [92].

3.1.3. Hybrid-Propellant Rocket Motor

Since HPRMs are a system that combines the advantages of LPREs and SPRMs, HPRMs
are capable of thrust control, safe, and simple, so research on HPRMs has been performed
on a laboratory scale at universities or in countries starting space development. Because of
the advantages of HPRMs, the performance can be predicted and verified through simulta-
neous simulation and experimental approaches [96–101]. Moreover, in recent years, since
the private sector of the space industry has made significant advances as an independent
supplier of launch rockets, which support national programs (construction of satellites, re-
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search equipment, etc.) and are mostly small launchers (also mini-launchers), HPRMs have
become very promising for developing a small launch vehicle in this trend. For this reason,
as the interest in HPRMs has increased significantly recently, the interest in developing an
HPRM simulation model has also increased [9,102], and this interest has led to the develop-
ment of simulation modeling of an HPRM to predict and evaluate its performance under
various operating conditions [96–100,103,104]. In addition, vertical take-off and vertical
landing (VTVL) has become one of the essential features of recent spacecrafts, so a simula-
tion modeling approach has become important to design appropriate control algorithms
because an HPRM has a simple structure and deep throttling capability [105]. Therefore,
many researchers have developed a simulation model using a lumped model approach
or appropriate linear identification and designed a control algorithm demonstrating the
actual system [105–111]. Some European researchers also developed a simulation model of
an HPRM using the ESPSS libraries and analyzed the performance of the HPRM [112,113].

3.1.4. State of a Chemical Propulsion System

The operation of a CPS can be divided into a steady state, such as a design point or a
specific operating point, and a transient state, such as start-up, shutdown, and thrust control.
In general, the steady and transient states represent completely different hydrodynamic
behaviors and are performed because the purpose of performance analysis is different.
The purpose of steady-state performance analysis is to predict the performance of static
characteristics and to analyze and determine the performance of each component and the
overall system at the operating point of the CPS, mainly at the full thrust. Meanwhile,
the purpose of transient performance analysis is to predict the performance of the dynamic
characteristics of the fluid that occurs in the transient state of CPS according to changes in
requirements, such as start-up or thrust changes. Generally, a transient state simulation is
performed by changing from a specific operating point to a new one. Therefore, simulation
modeling proceeds in the following order, as shown in Figure 7: steady-state performance
analysis and transient-state performance analysis.

Figure 7. The flowchart of a steady/transient simulation modeling [17].

In the case of steady-state modeling, it is relatively simple to perform because there
is no need to consider property changes in components over time. On the other hand,
transient-state modeling is more complex than steady-state modeling because it requires
information such as dynamic characteristics of components and phase changes of propel-
lants. The property changes in each component interact with each other and ultimately
cause combustion characteristics and thrust changes.



Aerospace 2023, 10, 839 10 of 27

For the difficulties in transient-state modeling, various types of research were con-
ducted focusing on the state changes in a transient state, especially the start-up process.
In the nonlinear mass flow problem, Kalnin, V. M. and Sherstiannikov, V. A. arranged the
scheme and the method of hydrodynamic modeling of the working process of an LPRE
start-up process and presented an experimental investigation of the hydraulic system
filling with the modeling liquid [26]. Lin. T. Y. and Baker, D. also performed analytical
simulation modeling and experiments to analyze the nonlinear mass flow on the priming
process of a propellant feed system with initial line pressures of zero condition and more
with a simple tank-valve-pipeline system [114]. For the combustion instability problem,
the combustion instabilities group at the DLR Lampoldshausen has worked to understand
the thermoacoustic phenomena in LPREs for over one and a half decades [115]. As the Eu-
ropean Arian 1 launcher suffered from combustion instabilities, a French-German research
program was founded in 1999 and has worked towards understanding the combustion
instability phenomena [116]. Schmidt et al. conducted an experimental and numerical
simulation of the transient ignition phenomenology when igniting coaxial injected oxidizer
and hydrogen by a laser. For this, they used high-speed photography for the temporal
evolution of the flame and its anchoring at the injector and analyzed the movement of
the flame and convection velocities [116]. In the initial condition and valve opening time
problem, Bradley, M. performed the simulation with various initial conditions and opening
time of each valve and analyzed the effects of the condition and performances with an
SSME numerical simulation model [117]. Belyaev, E. N. et al. and Manfletti, C. indepen-
dently studied the filling process in a pipeline, after a valve is opened, using simplified
gas accumulator dynamics, where the primary underlying assumption is that there is no
exchange between liquid and gas, as shown in Figure 8 [39,43].

