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Abstract: The design of efficient thermal ice protection systems is a challenging task as these systems
operate in complex environments involving several coupled physical phenomena such as phase
change, boundary-layer flow, and heat transfer. Moreover, certification rules are becoming more
stringent, and there is a strong incentive for the reduction of fuel consumption. In this context,
numerical tools provide a powerful asset during the design phase but also to gain insight into the
physical mechanisms at play. This article presents modeling and simulation strategies for thermal
ice protection systems. First, the model describing the behavior of the thermal protection system is
presented. Second, a model and associated numerical method is presented for unsteady ice accretion.
Third, the coupling methodology between the ice accretion solver and the heat conduction solver is
described. In the fourth part, different methods to simulate the boundary-layer flow are described.
Finally, some relevant examples are presented, both in steady and unsteady configurations.

Keywords: thermal ice protection; ice accretion; boundary layer; anti-icing; deicing, modelling;
simulation

1. Introduction

In order to comply with more and more stringent certifications and regulations regard-
ing flight safety in icing conditions, aircraft manufacturers design and use ice protection
systems. In the context of “more electric” aircraft, electrothermal ice protection systems
(ETIPS) are being investigated. This system is composed of heater mats installed within a
multi-layered material and can be used in anti-icing or deicing configurations [1,2]. Nowa-
days, the ETIPS are generally a purely active deicing and anti-icing solution. This is a
starting hypothesis of the present article. The combination of ETIPS with an icephobic
coating is indeed still little studied, although some recent work shows that it is a valuable
field of investigation [3,4] in order to reduce the energy consumption of IPS.

Figure 1 shows the nominal functioning of an ETIPS in deicing mode. The region
located at the leading edge is constantly anti-iced and is called the parting strip. In regions
other than the parting strip, ice accretion is permitted, and the heaters are activated
cyclically. When a heater mat is activated, it melts a part of the ice in contact with the
surface, creating a liquid water film and therefore lowering the ability of the ice block to
adhere to the surface. The aerodynamic forces are then able to detach the ice block (or
part of it) from the surface.

This type of system operates in a complex environment involving many physical
phenomena. Modeling and simulation can be valuable assets for the study and design of
such systems. This article aims to present the capabilities of several models and numerical
methods that enable the simulation of electrothermal ice protection systems.

As illustrated in Figure 2, the simulation of icing phenomena and ice protection
systems in aeronautics involves several coupled physical phenomena. Indeed, the aerody-
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namic flow on the one hand transports the supercooled droplets, leading to their impact on
specific areas of the airfoil. On the other hand, it also generates heat transfer between the
boundary layer and the ice layer/airfoil. Icing codes are therefore often articulated around
specialized modules that are coupled during the computation. For example, a widely used
approach to computing an ice shape is illustrated in Figure 3. An inviscid flow solver is
used to obtain the external flow field. This field is used as an input for a Lagrangian or
Eulerian droplet trajectory module and a boundary-layer module. These two modules
in turn provide the inputs for the ice accretion module. The accretion solver may also be
coupled with simulation modules for the protection system and ice shedding.

Figure 1. Operating of an ETIPS.

Supercooled 
droplets

Aerodynamic 
flow

Heaters

Crack in ice

Boundary 
layer

Static melted 
film

Runback film
Ice

Figure 2. Illustration of the different physical phenomena taking place when an electrothermal ice
protection system is being operated.

The choice of the accretion solver is linked to the steady/unsteady nature of the
operating conditions. In anti-icing mode, the steady state of the system is usually sought.
In this case, an accretion solver based on Messinger’s approach can be used [5]. Many icing
simulation tools are based on this approach [6–10]. Such a steady-state accretion solver is
available in the icing suite described in Figure 3 [11].
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Figure 3. The architecture of the IGLOO2D icing suite developed at ONERA. The work presented in
this article focuses on the computation of the boundary layer, the ice accretion solver, and the heat
conduction solver.

On the other hand, in deicing mode, the operating of the system becomes unsteady
by nature due to the activation cycle of the electric heaters. In this case, an unsteady
accretion solver is required. To take into account liquid film runback in an unsteady setting,
Bourgault et al. proposed a three-dimensional ice accretion model based on a lubrication
theory assumption [12]. Although more sophisticated approaches have been developed and
researched [13,14], lubrication theory is still used for many applications [15,16]. In addition,
one must take into account the unsteady heat and mass transfer phenomena. To do so,
multi-layered extensions to Messinger’s model have been proposed [17,18] and extended to
a quasi-steady framework [15,19,20] and to unsteady one-dimensional cases by assuming
a cubic temperature profile in each layer [21]. More recently, Chauvin et al. proposed an
unsteady three layer approach able to capture the unsteady runback dynamics as well as
the unsteady heat conduction and phase change [22]. This method is implemented in the
icing suite described in Figure 3. The coupling between the ice accretion solver and the heat
conduction solver modelling the protection system is performed using a Schwarz approach
as described in [23].

