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Abstract: Pilot factor is worth considering when analyzing the causes of civil aviation accidents.
This study introduces a data-driven Bayesian network (BN) approach to investigating the joint
causal effects of pilot and other factors on civil aviation safety. A total number of 163 individual
pilot-related accidents in the National Transportation Safety Board (NTSB) aviation accident database
from 2008 to 2020 are analyzed, focusing on eliciting the causal effects of various potential risk factors,
including pilot factors, on civil aviation accidents. The modeling of the interdependency among
the risk influencing factors (RIFs) and their causal contributory effect on the accident outcome is
structured by a tree augmented network (TAN) and validated by sensitivity analysis. The novelty
of this study is to incorporate pilot factors derived from the civil aviation accident database into
risk analysis, combined with other external factors. The results indicate that weather conditions and
flight phases are more correlated with casualty types of civil aviation accidents than pilot action and
decision, and three other pilot factors only contribute to fatal injury in civil aviation accidents.

Keywords: civil aviation accidents; risk analysis; pilot factors; data-driven Bayesian network;
casualty types

1. Introduction

The Annual Statistical Report on Aviation Safety in 2019 released by the International
Civil Aviation Organization (ICAO) shows that with the rapid development of air trans-
portation, civil aviation accidents show an increasing trend [1]. Aviation accidents cause
an enormous loss of lives and massive monetary costs worldwide. In 2002–2011 alone,
there were a total of 250 worldwide fatal accidents, which resulted in 7148 fatalities [2].
Aviation administrations conduct accident investigations to learn how the systems fail and
why accidents happen, which may lead to the review and revision of related regulations,
standards, and management. In order to improve the safety of air transportation, the Na-
tional Institute of Aerospace and National Aeronautics and Space Administration (NASA)
analyzed historical accident data to develop a high-level airline organizational hierarchy
for tracing and identifying the deficiency propagation [3].

The occurrence of a civil aviation accident is a multi-stage dynamic system, and it may
have more than one causal factor (such as aircraft manufacturing, aircraft maintenance,
air traffic control, weather, and human factors). Although modern aircrafts are mostly
equipped with advanced technologies, human factors present a major contribution to
accidents [4,5]. Sant’Anna et al. found that over 50% of aviation accidents were caused by
human errors at a node in the causal chain, especially human factors related to pilots [6].
Hence, this research focuses specifically on the contribution of pilot-related human factors
to civil aviation risk.
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Pilot factors generally include the physical conditions, experience, psychological
conditions, decision-making, and task-handling performance of pilots [7]. To analyze
pilot factors, the aviation accident database is used as one of the most valuable sources
to obtain the primary data, including the Flight Safety Foundation database, Federal
Aviation Administration (FAA) database, Aviation Safety Network database and National
Transportation Safety Board (NTSB) aviation accident database. McKay and Groff examined
trends in the prevalence of over-the-counter, prescription, and illicit drugs identified in
toxicology tests of fatally injured pilots between 1990 and 2012 using matched data from
FAA’s Civil Aerospace Medical Institute toxicology database and NTSB aviation accident
database [8]. For analyzing civil aviation accidents, 163 commercial airliner accident reports
extracted from the NTSB aviation accident database during 2008–2020 were reviewed in
this paper. According to such reports, pilot factors are derived.

Quantitative risk analysis is a common approach to identifying risk factors and de-
veloping effective risk mitigation countermeasures, including fault tree analysis (FTA),
event tree analysis (ETA), logistic regression (LR), and the Bayesian network (BN). Com-
pared with FTA and ETA, BN has a significant advantage that allows for propagating
such information in both forward propagation and backward inference when additional
information on some random variables is available [9]. Additionally, Zhou et al. found
that the LR model is more concentrated on statically qualitative analysis, and quantitative
analysis is not sufficient [10]. For comparing the effects of LR and BN in small sample data,
Leite et al. analyzed the data of 119 patients to realize the auxiliary diagnosis of obstructive
sleep apnea [11]. The results showed that the specificity of BN was higher than that of
LR. In addition, BN can represent the dependencies between the indicators and accident
consequences, revealing that the accident consequences were the most sensitive to the
position where the accidents occurred. Thus, in the domain of aviation, BN-based causal
models have been extensively applied for pilot risk management and enhancing aviation
safety. For example, Zhang and Mahadevan constructed a Bayesian network to analyze the
historical passenger airline accidents reported in the NTSB aviation accident database and
capture the causal relationships embedded in the sequences of these accidents [12].

According to previous studies, expert knowledge is still an important data source for
aviation accident modeling [13]. Because BN requires a relatively low number of parameters
and a small-size conditional probability table, it can utilize expert knowledge and/or data-
driven methods to achieve quantitative aviation risk analysis. However, compared to the
studies using expert knowledge in BN construction, a data-driven BN in aviation risk
analysis that is less subjective has better robustness and certainty [14]. For the data-driven
BN approach, there are several variants, such as naive Bayesian networks (NBN), and
tree augmented naive Bayes networks (TAN-BN). Among them, TAN-BN constructs a
quantitative BN representing RIFs’ interactive dependencies, which helps generate insights
on critical pilot factors contributing to different casualty types of accidents. Li et al. pointed
out that TAN-BN learning not only maintains the robustness and computational complexity
of NBN learning but also provides better accuracy [15]. Li and Cheng used the I-880
field date to develop NBN and TAN-BN for traffic incident duration prediction [16]. By
evaluating the results of NBN and TAN-BN under different sample sizes, they found that
the prediction accuracy of TAN-BN was higher when the number of training samples
was between 70 and 150. TAN-BN is proposed for identifying the interactions between
the attribute variables by using a tree structure [17]. To date, few studies have used a
data-driven TAN-BN to analyze pilot factors in civil aviation accidents.

This study aims at investigating how pilot factors interact with non-pilot factors,
how they jointly affect air transportation risk, and how different risk factors generate an
impact on different casualty types of pilot-related civil aviation accidents in an individual
or combined manner. Therefore, this study used the aviation accident database from
NTSB between 2008 and 2020 to conduct a data-driven TAN Bayesian Network to generate
the structure of risk influencing factors (RIFs), which will provide new insights on the
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differentiation among critical pilot factors contributing to different “casualty types” of
aviation accidents.

2. Methodology
2.1. NTSB Aviation Accident Database

NTSB (https://www.ntsb.gov/, accessed on 1 March 2022) is an independent agency
tasked with the mission of increasing transportation system safety by investigating every
accident in civil aviation, as well as in other modes of transportation (e.g., highway, railroad,
marine), in the United States. In investigating each accident, NTSB determines the probable
cause of the accident and issues safety recommendations with the aim of preventing future
accidents. Typically, when an investigation is completed, a final description of the accident
and its probable cause are made available to the public in the NTSB website. Over the past
few decades, reports on civil aviation accidents and selected incidents within the United
States have been stored in Microsoft Access format to cover accident information from 1962
to present.