Figure 8. The filling process of pipelines

V̄
d
dt

ṁout =
A
L
(Pin − Pout − Kmṁout|ṁout|) (1)

V̄ =
Vf illed

Vtotal
(2)
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d
dt

Pout =

{
d
dt Pg for 0 ≤ V̄ < 1

a2

V (ṁin − ṁout) for V̄ = 1
(3)

where Km, A, L, and a are the resistance coefficient, cross-area of the pipe, length of the
pipe, and the speed of sound, respectively.

KARI also analytically studied the valve operation order using Monte-Carlo
simulation [118,119]. Cha et al. used a staged change function to four state parame-
ters based on the hyperbolic-tangent from before combustion to after combustion to model
the start-up process [120]:

f =
1
2
(
tanh Kt(t− tignite) + 1

)
fcombustion +

1
2
(
tanh Kt(t− tignite) + 1

)
fnocombustion (4)

where Kt is the coefficient of state change and tignite is the ignition time.
Additionally, for the side load problem, Wang, T. S. conducted analytical research using

computational fluid dynamics (CFD) with two- and three-dimensional conditions [121,122].
The computational methodology was based on a multidimensional, finite-volume, viscous,
chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics
formulation and a transient inlet condition [121,122]. They conducted subscale combustion
tests on three subscale nozzles to establish the criteria and obtained a useful criterion [122].
Tomita, T. et al. also performed analytical research on the side load using an experimental
approach [123].

3.2. Analysis of the Trend

In the previous subsection, we review the status of developing a CPS simulation pro-
gram. In this subsection, trends in simulation programs are analyzed from two perspectives:
the modeling approach and the governing equations types in nonlinear modeling.

3.2.1. Perspective of the Modeling Approach

There are two modeling methods, white box modeling and black box modeling,
and each modeling method can be classified into linear and nonlinear modeling methods
in simulation modeling [124]. The classification is described below and summarized with
references depending on the modeling approach in Table 2.

• Nonlinear modeling: In general, nonlinear modeling of CPS models has been used for
simulation and analysis. The physics of propulsion system components are generally
described using thermo-fluid-dynamic and mechanical conservation equations. Each
component is usually not developed to its full complexity since the most accurate
model is not the target. The main input data to the model are propellant tank outlet
pressure and temperature, geometric and thermal properties, and valve settings. CPS
parameters are initially set using design points determined in preliminary design and
critical design. After that, they are upgraded and tuned through estimation through
generalized residual sum of squares using data obtained from actual tests.

• Linearized modeling: Linearized modeling is the most common modeling by lineariz-
ing a nonlinear thermodynamic model (mostly for design control). The approach
is linearized around the design points or previously computed equilibrium points.
Generally, after each component of a CPS is linearized based on the equilibrium points,
all linearized models are combined. However, sometimes parts of all components,
which are nonlinear equations that are hard to describe due to complexity or data
lack problems, are linearized and combined with other nonlinear forms to make
them simple.