Moreover, it is mandatory to model the exchanges in the boundary layer of the
airflow for modeling ice accretion and ice protection systems. In particular, heat and mass
transfers must be modeled with sufficient accuracy. This can be accomplished through
the use of Navier–Stokes simulations of the airflow [10,24,25]. However, the approach
presented in Figure 3 is based on a sequential approach requiring numerous steady-state
simulations of the aerodynamic flow. A trade-off must thus be found between accuracy
and computational time for a practical application of the codes. In our article, this is
performed by using boundary-layer solvers, which is an approach widely used in the
icing community, even for modeling ice protection systems [1,10,26–31].

These solvers are integrated with a basic viscous–inviscid interaction approach, usually
a basic direct one-way coupling where the boundary-layer solver is fed by the inviscid
solver inputs (see Figure 3). The simplest boundary-layer solvers are simplified integral
methods [10,26–29]. These methods consist of solving the boundary-layer equations by
using algebraic solutions, such as the ones shown in Section 4.3, obtained under simplifying
assumptions (2D flat plate with zero pressure gradient for instance) [11,32]. This approach
seems to be effective for simple configurations up to straight wings without an ice protection
system, for example. However, the increasing complexity of the configurations makes
the assumptions on which it is based less and less acceptable. To overcome the accuracy
issues documented by Morency et al. [31], it is possible to improve the heated boundary-
layer resolution with a solver of the Prandtl boundary-layer equations as performed at
ONERA [1,30] with the solver CLICET [33], or by Morency [31]. This approach will be
examined in Section 4.1. It will be shown that the solution is calculated via a marching
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method from the stagnation point. The surface grid is therefore dependent on the location
of the stagnation point, which is a constraint for the computational workflow, especially
in 3D. Bayeux et al. [34] thus developed an integral boundary-layer solver to solve the
dynamic boundary-layer equations detailed in Section 4.2, with the purpose of an easy
enough extension to 3D solutions on any kind of unstructured grids [35]. This article also
discusses the solution of the laminar thermal boundary layer in a similar integral way
in [36] under the assumption that the wall temperature is imposed.

IGLOO2D’s unsteady ice accretion solver and heat conduction solver and their cou-
pling was presented in previous work [22,23]. However, the methodology was presented
from a numerical standpoint. In addition, the computation of the heat transfer coefficient
was performed using a simplified integral boundary-layer solver. This computation was
performed in a one-way coupling fashion as illustrated in Figure 3. The work presented in
this article aims to extend the aforementioned work by focusing on the computation of the
boundary layer and its combination with the ice accretion solver and the heat conduction
solver. On the one hand, the goal is to present a simulation methodology for thermal ice
protection systems and how it can be combined with different types of boundary-layer
solvers. On the other hand, the aim is to assess the proposed methodologies by comparing
their results with known data from the literature. In what follows, the models and nu-
merical methods will be presented in a two-dimensional framework. The numerical tools
presented here are part of the development at ONERA of the IGLOO2D and IGLOO3D
icing simulation frameworks [11,37].

The article is articulated as follows: first, models for the thermal system and unsteady
ice accretion are briefly recalled. Second, possible methods for computing the boundary
layer are presented. The coupling procedure between the solvers is then described. The ar-
ticle ends with the presentation of illustrative cases that enable us to assess the performance
of the proposed methodologies with respect to data from the literature.

2. Modelling and Simulation of the Thermal System

This section briefly describes the equations that govern the behaviour of the heated
airfoil and their numerical discretization implemented in the solver ETIPS2D.

As shown in Figure 4, an electrothermal ice protection system is composed of heater
mats embedded within the airfoil. These mats are used as a heat source to prevent the
formation of ice in anti-icing mode or to melt the ice in deicing mode.

Heaters

Figure 4. Illustration of an electrothermal ice protection system. The red lines represent the
heater mats.

The main physical phenomenon occurring within the thermal system is heat conduc-
tion. As electrothermal systems are often based on a multilayered stack of materials, the
possibility of heterogeneous heat conduction has to be taken into account. Moreover, some
materials may be anisotropic; therefore, the conductivity may take a tensorial form. Hence,
the modeling of the thermal system is based on the following heat equation:
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ρcp
∂T
∂t

= ∇.(Λ∇T) + q in Ω (1)

where ρ is the density, cp is the specific heat, Λ is the conductivity (in scalar or tensorial
form), and q is a volume source term used to represent the heat provided by the heaters.

One also needs to specify the boundary conditions on Γext and on Γint. Γext is the
boundary that is in contact with the aerodynamic flow and the icing conditions. Therefore,
there are two possibilities:

• Dry air conditions are being simulated. In this case, the boundary condition can take
the form of a Fourier–Robin condition:

Λ∇T.n = htc(Trec − T) on Γext (2)

where htc is the heat transfer coefficient, and Trec is the recovery temperature.
• Icing conditions are being simulated. In this case, an accretion solver is also used and

is coupled with the heat conduction solver. Such a coupling will be discussed further
and is performed using the boundary condition:

Λ
∂T
∂n

= ω(Tacc − T) + Φacc on Γext (3)

where ω is a coupling coefficient, Tacc is the surface temperature provided by the
accretion solver, and Φacc is the heat flux provided by the accretion solver.