Since this study is interested in the safety of civil commercial flights, all the accidents
with aircraft falling under the category of Federal Aviation Regulations (FAR) Part 121
are selected. Air carriers authorized to operate under a Part 121 certificate (https://www.
faa.gov/, accessed on 1 March 2022) are generally large, U.S.-based airlines, regional air
carriers, and all cargo operators. Moreover, due to mainly considering pilot factors, this
study excludes the accident data not related to or not involving pilots. For example, the
flight attendant who tripped over a passenger’s leg without turbulence and the parking
aircraft that was hit by the tractor driver. After the filtering of accident data is completed, it
is carefully checked by civil aviation domain experts to make sure that all accidents selected
are proper. Thus, this study selects a total number of 163 individual pilot-related accidents
under Part 121 in the NTSB aviation accident database from January 2008 to March 2020
for pilot factors research.

2.2. RIFs Identification

The NTSB aviation accident database shows important individual factors regarding the
propagation of the effects of initiating events in four tables: “injury”, “events_sequence”,
“aircraft”, and “findings”. These factors were defined by experts of NSTB. The Table
“injury” shows the casualties of each accident, including the injury level and the number
of injured, and the injury level includes no injury (NONE), minor injury (MINR), serious
injury (SERS), and fatal injury (FATL). The Table “events_sequence” shows the flight phase
of each accident, which includes standing, pushback/towing, taxi, takeoff, climb, cruise,
descent, approach, and landing. The Table “aircraft” shows the specific information of
each flight involved in the accident, including certified max gross weight of aircraft, total
number of seats on the aircraft, number of engines, airframe time, flight type, and carrying
category of flight, etc. The Table “findings” is a summary of causes for each accident
by NTSB, which can directly show the cause factors for each accident, mainly including
aircraft issue, personnel issue, environmental issue, and organizational issue. According to
the Table “injury”, four injury levels can represent four different “casualty types”, seen in
Table 1. It is worth mentioning that in the NTSB aviation accident database, if the event
did not cause anyone injury but might cause aircraft or equipment damage, NTSB still
records the event as an accident in the database. Compared with the damage to aircraft or
equipment, the severity of casualties is higher, so this study takes the degree of casualties
as the evaluation index of civil aviation accident consequences.

Pilot factors in civil aviation accidents are usually combined with other non-pilot
factors. From this perspective, it is beneficial to combine pilot factors with other non-pilot
RIFs to investigate their combined effect on aviation safety. Referring to the previous factors
analysis studies [18], 19 RIFs are extracted from Table “events_sequence”, “aircraft” and
“findings”, seen in Table 2. Specifically, RIF No. 1 is obtained from Table “events_sequence”,
and RIF No. 2, 3, 4, 11, 12, and 13 are obtained from Table “aircraft”. Because there are six

https://www.ntsb.gov/
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subcategories of personnel issue in the Table “findings”, namely, physical, psychological,
experience/knowledge, action/decision, task performance, and miscellaneous, RIF No. 5,
8, 9, 10, 15 and 19 are obtained from personnel issue in the Table “findings”. Additionally,
RIF No. 6 and 16 are obtained from aircraft issue in the Table “findings”, RIF No. 7 and 17
are obtained from organizational issue in the Table “findings”, and RIF No. 14 and 18 are
obtained from environmental issue in the Table “findings”. It is worth mentioning that as
the risk caused by maintenance personnel is directly related to maintenance quality, RIF
No. 16 includes human errors of maintenance personnel. Moreover, RIF No. 6 covers the
risks of design, manufacturing, and production by aircraft manufacturers as it may affect
operation of equipment.

Table 1. Casualty types of civil aviation accidents.

No. Casualty Type Notation Description

1 NONE C1 No one was injured in the accident.
2 MINR C2 At least one person minorly injured.
3 SERS C3 At least one person is seriously injured.
4 FATL C4 At least one person is fatally injured.

Table 2. RIFs defined in civil aviation accidents.

No. RIFs Notation Description of States Corresponding Values

1 Flight Phase R1
Standing, pushback/towing, taxi, takeoff, climb, cruise,

descent, approach, landing. 1, 2, 3, 4, 5, 6, 7, 8, 9

2 Certified Max Gross
Weight (lb) R2 ≤100,000, 100,000 to 200,000, >200,000. 1, 2, 3

3 Airframe Hours (hours) R3 ≤20,000, 20,000 to 50,000, >50,000. 1, 2, 3

4 Number of Engines
(engines) R4 2, 3, 4. 2, 3, 4

5 Pilot Physical Condition R5

Good/poor physical condition of pilots during the flight.
(Including physical characteristic, sensory

ability/limitation, health/fitness, alertness/fatigue, and
impairment/incapacitation)

1 (good), 2 (bad)

6 Equipment Condition R6

Good/poor operation of equipment during the flight.
(Including aircraft systems, handling/service, power

plant, propeller/rotor, and structures)
1 (good), 2(bad)

7 Management R7
Good/bad management system. (Including resources,

scheduling, policy/procedure, and culture) 1(good), 2(bad)

8 Physical Environment R8

Good/poor physical environment during the flight.
(Including terrain, runway/land/takeoff/taxi surface,

and object/animal/substance)
1 (good), 2(bad)

9 Pilot Experience and Skills R9
Good/poor experience and skills of pilots during the

flight. (Including knowledge, training and qualifications) 1 (good), 2(bad)

10 Pilot Psychological
Condition R10

Good/poor psychological condition of pilots during the
flight. (Including cognitive limitation,

attention/monitoring, perception/orientation/illusion,
personality/attitude, and mental/emotional state)

1 (good), 2(bad)

11 Flight Type R11 Domestic flight, international flight. 1, 2

12 Number of Seats on
Aircraft (for passengers) R12 ≤100, 100 to 200, >200. 1, 2, 3

13 Carrying Category R13 Carrying passengers, carrying cargo. 1, 2

14 Operating Condition R14

Good/poor operating condition during the flight.
(Including approach aid coverage/avail, enroute navaid

coverage/avail, communication system, airport
facilities/design, radar services/coverage, air

traffic/operating procedure, and meteorological services)

1 (good), 2 (bad)

15 Pilot Task Performance R15

Good/poor task performance of pilots during the flight.
(Including use of equipment/info, communication,

record-keeping, inspection, planning/preparation, and
workload management)

1 (good), 2 (bad)

16 Maintenance Quality R16 Good/poor maintenance quality during the flight. 1 (good), 2 (bad)

17 Supervision R17

Effective or ineffective supervision and supports.
(Including safety programs, documentation/record

keeping, enforcement, oversight, and design)
1 (good), 2 (bad)
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Table 2. Cont.

No. RIFs Notation Description of States Corresponding Values

18 Weather Condition R18

Good/poor weather condition during the flight.
(Including convective weather, turbulence,

ceiling/visibility/precipitation, wind,
temp/humidity/pressure, and light condition)

1 (good), 2 (bad)

19 Pilot Action and Decision R19
Good/poor action and decision of pilots during the flight.

(Including action and info processing/decision) 1 (good), 2 (bad)

Most of the definitions of the variables’ states can be extracted from the NTSB aviation
accident database. For example, “flight phase”, “flight type”, and “carrying category” are
classified into different states according to the classification of NTSB, which are widely
accepted in the aviation industry. The other variables are graded according to the litera-
ture [19], including “Certified Max Gross Weight”, “Airframe Hours”, and “Number of
Seats on Aircraft”.