• Linear identification: Some researchers have determined a mathematical model using
the data obtained from system-level simulations or actual tests rather than developing
a model based on thermodynamic equations. The approach mainly considers each
valve opening angle as an input and pressure, temperature, and turbopump speed as
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outputs. The approach requires preliminary information about the nonlinearity and
bandwidth of the system. The responses point to valve nonlinearity, which can be
isolated and removed to identify the main system. Through this work, the equations
by linear identification have the transfer-function structure between the jth input and
the ith output as:

Hij(s) = Ci(sI−A)−1Bj (5)

where A, B, and C are the standard state-space matrices and s is the Laplace variable.
To determine the transfer function H(s) coefficients, mostly the recursive maximum
likelihood method (RML) or least-square method (LS) are used by subtracting the
nominal values from the perturbed data after defining the order of the model.

• Nonlinear identification: There are several nonlinear identification approaches, in-
cluding the Volterra series model, block-structured model, neural network model,
NARMAX model, and state-space model [125]. However, in the five models, mostly
a CPS is modeled using an artificial neural network (ANN) approach, which is ad-
equate for real-time monitoring, diagnosis, and control. Using the ANN approach
to represent a CPS requires training with a database from actual tests to provide the
correct output determined by the user.

Table 2. Classification of the modeling approach.

Modeling Approach Types Refs. (Selected)

Nonlinear modeling
LPRE [16,34,39,40,53,57,60,61,67]
SPRM [77–79,84,87]
HPRM [96,98–100]

Linearized modeling
LPRE [55,126,127]
SPRM [128]
HPRM [97,129,130]

Linear identification
LPRE [131–133]
SPRM [134]
HPRM [105,111]

Neural network approach
LPRE [135,136]
SPRM [137,138]
HPRM [139,140]

3.2.2. Perspective of Pipe Modeling Method

In the transient state, especially the start-up process, the nonlinear modeling of the
CPS requires nonlinear mass flow (mostly water hammer phenomenon) and heat transfer
characteristics (if the CPS has a cooling system), so proper analysis and determining how
to model the pipe, which is affected by the nonlinear mass flow rate and heat transfer,
become more critical. Therefore, to develop dynamic simulation modeling for a CPS,
especially an LPRE, three hydrodynamic modeling methods have been used for modeling
the nonlinear mass flow in the pipeline: lumped model method, method of characteristics,
and volume-junction method (or called lumped parameter method, LPM). The classification
is summarized with references depending on the pipe modeling method in Table 3.

The lumped model method is only one dynamic equation for each component of the
CPS, so only one ordinary differential equation (ODE) is used for the dynamics of mass flow
rate in a pipe, considered a zero-dimensional model [34,60]. In this method, it is essential
to determine the time step for solving an ODE, which is smaller than the characteristic time
of the CPS component dynamics.

The method of characteristics is a technique for solving the following two partial
differential equations:

∂P
∂t

+
1
A

ρa2
v

∂Q
∂x

= 0 (6)
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1
A

∂Q
∂t

+
1
ρ

∂P
∂t

+ av sin θ +
1

A2
f

2D
Q|Q| = 0 (7)

where A, D, and f , are the area, diameter, and friction factor of the pipeline, respectively,
ρ is the density of the fluid, and av sin θ is the vehicle acceleration component along the
line axis.

The PDEs should be solved because the transient state fluid flow is unsteady in a
pipe of CPSs, especially in the start-up process [37,141]. However, since there is no general
solution for PDEs, the PDEs can be transformed by the method of characteristics, which
is an application of a lagrangian multiplier method using the two PDEs, to two sets of
two ordinary differential equations in a two-dimensional (pipeline and time axises) plane,
as shown in Figure 9. Using the technique, fluid properties can be obtained by pipeline
(x-axis) and time (t-axis) in the two-dimensional grid with two characteristic lines (Cp
and Cm).

Figure 9. Characteristics of the x-t plane [37].

Finally, the volume-junction method (or LPM) is similar to the node-link method
used in other flow network analysis codes, as shown in Figure 10 [29,39]. In this method,
the number of volumes (or lumps) and the location of each are significant. Examining
the system frequencies is required when determining the number of volumes (or lumps).
Furthermore, since the discretization of a system is often determined by the geometrical con-
straints of the system being simulated, fixing the system frequency range is considered [39].

Figure 10. Schematic of the volume-junction method [29].
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Table 3. The classification of the method.

Method Refs. (Selected)

Lumped model method [34,40,60,67]
Method of characteristics [37,141]

Volume-junction method (Lumped parameter method) [29,39,47,142]

3.2.3. Others

In addition to the ones mentioned above, there are other trends, the most representative
of which is the module approach. The security concerns make acquiring experimental data
and developing full simulation models difficult. However, once a CPS simulation program
based on modules is developed, it becomes easy for some research groups to develop
and upgrade new models simply by upgrading each component module. Therefore,
the module-based simulation approach has become a trend because of its usefulness,
so many countries and institutes have tried to create and use module-based simulation
programs, as summarized in Table 4 (mostly for LPRE). Then, by applying the program,
mainly developed focusing on LPREs, researchers can develop other CPSs, including
SPRMs and HPRMs [112,113]. The Ecosimpro and ESPSS of ESA, the representative
module program, can be organized in Table 5 and simulated as shown in Figure 11.

Table 4. The module-based simulation program of each country and institute.

Country Institute Simulation Toolbox Refs. (Selected)

U.S. NASA ROCETS [28]
Europe ESA EcosimPro + ESPSS [31,32]
China NUDT LRETMMSS [47]
China HUST Self-developed Toolbox (Modelica) [48]
China BUAA Self-developed Toolbox (MATLAB) [52]
Iran KNTU Self-developed Toolbox (MATLAB) [52]

Korea KAU Self-developed Toolbox (MATLAB) [61,62]

Table 5. The category of EcosimPro+ESPSS [143,144].

Main Category Subcategory Subsubcategory

Fluid Properties - Ideal gas, Simplified liquids, Real fluids

Fluid Flow 1D

AbstracJunction Jun_TMD, DeadEnd, Filter
Time dependent Boundaries VolPT_TMD, VolPx_TMD, VolTx_TMD
Cavities Chamber, Volume1, Volume2, Volume5

AbstacJunctionLoss
Juntion, ValveCheck, Valve,
ValvePressRegDown, VallvePressRegUp,
ValveCheck_Dynamic, VolPsTsVs_TMD

Sensor SensorJun, SensorPipe, SensorVol
Channel Pipe, Tube, Pipe_res, Pipe_Rect, Tube_Rect

Etc. WorkingFluid, VTee, WorkingFluuid,
HeatExchanger, Nozzle, ColdThruster

Tanks Propellent Tank
Tank_single, Tank_Sphere, Cylinder_ins,
Sphere_ins, Tank_CylDomes, Dome_ins,
Tank_Bladder, Tank_CylDomesSph

Combustion Chambers

Combustor ABS-Combustor_eq, ABS−Combustor_rate
Preburner PreBurnerCoat_eq, PreBurner_eq,

PreBurner_rate, reBurnerCoat_rate
Nozzle Nozzle, Nozzle_Ex, Nozzle_Ex2

CobustChamber_Nozzle

CombustChamberNozzle_eq,
CombustChambbeerNozzleCoat_eq,
CombustChamberNozzle_rate,
CombustChambberNozzleCoat_rate

Cooling Jacket CoolingJacket, CoolingJacket_simple,
CoolingJacket_tore

Injector -

Turbo Machinery
Compressor Compressor, Compressor_gen
Pump Pump, Pump_gen, Pump_vaccum
Turbine Turbine, Turbine_gen



Aerospace 2023, 10, 839 15 of 27

Figure 11. Interface and library components of EcosimPro and ESPSS [145].

4. Fundamental Mathematical Modeling Approach

As mentioned above, there are four major approaches to simulation modeling, and the
nonlinear modeling approach is a fundamental approach based on the laws of physics above
all else. The approach requires deriving dynamic equations that represent the dynamics of
CPSs in the form of differential and algebraic Equations (DAEs). In DAEs, the differential
equations are derived from seven governing equations, and algebraic equations are derived
from empirical equations or laws of thermal-fluid dynamics.