2.3. TAN-BN Structure Learning

Using the RIFs, there are two approaches for the BN structure learning [20]. One relies
on expert knowledge, which makes use of subjective causal relationships to build a BN
structure. Another approach is a data-driven method to reveal the interactive dependencies
between RIFs, which relies on the data correlation and learning algorithm in the BN model.
The latter approach can greatly reduce the subjective bias and increase the soundness of
the model, which is, therefore, adopted by this study [21]. Based on the RIFs identified in
Section 2.2, the quantitative BN to represent the interactive dependencies can be constructed
through the TAN learning.

Learning a TAN structure is an optimization problem. A1, A2 . . . , An are the attribute
variables (the RIFs in Section 2.2 such as “flight phase”, “certified max gross weight”,
“airframe hours”, etc.), and C is the class variable (target variable “casualty types”) in
the risk analysis of civil aviation accidents. ∏C represents the parent variables of C. B
is defined as a TAN model if ∏C = ∅, and there is a function π that defines a tree over
A1, A2 . . . , An such that ∏Ai

=
{

C, Aπ(i)

}
if π(i) > 0, and ∏Ai

= {C} if π(i) = 0. The
optimization problem consists of finding a tree defining function π over A1, A2 . . . , An
such that the log likelihood is maximized, and the TAN model under this function is used
as the structure of the target BN model. One difference between a traditional BN model
and the TAN model lies in class variables. Class variables in the BN model always have at
least one parent node. However, since Bayesian inference will be used on the results, it is
acceptable for links to go in either direction to fit the result reflecting the reality. In other
words, the directions of links in the TAN model can be changed appropriately to fit the
demand of this study on aviation safety.

Solving the above optimization problem follows the general procedure proposed by
Chow and Liu, who used conditional mutual information (CMI) between attributes [22].
The function can be defined as Equation (1).

IP
(

Ai, Aj|C
)
= ∑aii ,aji ,ci

P
(
aii, aji, ci

)
log

P
(
aii, aji|ci

)
P(aii|ci )P

(
aji|ci

) (1)

where IP represents the CMI, aii is the ith state of the RIF Ai, aji is the ith state of the RIF
Aj, ci is the ith state of the class variable Ci. The optimization problem, i.e., learning a
TAN structure, is to find a tree defining function π over A1, A2 . . . , An such that the log
likelihood is maximized.

The construct-TAN procedure for risk analysis of civil aviation accidents consists of
five main steps:

(a) Compute IP
(

Ai, Aj|C
)

between each pair of RIFs in aviation safety, i 6= j.
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(b) Build a complete undirected graph in which the vertices are RIFs A1, A2 . . . , An.
Annotate the weight of an edge connecting A1 to An by IP

(
Ai, Aj|C

)
.

(c) Build a maximum weighted spanning tree that is a connected subgraph containing no
cycles and a tree that has a maximum sum of IP

(
Ai, Aj|C

)
.

(d) Transform the resulting undirected tree to a directed one by choosing a root variable
from RIFs and setting the direction of all edges to be outward from it.

(e) Construct a TAN model by adding a vertex labeled by the class variable C and adding
an arc from C to each Ai.

The Netica software package (Version 5.0, Norsys, http://www.norsys.com, accessed
on 1 March 2022) is applied to assist the calculation, and it has a “learning network”
function, including the Bayesian network learning process and inferential analysis. Based
on the TAN model, the parameter learning of conditional probability tables (CPTs) from
the cases is conducted by Netica Software using the counting-learning algorithm. Once
the CPTs are constructed and obtained, the posterior probabilities of each variable can
be calculated. Peng et al. utilized Netica software to realize the structure learning of
the Bayesian network [23]. Hence, this study utilizes Netica software to develop the
TAN-BN model.

2.4. Sensitivity Analysis
2.4.1. Mutual Information (MI)

The MI represents the dependence between two variables in the probability theory [24].
Derived from the entropy theory, MI is described as an indicator showing the uncertainty
of the dataset and interpreted as entropy reduction. The higher the entropy, the more
uncertain one is about a random variable. MI explains the strength of the relationship
between the RIF and “casualty type”. High MI indicates close connection; low MI indicates
weak connection; zero MI indicates two variables are independent.

One objective of this study is to identify the relationship between the relevant RIFs
and a particular “casualty type”. “Casualty type” is first determined as the fixed variable in
MI. Accounting for the diversity of data samples, this study utilizes the method proposed
by Mesner and Shalizi on the GitHub code repository to estimate MI [25]. In this way,
calculating the value of MI can eliminate the RIFs that are relatively less relevant to the
“casualty type”. Then, the remaining RIFs are extracted as significant variables with regards
to a selected casualty type in the model.

2.4.2. True Risk Influence (TRI)

In addition to applying the MI measure to determine the degree of relevance of
individual RIFs, another way of determining the effect of individual RIFs on casualty is
by conducting a sensitivity analysis that can produce a measure of relative importance
called truce risk influence (TRI) [26]. Taking a certain casualty type as an example, e.g., C1
(no injury), first, this method increases the probability of the state producing the highest
influence on the C1 to 100% for obtaining the high risk inference (HRI) of C1. Next, it
increases the probability of the state generating the lowest influence on the C1 to 100% for
obtaining the low risk inference (LRI) of C1. The TRI is the average value of HRI and LRI.
The same analysis procedure can be applied to other casualty types, such as C2, C3, and C4,
to obtain the corresponding TRI.

Therefore, the sensitivity analysis calculates the TRI value of each given factor in
relation to different casualty types, representing each RIF’s influence on specific casualty
types. In this way, the average TRI value of a given factor on all casualty types represents
the overall effect of the factor on the casualty. The higher a TRI value is, the higher its
corresponding RIF’s effect on “casualty type”.

2.5. Model Validation

For the model validation, the following two axioms are assumed to be satisfied [27,28]:

http://www.norsys.com
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Axiom 1: A slight increase or decrease in the prior probability of each RIF should
contribute to the corresponding increase or decrease in the posterior probability of the
target node (such as casualty type).

Axiom 2: The total influence of the integration of the probability variations of parame-
ters x should be no smaller than the one from the set of y(y ∈ x) RIFs.

For validating the model, it is examined by testing the combined effect of multiple
RIFs on the casualty types. Considering different states of the parent nodes, this study
calculates the changed value of each state [29]. First, in all states of a certain node, the
value of the state generating the highest change value of a certain state in “casualty type”
is increased by 10%, while the value of the state generating the lowest change value of that
state in “casualty type” is decreased by 10%. Then, this method is applied to the next RIF,
and the cumulative change value of the update is obtained. The update process continues
until all RIFs are included. Furthermore, the same update process is applied to other states
in “casualty type”, respectively, until all states of “casualty type” are included.