This section summarizes and organizes dynamic equations for a nonlinear modeling
approach. For this, we classify into three groups: governing equations (component dynam-
ics), algebraic equations or phenomenological equations (physical laws), and characteristics
equations (empirical equations or lookup tables from experiment data).

4.1. Governing Equations

A CPS consists of only a combustion chamber at least and a supply, propulsion,
and piping system at most. The dynamics of these systems can be expressed using several
dynamic equations composed of first-order ODEs, which can be derived from seven
governing Equations [34].

4.1.1. Rotational Dynamics

The rotational dynamics for a turbopump or electric pump in a CPS can be repre-
sented as:

Ip
d
dt

ω = τin − τout (8)

where Ip is the moment of inertia of the pump rotor, τin is the torque produced by the turbine
or electrical motor, τout is the torque absorbed by the pump, and ω is the angular velocity.

4.1.2. Mass Flow Rate

This equation is for a mass flow rate in a pipe by applying Newton’s second law. Since
the pipe has friction and resistance elements, the overall pressure drop occurs according
to the fluid density, speed, and pipe characteristics, so the dynamics can be expressed
as follows: (

L
A

)
d
dt

ṁ = Pin − Pout − K|ṁ|ṁ (9)
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where L, A, and K are the pipe length, cross-area of the pipe, and resistance coefficient,
respectively, and Pin, Pout, and ṁ are the inlet pressure, outlet pressure, and average mass
flow rate in the pipe, respectively.

4.1.3. Pressure Dynamics

The fluid pressure can change by mass flow rate difference or property changes.
The dynamics can be represented based on the fluid state.

For a liquid state:

κ(ρV)
d
dt

P = ∑ ṁin −∑ ṁout (10)

κ =
1
ρ

dρ

dP
(11)

Furthermore, in the case of the gas state, we can assume the fluid is an ideal gas, then:

V
RT

d
dt

P = ∑ ṁin −∑ ṁout (12)

κρ =
dρ

dP
=

1
RT

(13)

where P, κ, ρ, V, R, and T are the pressure, fluid compressibility, density, volume, gas
constant, and temperature, respectively, and ṁin and ṁout are the inlet and outlet mass flow
rates, respectively.

4.1.4. Density Equation

Some fluids are more sensitive to density changes than pressure changes, especially
when dealing with heat exchangers using cryogenic propellants. This type of dynamics
is fundamentally the same as fluid capacitance dynamics, considering that the volume
is invariant:

V
d
dt

ρ = ∑ ṁin −∑ ṁout (14)

4.1.5. Energy Balance in Heat Exchangers

An essential part of CPRS (primarily for LPREs) dynamics is dealing with the change
in the properties of fluids used in the heat transfer process in a heat exchanger, especially
with cryogenic propellants. Let us focus on the coolant fluid inside the space between the
walls. Since the coolant does not perform any mechanical work, a simple heat flow balance
for the fluid between the wall gives:

ρV
d
dt

u = Q̇w,in − Q̇w,out + (ṁh)in − (ṁh)out (15)

where Q̇w, u, and h are the heat flow rate between the walls and the coolant fluid, internal
energy, and enthalpy of the fluid, respectively.

4.1.6. Heat Transfer Equations

In a heat exchanger, the fluid temperature changes by the metal walls of the system.
Assuming that the volume change is negligible to make the network to zero according to
the first law of thermodynamics, the average transient hot wall temperature as:

d
dt

Tw =
1

mcv

(
Q̇c,in − Q̇w,in

)
(16)

where m is the mass of the wall, cv is the specific heat of the wall material, and Q̇c is the
heat flow rate between the hot fluid and the walls.
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4.1.7. Time Delay Equation

Some variables used in the dynamic model for a CPS do not have an instantaneous
physical response to changes in the state of other variables, such as a combustion process.
This delay can be expressed using a first-order time lag as:

d
dt

ṁ(t) =
1
ε
(ṁ(t + ε)− ṁ(t)) (17)

where ε is the amount of the time delay.

4.2. Algebraic Equations

In the dynamics of a CPS, algebraic Equations (AEs), also called phenomenological
equations, are needed to link each variable in ODEs based on thermodynamic theory
and equilibrium relationships. For this, we summarize and organize the representative
algebraic equations in this subsection.

4.2.1. The Combustion Gas Mass Flow Rate

The mass flow rate of combustion gas (ṁc) through the nozzle throat area can be
expressed as:

ṁc = CdPc An

√√√√ kc

RcTc

(
2

kc + 1

) kc+1
kc−1

(18)

where Cd, An, Pc, kc, Rc, and Tc are the discharge coefficient, nozzle throat area, pressure,
heat specific ratio, gas constant, and temperature of the combustion gas, respectively.

4.2.2. Injector Pressure Decremental Equation

An injector pressure decrement (∆Pi) can be described as follows by assuming that
there is no flow loss and no change with time (the time delay phenomenon can be considered
in the time delay equation):

∆Pi = −Kiṁ2
i (19)

where Ki and ṁi are injector resistance coefficient and mass flow rate, respectively.

4.2.3. The Power or Torque of the Pump

The performance of a pump can be described in terms of the power (Wp) or torque
(τp) consumed as:

Wp =
ṁp∆Pp

ηρ
or τp =

ṁp∆Pp

ωηρ
(20)

where ṁp, ∆Pp, and ηp are mass flow rate, pressure increment in the pump, and pump
efficiency, respectively.

4.2.4. The Power or Torque of the Turbine and Motor

A gas turbine is widely used to generate the power or torque for the pump, especially
large-thrust LPREs. Unlike the pump, the power (Wt) or torque (τt) of a turbine can be
obtained as follows in proportion to the specific heat ratio and efficiency of combustion
gas, inlet flow rate, and inlet/outlet pressure ratio:

Wt = ṁtηt
kt

kt − 1
RtTt

(
1− Pti

Pte

) kt−1
kt

or τt =
1
ω

ṁtηt
kt

kt − 1
RtTt

(
1− Pti

Pte

) kt−1
kt

(21)

where ṁt, ηt, Pti, and Pte are the mass flow rate in the turbine, turbine efficiency, turbine
inlet pressure, and turbine outlet pressure, respectively.
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In the case of using an electrical motor to generate power or torque, especially low-
thrust LPREs or large-thrust HPRMs, the motor torque (τm) can be described as:

τm = imCmt (22)

where Cmt is the torque coefficient of the motor and im is the current of the motor, which is
a state variable of the motor dynamics and can be controlled by the voltage [146].

4.3. Characteristics Equations

In the simulation modeling process, some dynamics are difficult to express or obtain
dynamic equations for due to the complexity of dynamics or the dynamics that have not
yet been accurately identified theoretically. For this, empirical equations or lookup tables
from experiment data are needed.

4.3.1. Pump Pressure Incremental Equation

For a pump pressure increment (∆Pp), characteristic curves are often used to define
the pump performance over a range of volumetric flow rates and rotational speeds [147].
These curves can be analytically defined as:

∆Pp = Appω2 + Bppωṁp + Cppṁ2
p (23)

where App, Bpp, and Cpp are coefficients of the pump, which can be determined by the
characteristic curves, and ω and ṁp are pump rotational velocity and the mass flow rate in
the pump, respectively.

4.3.2. Propellant State Equation

Since there are many types of propellants and a CPS operates in a wide range of
temperature and pressure, data on various propellant properties in a wide temperature
and pressure range are also required to design and analyze the performance of a CPS.
The properties have been mostly expressed in an empirical equation, such as burn rate for
a solid propellant or surrogate mixture model for liquid propellant from previous studies,
or a dataset or lookup table using data from Chemical Equilibrium with Application (CEA)
or the National Institute of Standards and Technology (NIST) [148–157].