In addition, the k-fold cross-validation was utilized to avoid the overfitting of the
model [30]. Therefore, we perform k-fold cross-validation to obtain the mean error rate
of prediction over the k-folds, where the calibration data set is randomly divided into
folds or partitions without replacement to create separate independent training and testing
data sets. Once the data set is partitioned into k-folds, we reserve one-fold for testing or
validation and use the remaining folds to train the TAN-BN. We conduct a 3-fold and a
5-fold cross-validation routine, and the prediction variable is “casualty types”.

2.6. Identification of Most Probable Explanation to an Accident

BN modeling can also explain the most probable scenario with reference to a particular
casualty type. Providing a plausible explanation for the observed results is called the
most probable explanation (MPE), which is a special case of the maximum a-posteriori
probability [31]. In cases where the results of regular belief updating are questionable,
the MPE can be used to identify the states of RIFs to provide a scenario for which the
beliefs are upheld. It provides a completely specified scenario that is easier to understand.
Thus, this study obtains insights by putting the BN in MPE mode, entering the evidence,
and observing the most probable configuration for the investigated civil aviation accident
casualty type.

3. Results
3.1. Description of Casualty Types

In Section 2.2, 19 RIFs are defined as the variables in Table 2 for the BN construction. In
the quantitative analysis of BN modeling, the casualty type is defined as a dependent vari-
able, classified into NONE, MINR, SERS, and FATL, as presented in Table 1. These casualty
types are defined with respect to the classification of NTSB aviation accident database.

3.2. TAN-BN Modeling

For generating the BN model, 19 RIFs are tested for their relationships with the
dependent variable (i.e., casualty type). With the use of the Netica software package, the
structure of TAN-BN can be learned from the accident data, as shown in Figure 1. Each box
represents a node, and the casualty type is the only target node in this structure. According
to steps mentioned in Section 2.3, a maximum weighted spanning undirected tree is built
based on values of CMI between 19 RIFs. Next, the resulting undirected tree is transformed
to a directed one by choosing “flight phase” as a root variable and setting the direction of
all edges to be outward from it. Then, the TAN model is constructed by adding a directed
arc from target node to each RIF. After the BN structure is trained by the data, it is carefully
checked by civil aviation domain experts to ensure all the links between the nodes are
meaningful. In this study, no changes are made in the fine-tuning process since all the
interrelationships suggested by the data make intuitive sense after they were reviewed by
the domain experts. In the light of the results of TAN shown in Figure 1, it is clear that
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NONE and SERS are among the most frequent casualty types, accounting for 58.1% and
32.3% of the total, respectively.
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Figure 1. Structure and results of the proposed TAN-BN model.

3.3. Sensitivity Analysis
3.3.1. Effects of RIFs Using MI

Table 3 gives the MI between “casualty type” and RIFs, which can be used to determine
the degree of influence of individual RIFs. When “casualty type” is the parent node,
“weather condition” has the largest effect on the casualty type with the corresponding MI
value of 0.3434, while “flight type” has the smallest effect with the corresponding MI value
of 0.0032. Moreover, it can be seen that many MI values are less than 0.05, thus, 0.05 is
selected in this study as the threshold for selecting the factors for further discussion [29]. As
a result, five RIFs are considered, namely, “weather condition”, “flight phase”, “equipment
condition”, “pilot action and decision”, and “maintenance quality”. However, it does not
rule out the possibility of using a smaller value to consider more factors in the discussion
when and where appropriate.
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Table 3. Mutual information (MI) between “casualty type” and individual RIFs.

RIF/Node Mutual Info RIF/Node Mutual Info

Weather Condition 0.3434 Pilot Psychological Condition 0.0228
Flight Phase 0.3181 Certified Max Gross Weight 0.0147

Equipment Condition 0.1901 Pilot Task Performance 0.0126
Pilot Action and Decision 0.0717 Airframe Hours 0.0124

Maintenance Quality 0.0543 Pilot Physical Condition 0.0122
Carrying Category 0.0432 Supervision 0.0112

Physical Environment 0.0400 Pilot Experience and Skills 0.0105
Management 0.0363 Operating Condition 0.0047

Number of Seats on Aircraft 0.0354 Flight Type 0.0032
Number of Engines 0.0294

3.3.2. Effects of RIFs Using TRI

Table 4 provides the TRI value of “flight phase” against casualty type C1. Specifically,
the first row denotes the base-case scenario, and the following rows represent the different
scenarios when each state of the factor reaches 100%.

Table 4. TRI of RIF—flight phase for casualty type C1.

Flight Phase
1 2 3 4 5 6 7 8 9 C1 HRI LRI TRI

/ / / / / / / / / 58.1 30.2 43.6 36.9
100% 0 0 0 0 0 0 0 0 61.9

0 100% 0 0 0 0 0 0 0 61.9
0 0 100% 0 0 0 0 0 0 88.3
0 0 0 100% 0 0 0 0 0 75.9
0 0 0 0 100% 0 0 0 0 59.4
0 0 0 0 0 100% 0 0 0 27.5
0 0 0 0 0 0 100% 0 0 14.5
0 0 0 0 0 0 0 100% 0 53.1
0 0 0 0 0 0 0 0 100% 79.6

Based on the TRI values of individual RIFs on individual casualty type (e.g., Table 4),
the maximum TRI values of all RIFs for all casualty types can be obtained (Table 5). To
obtain the impact levels of those RIFs on casualty types, the TRIs values are compared and
ranked. It can be seen that the average TRI value of “flight phase” is the largest and the
average TRI value of “pilot action and decision” is the smallest. Additionally, by comparing
the updated value of the target node in Tables 4 and 5, it is concluded that the model is in
line with Axiom 1.

Table 5. The TRI of the five highest ranked risk factors for all casualty types.

RIF/Node C1 C2 C3 C4 Average Value

Weather Condition 35.85 1.675 33.54 0.575 17.91
Flight Phase 36.9 6.445 36.705 1.99 20.51

Equipment Condition 16.25 2.76 19.2 0.23 9.61
Pilot Action and Decision 8.65 2.335 11.5 0.505 5.75

Maintenance Quality 10.4 1.12 12.85 1.315 6.42

Table 6 gives the order of importance of the five most important factors for individual
casualty types. For example, “flight phase” is the most important RIF for all casualty types.
“Pilot action and decision” contributes more to the casualty types C2 and C4, than the
casualty types C1 and C3.
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Table 6. The most important factors.

Casualty Type Weather
Condition Flight Phase Equipment

Condition
Pilot Action

and Decision
Maintenance

Quality

C1 2 1 3 5 4
C2 4 1 2 3 5
C3 2 1 3 5 4
C4 3 1 5 4 2

3.4. Model Validation

Table 7 indicates the casualty rate of a minor change in variables, and the changed value
of each state is written as “~10%” in Table 7. The first column of the data shows the original
values in TAN, and other columns state the changes in RIFs and the results. However,
each state of the “casualty type” is calculated separately from each other, i.e., each row is
computed through the change in states of RIFs in each casualty type. Additionally, from
Table 7, it can be seen that the updated values of the target node are gradually increasing
or decreasing along with the continuously changing RIFs. This result is consistent with
Axiom 2, indirectly showing the validity of the model.