A general empirical equation of the burn rate of solid propellants used in SPRMs or
HPRMs [19] can be represented as:

d
dt

rb = apPn
c (24)

where ap and n are an empirical constant and burning rate exponent, respectively.
Furthermore, as the solid propellant burns, the volume of combustion chamber space

increases, so by assuming the volume change is related only to the solid propellant surface
movement due to the propellant burning, it can be expressed as:

d
dt

Vc = rb Ab (25)

where Ab is the burning surface area of the solid propellant.
In the combustion process, the properties of the combustion gases change rapidly

and depend on many factors, making it difficult to determine their properties. To simplify
this, many researchers have created a dataset using data obtained from self-experiments
or CEA or NIST, and used the dataset to develop input/output functions such as lookup
tables. Based on the empirical experience, the function of the combustion gas properties
generally can be represented by the function of the oxidizer-to-fuel-mixture ratio and
combustion pressure:
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Tc = fc(OFc, Pc) (26)

Rc = fc(OFc, Pc) (27)

kc = fc(OFc, Pc) (28)

4.4. Mathematical Modeling of Chemical Propulsion Systems

Various simulation modelings of CPSs have been developed by the nonlinear approach
using these dynamic equations. In this section, we summarize the required dynamic
equations depending on a CPS and organize them in Table 6.

SPRMs have a simple structure among three types of CPSs, as mentioned in Ref. [19],
so the dynamic simulation of the solid propulsion system is also simple. In the seven
governing equations, the simulation can be represented only using one governing equation:
the pressure equation for an SPRM [72]. However, to represent the simulation performance
more accurately, considering the volume changes in the combustion chamber of an SPRM
is also needed [77]. Furthermore, if a simulation model is more precise than required, some
researchers also consider the density of combustion gas. The density change equation is not
essential, but for a controllable thrust solid propulsion system using a special nozzle like a
pintle nozzle, the combustion gas density dynamics can be an influential element because
the moving pintle changes the nozzle throat area and it directly affects the combustion gas
density [78,82,84]. Therefore, an SPRM simulation program can be developed using two or
three governing equations.

LPREs have the most complex structure among the three types of CPSs, so the dynamic
simulation of an LPRE is also complicated. In the seven governing equations, the simulation
can be represented using all or four equations depending on the fuel type: cryogenic or not.
In an LPRE, since the cooling system (or heat exchanger) uses fuel before injecting it into
the combustion chamber, the heat from the combustion gas changes the fuel state, such as
gasified or two-phase flow. For this reason, if the fuel is a cryogenic propellant, the fuel
state changes intensify, so the nonlinearity of the pressure drop by the heat becomes more
extreme than in other types of fuels [29,34,53,158,159]. On the other hand, if the fuel is not
cryogenic, the nonlinearity of the pressure drop by the heat is negligible enough to represent
using the function of mass flow rate with a constant coefficient, so the governing equations
related to the heat exchangers can become algebraic equations and the differential type
equations are required no more. In that case, only four governing Equations (Rotational
dynamics, Mass flow rate, Pressure dynamics, and Time delay dynamics) are required to
represent the liquid propulsion system simulation system [39,40,60].

HPRMs are the combined characteristics of a liquid and solid propulsion system,
so the complexity of the dynamic simulation is also between SPRMs and LPREs. In the
seven governing equations, the simulation can be represented using three or four equations
depending on the size of an HPRM. For the small thrust size of an HPRM, a gas-pressurized
system is enough to feed the oxidizer or fuel to the combustion chamber, which is filled
with solid fuel or oxidizer [100,106,109,110]. However, in the case of large thrust and deep
throttling, there is a limit to using the gas pressure method, so a pump is required [160,161].
For this reason, the three or four governing equations are needed depending on the size of
the system. Furthermore, since the hybrid propulsion system also has the characteristics of
the solid propulsion system, the equation related to the volume changes in the combustion
chamber is also needed.
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Table 6. The classification of the modeling.

Model of CPS Characteristics (Perspective of ODEs)

SPRM
• Pressure dynamics
• Volume change dynamics (if more accurate)
• Density equation (if more accurate)

HPRM

• Pressure dynamics
• Mass flow rate
• Time delay dynamics
• Rotational dynamics (depending on thrust)
• Volume change dynamics (if more accurate)

LPRE

• Rotational dynamics
• Mass flow rate
• Pressure dynamics
• Time delay dynamics
• Density equation (depending on fuel types)
• Energy balance in heat exchanger (depending on fuel types)
• Heat transfer equation (depending on fuel types)

5. Conclusions

This study included a comprehensive review of the mathematical modeling of chemical
propulsion systems (CPSs) and summarized the simulation modeling approaches and
fundamental mathematical dynamic equations categorized based on types of equations and
CPSs, respectively. The simulation modeling approach has changed from a total system to
each component of a CPS via the modularization method. In turn, the main development
body has changed from a single developer monopolizing a whole CPS experimental data
to a collaboration of many different institutes specialized in each component to develop
and upgrade a module focusing on the component and organize a library-type integrated
program combining each module. These days, as a new space age has started, an accurate
and reliable simulation modeling approach is urgently needed to develop a low-cost
commercialization space launch vehicle (SLV) and a reliable maintenance process for a
reusable launch vehicle (RLV). Furthermore, supposing a simulation model that can be
carried onboard is developed, it can be used for predicting the potential failures using the
actual flight data and monitoring the condition of the vehicle in real-time. Based on the
advantages of accurate and reliable system-level simulation modeling of a CPS, the control
system design for a SLV or RLV can be completed very well, and it will guarantee the
mission capability. Therefore, the development of a CPS simulation modeling will generate
enormous profits, which is why a simulation system of a CPS.
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Abbreviations
The following abbreviations are used in this manuscript:

A Cross-area of pipe
Ab Burning surface area of solid propellant
An Nozzle throat area
App, Bpp, Cpp Coefficients of pump
Cd Discharge coefficient
Cmt Torque coefficient of motor
D Diameter of pipe
Ip Moment of inertia of pump rotor
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K Resistance coefficient of pipe
Ki Injector resistance coefficient
Km Resistance coefficient
Kt Coefficient of state change
L Length of pipe
OFc Oxidizer to fuel mixture ratio
P Pressure
Pc Combustion chamber pressure
Pin Inlet pressure
Pout Outlet pressure
Pte Turbine outlet pressure
Pti Turbine inlet pressure
∆Pi Injector pressure decrement
∆Pp Pump pressure increment
Q Flow rate
Q̇w Heat flow rate between the walls and the coolant fluid
Q̇c Heat flow rate between the hot fluid and the wall
R Gas constant
Rc Gas constant of combustion gas
T Temperature
Tc Temperature of combustion gas
Tw Hot wall temperature
V Volume
Vc Volume of combustion chamber
Wp Power of pump
Wt Power of turbine
V̄ Pipe volume ratio of total and filled
a Speed of sound
ap Empirical constant
av Acceleration of vehicle
cv Specific heat of the wall material
f Friction factor of pipeline
h Enthalpy of fluid
im Current of motor
kc Heat specific ratio of combustion gas
m Mass of the wall
ṁ Mass flow rate in pipe
ṁc Combustion gas mass flow rate
ṁi Injector mass flow rate
ṁin Inlet mass flow rate
ṁout Outlet mass flow rate
ṁp Mass flow rate in pump
ṁt Mass flow rate in turbine
n Burning rate exponent
rb Burning rate
tignite Ignition time
u Internal energy of fluid
ε Amount of the time delay
ηp Pump efficiency
ηt Turbine efficiency
κ Fluid compressibility
ρ Density of fluid
τin Torque produced by turbine or motor
τm Torque of motor
τout Torque absorbed by pump
τp Torque of pump
τt Torque of turbine
ω Angular velocity of pump
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