Table 7. Casualty rate of minor change in variables.

Weather Condition / ~10% ~10% ~10% ~10% ~10%
Flight Phase / / ~10% ~10% ~10% ~10%

Equipment Condition / / / ~10% ~10% ~10%
Pilot Action and Decision / / / / ~10% ~10%

Maintenance Quality / / / / / ~10%

C1 58.1 65.2 72.3 74.3 75.1 76.2
C2 8.38 8.72 10.2 11 11.4 11.5
C3 32.3 39 46.7 51.4 54.7 58.4
C4 1.2 1.31 1.76 1.84 2.03 2.38

Table 8 shows the results of 3-fold cross-validation and 5-fold cross-validation. The
mean error rate of 3-fold cross-validation is 18.52%, and that of 5-fold cross-validation
is 18.00%. The mean error rate increases by only a few percentage points under 3-fold
compared with 5-fold cross-validation, indicating a low level of overfitting in the TAN-
BN model.

Table 8. The results of 3-fold cross-validation and 5-fold cross-validation.

k-Fold
Cross-Validation

Error Rate (%) by Fold
Mean Error Rate (%)0 1 2 3 4

3-fold cross-validation 18.52 12.96 24.07 / / 18.52

5-fold cross-validation 21.21 6.06 12.12 21.21 29.41 18.00

3.5. Most Probable Explanation (MPE) of a Given Causality—Scenario Analysis

Figure 2 shows the most probable explanation (MPE) results based on the calibrated
TAN-BN model. To enable the MPE function, each variable will have a belief bar at the
100% level, and usually, some bars in RIFs are at lower levels, as seen in Figure 2. It reveals
the most probable configuration by assuming the state with the bar at the 100% level for
each variable. The shorter bars indicate the relatively low probabilities of the other states,
given that the other variables are in the most probable configuration. In addition, they are
scaled by the same factor used to bring the longest bar to 100%. From Figure 2, “SERS” is
the most probable casualty type because of its high occurrence frequency, and other RIFs
reveal the corresponding most probable states.
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In addition, when “casualty type” is selected as state 4 (“FATL”), the MPE is displayed
in Figure 3. By trying each of the possibilities, all the configurations that are at the highest
probability level are revealed. Table 9 illustrates the MPE for all casualty types.

Table 9. Most Probable Explanation for all casualty types.

Variable C1 C2 C3 C4

Flight Phase 9 9 6 8
Certified Max Gross Weight 1 2 1 3

Airframe Hours 2 2 1 1
Number of Engines 2 2 2 2

Pilot Physical Condition 1 1 1 2
Equipment Condition 1 2 1 2

Management 1 1 1 1
Physical Environment 1 1 1 1

Pilot Experience and Skills 1 1 1 1
Pilot Psychological Condition 1 1 1 2

Flight Type 1 1 1 1
Number of Seats on Aircraft 1 2 1 1

Carrying Category 1 1 1 2
Operating Condition 1 1 1 1

Pilot Task Performance 1 1 1 2
Maintenance Quality 1 1 1 1

Supervision 1 1 1 2
Weather Condition 1 2 2 2

Pilot Action and Decision 1 1 1 1
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4. Discussion

After training of the TAN-BN model with 163 individual pilot-related accidents under
Part 121 in the NTSB aviation accident database from 2008 to 2020, it was found that most of
the civil aviation accidents resulted in no injury, supporting the argument by Waycaster et al.
that civil aviation is the safest way to travel [32]. On the other hand, if there are casualties
in an accident, the most probable casualty type is serious injury, the second is minor injury,
and the least is fatal injury.

Based on the MI values of the calibrated TAN-BN model, the top five factors (MI
value > 0.05) in order of importance are: weather condition, flight phase, equipment con-
dition, pilot action and decision, and maintenance quality. This ranking confirms that
weather condition has the greatest impact on the casualty types in civil aviation accidents,
which is consistent with the findings from the literature [33], which also used the NTSB
data. This finding is also in line with those from Jenamani and Kumar, who used a differ-
ent data source, namely, the Geneva-based Aircraft Crashes Record Office (ACRO) [34].
According to the statistics, it is not difficult to find that convective turbulence is the most
frequent weather condition causing accidents in these 163 individual pilot-related accidents.
However, convective turbulence in flight is not easy to forecast at present, and accidents
are often caused by a sudden convective surge.

The second most important factor is the flight phase. On the different flight phases,
the number of accidents was different. Li found that in the route and approach phase, the
number of accidents was the most, and the number of casualties was higher than other
flight phases, accounting for approximately 50% of the whole flight phases, indicating that
the flight phase is highly correlated with aviation accidents, which is also confirmed by the
results of this study [35].

Next, the third most important influencing factor is the equipment condition. This
finding highlights the reliability of the equipment, and it is consistent with the results
of several past accident analysis studies [36]. More importantly, this study finds that
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weather condition and flight phase play a more critical role in civil aviation accidents than
equipment condition.

Pilot action and decision is ranked fourth in the importance of effect, but it ranks first
among all pilot factors listed in Table 3 (pilot action and decision > pilot psychological
condition > pilot task performance > pilot physical condition > pilot experience and skills),
which is a new finding by this study and is partially supported by Kelly and Efthymiou’s
research [37]. This finding can help airlines or flight training schools optimize their pilot
training programs to reduce risks in these areas. Furthermore, McClernon et al. found
that stress training during the acquisition of flight skills might serve to enhance pilot
performance in stressful operations, which indicated that pilot psychological condition
could improve pilot task performance [38]. However, some researchers suggested that
pilot’s psychological pressure affects their decision-making, thus, it is more crucial [39].

Finally, the maintenance quality ranks fifth. To achieve a deeper understanding of
maintenance quality, Insley and Turkoglu analyzed the aircraft maintenance-related acci-
dents and serious incidents which occurred between 2003 and 2017 in the Aviation Safety
Network’s accident database and SKYbrary’s accidents and incidents database [40]. They
suggested that the greatest maintenance factors causing the accidents were “inadequate
maintenance procedures” and “inspections not identifying defects”, which is partly corre-
sponding to this study.

Similarly, from the results of Table 5, average values of TRI are compared and ranked
as follows: flight phase > weather condition > equipment condition > maintenance quality
> pilot action and decision. Compared with the results of Table 3, it is not difficult to
see that the order of these five RIFs is different, but weather condition and flight phase
are still the top two, which can indicate their higher correlation with the casualty type
of civil aviation accidents than pilot action and decision. Thus, we suggest that airlines
and aviation administrations should focus on monitoring flights in high-risk flight phases
and bad weather, such as landing with windshear, approach with low-visibility, etc., and
improve the ability of pilots to execute such flights.

An empirical sensitivity analysis of the proposed TAN-BN model has shown that
the model satisfies the two axioms, partially indicating its validity for application. The
reasonableness of the model could also be illustrated through a retrospective analysis of a
past accident, which is not included in the above training database. For example, from the
event ID “20200714 × 42039” in the NTSB database, Envoy Airlines flight 3880, an Embraer
175 aircraft, encountered turbulence during the descent into Chicago O’Hare International
Airport from Texas on 9 July 2020, and one person was seriously injured on the flight.
Except for the target variable, some parameter settings for the proposed BN model can be
obtained based on the descriptions, including:

(1) Due to encountering turbulence during the descent of flight, the weather condition
was poor, and the flight phase was descent.

(2) Because of the flight No. 3880, the flight carried passengers.
(3) Because the flight was from Texas to Chicago, the flight was a domestic flight.
(4) Because of the Embraer 175 aircraft, the number of seats on aircraft for passengers

was fewer than 100, and the number of engines was 2.

Along with the above information, there is no other information recorded in the
accident. The other factors (nodes) maintain their generic original probabilities given no
updated evidence is collected from the accident. Based on the above parameter settings, it
reveals a very high probability of 94.4% for the serious injury in this accident, which further
validates the proposed model, as shown in Figure 4.
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Table 9 illustrates the MPE for all casualty types. According to the results of Table 9,
comparing with the situation of no injury in civil aviation accidents, the poor equipment
condition and the bad weather condition have a strong relation to the minor injury and fatal
injury, and the bad weather condition, such as convective turbulence and low visibility, also
has a strong relation to serious injury. Hence, flight safety in bad weather is of great concern.
Furthermore, weak supervision and carry category such as cargo are strongly related to
fatal injury, which indicates that cargo airlines’ supervision on safety is insufficient and
should be strengthened. Regarding the flight phase, this study finds that phases, including
cruise, descent, approach, and landing, are strongly associated with these four casualty
types, while phases such as standing, pushback/towing, taxi, takeoff, and climb are not,
which is in accordance with Moriarty and Jarvis’s views [41], showing that cruise, descent,
approach, and landing have higher accident risks. Moreover, there is a high probability for
serious injury and fatal injury to happen during the airframe of hours less than 20,000 and
a high probability for no injury and minor injury to happen during the airframe of hours
between 20,000 and 50,000. This is a significant finding, indicating that the new aircraft is
not necessarily more reliable than the older aircraft, which can help optimize the reliability
management of airline fleets. In addition, minor injury becomes probable when the number
of seats on the aircraft is between 100 and 200. Additionally, the certified max gross weight
of aircraft less than 100,000 has a strong association with no injury and serious injury, the
certified max gross weight of aircraft between 100,000 and 200,000 has a hard relation to
minor injury, and the certified max gross weight of aircraft more than 200,000 is strongly
related to fatal injury, which suggests that the accidents on aircraft with a certified max
gross weight of more than 200,000 carry a high risk of fatality. In terms of pilot factors,
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poor pilot physical and psychological conditions and weak pilot task performance only
contribute to fatal injury, while incorrect pilot action and decision is not correlated with
these four casualty types. Thus, this finding verifies that it is very important to study the
physiological, psychological, and behavioral performance of pilots to ensure flight safety.
Likewise, Yue et al. suggested that the pilot factor is the most important causative factor
among the human factors for civil aviation accidents, which is in accordance with the
results of this study [42]. On the basis of Netica, we have successfully obtained the MPE
for all casualty types. However, in addition, there are some other methods worth trying to
obtain the MPE in the future, such as the deletion algorithm and the approximate deletion
algorithm [43]. On the other hand, it is worth further study why pilot factors and casualty
types show such a relationship. We plan to analyze the impact of pilot factors on flight
safety through physiological signal monitoring.

While our study provides insight into the interdependency and causal effects of pilot
factors on the outcome of civil aviation accidents using past accident data, important
limitations are noted. In this study, we identify RIFs of the model according to the classified
information in the NTSB database, which is not undisputed. To a certain extent, some
RIFs cannot be isolated simply because they may have a strong causal relationship with
other RIFs. For example, Fabre et al. believed that pilots’ risky decisions are related to the
change in their psychological state caused by the external environment [44]. Therefore,
further exploring the influence of the relationship between various RIFs on the results
of the model is our future research content. Furthermore, we excluded the accident data
not related to or not involving pilots for mainly considering pilot factors. Although the
results of data filtering were checked by civil aviation domain experts, there is still some
subjectivity. Future work may consider more RIFs and reduce the degree of accident data
filtering. Furthermore, this study only focuses on civil commercial flights, which account
for approximately 3% of the NTSB aviation accident database, resulting in a small total
amount of accident data. In future, we will introduce the accident data of general aviation
and conduct a comparative study.

5. Conclusions

To analyze the possible risks introduced by pilot factors to civil aviation safety, this
study uses a data-driven TAN-BN approach to investigate how different risk factors con-
tribute to different casualty types of civil aviation accidents with a focus on pilot factors.
For identifying RIFs, this study utilizes a total number of 163 individual pilot-related
accidents under Part 121 in the NTSB aviation accident database from January 2008 to
March 2020. A TAN-BN model is calibrated to identify and analyze the effects of various
RIFs incorporating pilot factors in civil aviation accidents. Finally, a sensitivity analysis is
conducted, including model validation and scenario simulation.

Based on the statistical strength-of-influence measure—mutual information (MI) from
the resulting TAN-BN model, the top five critical RIFs for casualty types (MI value > 0.05)
are: “weather condition”, “flight phase”, “equipment condition”, “pilot action and deci-
sion”, and “maintenance quality”, successively. Based on another risk influence measure—
TRI, these crucial RIFs are ranked again as follows: “flight phase”, “weather condition”,
“equipment condition”, “maintenance quality”, and “pilot action and decision”. Fur-
thermore, the scenario analysis provides a plausible causal explanation for the observed
accidents, revealing the most probable scenario concerning a particular casualty type.

This study has provided insight into the interdependency and causal effects of various
factors, including pilot factors, on the outcome of civil aviation accidents, contributing to
the development of improved regulations, management, and safety countermeasures for
the improved understanding of civil aviation industry.

Author Contributions: Conceptualization, C.Z., C.J. and L.F.; methodology, software, formal analysis,
writing—original draft preparation, C.Z.; validation, C.L. and H.L.; writing—review and editing,
supervision, C.J., L.F. and C.W.; funding acquisition, C.J. and W.C. All authors have read and agreed
to the published version of the manuscript.



Aerospace 2023, 10, 9 16 of 17

Funding: This research was funded by Open Fund of Key Laboratory of Flight Techniques and Flight
Safety, CAAC under Grant No. FZ2021KF05, No. FZ2021KF09, and No. FZ2021KF14, and Youth
Project of Humanities and Social Sciences Financed by Ministry of Education of China under Grant
No. 21YJC190012, and Fund of National Park Research Center under Grand No. GJGY2022-YB009.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The accident dataset used to support the findings of this study are
publicly available, at the online locations specified in the paper.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

References
1. Ng, C.B.R.; Bil, C.; O’Bree, T. An expert system framework to support aircraft accident and incident investigations. Aeronaut. J.

2021, 125, 1131–1156. [CrossRef]
2. Das, K.P.; Dey, A.K. Quantifying the risk of extreme aviation accidents. Phys. A Stat. Mech. Appl. 2016, 463, 345–355. [CrossRef]
3. Ancel, E.; Shih, A.T. The analysis of the contribution of human factors to the in-flight loss of control accidents. In Proceedings of

the 12th AIAA Aviation Technology, Integration and Operations (ATIO) Conference and 14th AIAA/ISSM, Indianapolis, IN,
USA, 17–19 September 2012. [CrossRef]

4. Kharoufah, H.; Murray, J.; Baxter, G.; Wild, G. A review of human factors causations in commercial air transport accidents and
incidents: From to 2000–2016. Prog. Aerosp. Sci. 2018, 99, 1–13. [CrossRef]

5. Stanton, N.A.; Li, W.-C.; Harris, D. Editorial: Ergonomics and human factors in aviation. Ergonomics 2019, 62, 131–137. [CrossRef]
6. de Sant’Anna, D.A.L.M.; de Hilal, A.V.G. The impact of human factors on pilots’ safety behavior in offshore aviation companies:

A Brazilian case. Saf. Sci. 2021, 140, 105272. [CrossRef]
7. Chang, Y.-H.; Wong, K.-M. Human risk factors associated with runway incursions. J. Air Transp. Manag. 2012, 24, 25–30.

[CrossRef]
8. McKay, M.P.; Groff, L. 23 years of toxicology testing fatally injured pilots: Implications for aviation and other modes of

transportation. Accid. Anal. Prev. 2016, 90, 108–117. [CrossRef]
9. Baraldi, P.; Podofillini, L.; Mkrtchyan, L.; Zio, E.; Dang, V.N. Comparing the treatment of uncertainty in Bayesian networks and

fuzzy expert systems used for a human reliability analysis application. Reliab. Eng. Syst. Saf. 2015, 138, 176–193. [CrossRef]
10. Zhou, Z.P.; Yu, X.H.; Zhu, Z.Y.; Zhou, D.Q.; Qi, H.N. Development and application of a Bayesian network-based model for

systematically reducing safety risks in the commercial air transportation system. Saf. Sci. 2023, 157, 105942. [CrossRef]
11. Leite, L.; Costa-Santos, C.; Rodrigues, P.P. Can we avoid unnecessary polysomnographies in the diagnosis of obstructive sleep

apnea? A Bayesian network decision support tool. In Proceedings of the IEEE 27th International Symposium on Computer-Based
Medical Systems, New York, NY, USA, 27–29 May 2014. [CrossRef]

12. Zhang, X.G.; Mahadevan, S. Bayesian network modeling of accident investigation reports for aviation safety assessment.
Reliab. Eng. Syst. Saf. 2021, 209, 107371. [CrossRef]

13. Wang, J.K.; Ning, H.S.; Chen, W.S.; Li, J.; Wan, J.; He, W. Airport bird-strike risk assessment model with grey clustering evaluation
method. Chin. J. Electron. 2012, 21, 409–413. Available online: https://cje.ejournal.org.cn/en/article/id/1841 (accessed on
10 November 2022).

14. Mack, D.L.C.; Biswas, G.; Koutsoukos, X.D.; Mylaraswamy, D. Learning Bayesian network structures to augment aircraft
diagnostic reference models. IEEE Trans. Autom. Sci. Eng. 2017, 14, 358–369. [CrossRef]

15. Li, D.W.; Hu, X.J.; Jin, C.J.; Zhou, J. Learning to detect traffic incidents from data based on tree augmented naive Bayesian
classifiers. Discret. Dyn. Nat. Soc. 2017, 1, 8523495. [CrossRef]

16. Li, D.W.; Cheng, L. Traffic incident duration prediction: A Bayesian network method. J. Wuhan Univ. Technol. Transp. Sci. Eng.
2011, 35, 884–887; 891. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=JTKJ201105005&DbName=
CJFQ2011 (accessed on 10 November 2022).

17. Wang, S.A.; Yan, R.; Qu, X.B. Development of a non-parametric classifier: Effective identification, algorithm, and applications in
port state control for maritime transportation. Transp. Res. Part B Methodol. 2019, 128, 129–157. [CrossRef]

18. Chen, W.; Huang, S. Evaluating flight crew performance by a Bayesian network model. Entropy 2018, 20, 972. [CrossRef]
19. Song, C.-Y.; Hur, H.-Y. Comparison of development and marketing strategies of Airbus and Boeing. J. Korean Soc. Aeronaut. Soc.

2006, 34, 98–116. Available online: https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE01099123 (accessed on 10
November 2022).

20. Yang, Z.L.; Yang, Z.S.; Smith, J.; Robert, B.A.P. Risk analysis of bicycle accidents: A Bayesian approach. Reliab. Eng. Syst. Saf. 2021,
209, 107460. [CrossRef]

21. Fan, S.Q.; Yang, Z.L.; Blanco-Davis, E.; Zhang, J.F.; Yan, X.P. Analysis of maritime transport accidents using Bayesian networks.
Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2020, 234, 439–454. [CrossRef]

http://doi.org/10.1017/aer.2021.11
http://doi.org/10.1016/j.physa.2016.07.023
http://doi.org/10.2514/6.2012-5548
http://doi.org/10.1016/j.paerosci.2018.03.002
http://doi.org/10.1080/00140139.2019.1564589
http://doi.org/10.1016/j.ssci.2021.105272
http://doi.org/10.1016/j.jairtraman.2012.05.004
http://doi.org/10.1016/j.aap.2016.02.008
http://doi.org/10.1016/j.ress.2015.01.016
http://doi.org/10.1016/j.ssci.2022.105942
http://doi.org/10.1109/CBMS.2014.30
http://doi.org/10.1016/j.ress.2020.107371
https://cje.ejournal.org.cn/en/article/id/1841
http://doi.org/10.1109/TASE.2016.2542186
http://doi.org/10.1155/2017/8523495
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=JTKJ201105005&DbName=CJFQ2011
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=JTKJ201105005&DbName=CJFQ2011
http://doi.org/10.1016/j.trb.2019.07.017
http://doi.org/10.3390/e20120972
https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE01099123
http://doi.org/10.1016/j.ress.2021.107460
http://doi.org/10.1177/1748006X19900850


Aerospace 2023, 10, 9 17 of 17

22. Bhattacharyya, A.; Gayen, S.; Price, E.; Vinodchandran, N.V. Near-optimal learning of Tree-structured distributions by Chow-Liu.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual, 21–25 June 2021. [CrossRef]

23. Peng, Y.C.; Cheng, L.Y.; Jiang, Y.M.; Zhu, S.X. Examining Bayesian network modeling in identification of dangerous driving
behavior. PLoS ONE 2021, 16, e0252484. [CrossRef]

24. Yang, Z.S.; Yang, Z.L.; Yin, J.B. Realising advanced risk-based port state control inspection using data-driven Bayesian networks.
Transp. Res. Part A Policy Pract. 2018, 110, 38–56. [CrossRef]

25. Mesner, O.C.; Shalizi, C.R. Conditional mutual information estimation for mixed, discrete and continuous data. IEEE Trans. Inf.
Theory 2021, 67, 464–484. [CrossRef]

26. Alyami, H.; Yang, Z.; Riahi, R.; Bonsall, S.; Wang, J. Advanced uncertainty modelling for container port risk analysis. Accid. Anal.
Prev. 2019, 123, 411–421. [CrossRef] [PubMed]

27. Yang, Z.L.; Wang, J.; Bonsall, S.; Fang, Q.G. Use of fuzzy evidential reasoning in maritime security assessment. Risk Anal. 2009, 29,
95–120. [CrossRef] [PubMed]

28. Zhang, D.; Yan, X.P.; Yang, Z.L.; Wall, A.; Wang, J. Incorporation of formal safety assessment and Bayesian network in navigational
risk estimation of the Yangtze River. Reliab. Eng. Syst. Saf. 2013, 118, 93–105. [CrossRef]

29. Fan, S.Q.; Blanco-Davis, E.; Yang, Z.L.; Zhang, J.F.; Yan, X.P. Incorporation of human factors into maritime accident analysis using
a data-driven Bayesian network. Reliab. Eng. Syst. Saf. 2020, 203, 107070. [CrossRef]

30. Alam, M.S.; Sultana, N.; Hossain, S.M.Z. Bayesian optimization algorithm based support vector regression analysis for estimation
of shear capacity of FRP reinforced concrete members. Appl. Soft Comput. 2021, 105, 107281. [CrossRef]

31. Mengshoel, O.J.; Wilkins, D.C.; Roth, D. Initialization and restart in stochastic local search: Computing a Most Probable
Explanation in Bayesian networks. IEEE Trans. Knowl. Data Eng. 2011, 23, 235–247. [CrossRef]

32. Waycaster, G.C.; Matsumura, T.; Bilotkach, V.; Haftka, R.T.; Kim, N.H. Review of regulatory emphasis on transportation safety in
the United States, 2002–2009: Public versus private modes. Risk Anal. 2018, 38, 1085–1101. [CrossRef]

33. Pramono, A.; Middleton, J.H.; Caponecchia, C. Civil aviation occurrences in Indonesia. J. Adv. Transp. 2020, 2020, 3240764.
[CrossRef]

34. Jenamani, R.K.; Kumar, A. Bad weather and aircraft accidents—Global vis-à-vis Indian scenario. Curr. Sci. 2013, 104, 316–325.
Available online: https://www.jstor.org/stable/24089632 (accessed on 15 November 2022).

35. Li, Y.F. Analysis and forecast of global civil aviation accidents for the period 1942–2016. Math. Probl. Eng. 2019, 2019, 5710984.
[CrossRef]

36. Baidzawi, I.J.; Nur, N.M.; Shukri, S.A.; Mohd Aris, K.D.; Asmadi, N.L.; Mohamed, M. A review of accidents and incidents on
Boeing and Airbus commercial aircraft’s avionics-related system in two decades (1996–2015). IOP Conf. Ser. Mater. Sci. Eng. 2019,
697, 12–31. [CrossRef]

37. Kelly, D.; Efthymiou, M. An analysis of human factors in fifty controlled flight into terrain aviation accidents from 2007 to 2017.
J. Saf. Res. 2019, 69, 155–165. [CrossRef] [PubMed]

38. McClernon, C.K.; McCauley, M.E.; O’Connor, P.E.; Warm, J.S. Stress training improves performance during a stressful flight. Hum.
Factor 2011, 53, 207–218. [CrossRef]

39. Paletz, S.B.F.; Bearman, C.; Orasanu, J.; Holbrook, J. Socializing the human factors analysis and classification system: Incorporating
social psychological phenomena into a human factors error classification system. Hum. Factor 2009, 51, 435–445. [CrossRef]
[PubMed]

40. Insley, J.; Turkoglu, C. A Contemporary Analysis of Aircraft Maintenance-Related Accidents and Serious Incidents. Aerospace
2020, 7, 81. [CrossRef]

41. Moriarty, D.; Jarvis, S. A systems perspective on the unstable approach in commercial aviation. Reliab. Eng. Syst. Saf. 2014, 131,
197–202. [CrossRef]

42. Yue, R.T.; Li, J.W.; Han, M. Aviation accident causation analysis based on complex network theory. Trans. Nanjing Univ. Aeronaut.
Astronaut. 2021, 38, 646–655. [CrossRef]

43. Cano, A.; Gómez-Olmedo, M.; Moral, S.; Moral-García, S. MPE computation in Bayesian Networks using mini-bucket and
probability trees approximation. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2020, 28, 785–805. [CrossRef]

44. Fabre, E.F.; Matton, N.; Beltran, F.; Baragona, V.; Cuny, C.; Imbert, J.-P.; Voivret, S.; Henst, J.-B.V.D.; Causse, M. Hierarchy in
the cockpit: How captains influence the decision-making of young and inexperienced first officers. Saf. Sci. 2022, 146, 105536.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1145/3406325.3451066
http://doi.org/10.1371/journal.pone.0252484
http://doi.org/10.1016/j.tra.2018.01.033
http://doi.org/10.1109/TIT.2020.3024886
http://doi.org/10.1016/j.aap.2016.08.007
http://www.ncbi.nlm.nih.gov/pubmed/27530609
http://doi.org/10.1111/j.1539-6924.2008.01158.x
http://www.ncbi.nlm.nih.gov/pubmed/19141152
http://doi.org/10.1016/j.ress.2013.04.006
http://doi.org/10.1016/j.ress.2020.107070
http://doi.org/10.1016/j.asoc.2021.107281
http://doi.org/10.1109/TKDE.2010.98
http://doi.org/10.1111/risa.12693
http://doi.org/10.1155/2020/3240764
https://www.jstor.org/stable/24089632
http://doi.org/10.1155/2019/5710984
http://doi.org/10.1088/1757-899X/697/1/012031
http://doi.org/10.1016/j.jsr.2019.03.009
http://www.ncbi.nlm.nih.gov/pubmed/31235226
http://doi.org/10.1177/0018720811405317
http://doi.org/10.1177/0018720809343588
http://www.ncbi.nlm.nih.gov/pubmed/19899355
http://doi.org/10.3390/aerospace7060081
http://doi.org/10.1016/j.ress.2014.06.019
http://doi.org/10.16356/j.1005-1120.2021.04.011
http://doi.org/10.1142/S0218488520500348
http://doi.org/10.1016/j.ssci.2021.105536

	Introduction 
	Methodology 
	NTSB Aviation Accident Database 
	RIFs Identification 
	TAN-BN Structure Learning 
	Sensitivity Analysis 
	Mutual Information (MI) 
	True Risk Influence (TRI) 

	Model Validation 
	Identification of Most Probable Explanation to an Accident 

	Results 
	Description of Casualty Types 
	TAN-BN Modeling 
	Sensitivity Analysis 
	Effects of RIFs Using MI 
	Effects of RIFs Using TRI 

	Model Validation 
	Most Probable Explanation (MPE) of a Given Causality—Scenario Analysis 

	Discussion 
	Conclusions 
	References