Γint is usually assumed to be an adiabatic boundary in the case of electrothermal
systems. However, it may also be used to model bleed-air systems by using a Fourier–
Robin boundary condition.

This problem can be discretized using classic methods, such as P1 Lagrange finite
elements or finite volumes, yielding the discretized equation:

M
dT
dt

+ AT = L (4)

where M is the mass matrix, A is the “stiffness” matrix, and L is the right-hand side.
Here, T is a vector containing the degrees of freedom relative to the chosen discretization
method. The resulting system of ODEs can then be solved using, for example, a Euler or a
Crank–Nicolson time marching scheme.

3. Modelling of Ice Accretion

As stated previously, two different ice accretion solvers are implemented in IGLOO2D.
The steady-state solver MESSINGER2D is based on the classic Messinger approach and
will not be described further (see, for example, [11] for more details).

IGLOO2D’s unsteady accretion solver, MiLeS2D, has also been described in previous
work [22]. In the rest of this section, the main ideas will be briefly recalled. The solver is
built around a unified triple layer approach enabling it to take into account all unsteady
phenomena encountered during ice build-up on a surface (eventually heated by a system).

The idea behind MiLeS2D is illustrated in Figure 5. In this situation, the physical
process may be described by considering 6 distinct modes (labeled 1–6 in Figure 5):

1. Full evaporative: the whole mass of impacting droplets is evaporated (for example,
due to heat provided by an ice protection system).

2. Running wet: only a liquid water film is present. Under the action of the aerodynamic
forces, the liquid film runs back along the surface.

3. Rime accretion: the droplets freeze almost instantaneously leading to ice build-up
with no liquid water.

4. Glaze accretion: the droplets freeze, but at a slower rate than in the rime case. There-
fore, a running liquid water film is present on top of the ice layer.
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5. Rime accretion with melting at the surface (due to heat provided by an ice protection
system, for example).

6. Glaze accretion with melting at the surface (due to heat provided by an ice protection
system, for example).

Ice
Liquid water1

2

3

4

5

6

Figure 5. Illustration of a generic icing situation. Reprinted from [22], ©Elsevier.

Each mode can be described by the presence (or absence) of one or more layers. At
any given curvilinear abscissa x, the most general case considered by the model consists of
three layers: running film, ice, and static film. The three layers, as well as some geometric
quantities which characterize them, are represented in Figure 6. Subscript f is used to
denote the running film layer, i for the ice layer, and s for the static film layer. For each
layer k (k = i, s), ak is the position of the lower boundary, and bk is the position of the upper
boundary (in the z direction, normal to the surface).

Static Film

Ice

Running Film

Figure 6. Illustration of the three layers: h f , hi, and hs are the heights of the running film, ice, and
static (melted) film. The ak’s and bk’s represent the positions of the boundaries between each layer in
the z direction (normal to the surface). Reprinted from [22], ©Elsevier.

Each mode is governed by coupled partial differential equations with a specific set
of boundary conditions and source terms [38]. Here, in order to give a general view of
the approach, the main equations used to model heat and mass transfer in each layer will
be presented.

3.1. Equations for the Running Film Layer

The unknowns for this layer are the film thickness h f and the mean temperature
T̂f . As the film is very thin, it is modelled with an integral approach combined with a
closure relation from lubrication theory [38]. In the framework of lubrication theory, the
mean velocity of the running liquid (v̂x) only depends on its thickness h f and the external
flow conditions:
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v̂x(h f ) =
τw

2µw
h f +

1
3µw

(
−∂p

∂x
+ ρwgx

)
h2

f (5)

where τw is the air shear stress, ∂p
∂x is the tangential pressure gradient, and gx is the tangential

gravity. In this framework, surface tension and wettability effects are neglected.
Under such an hypotheses, the running film layer is governed by the following

system of PDEs:

• Mass conservation:
∂ρwh f

∂t
+

∂ρwh f v̂x

∂x
= Γ f (6)

where Γ f is the mass transfer term (which includes, for example, the deposited droplet
mass flow rate and the evaporation mass flow rate).

• Energy conservation: as the liquid film is very thin, the temperature profile is assumed
uniform in the normal direction. The energy equation is given by:

∂ρwcwh f T̂f

∂t
+

∂ρwcwh f v̂x T̂f

∂x
= Φ̇ f (7)

where Φ̇ f is the energy transfer term (which includes, for example, the convective
heat transfer term). In the case where the liquid film is (locally) running over ice,
Equation (7) degenerates to T̂f = Tm. Indeed, phase change is occurring at an interface
between running film and ice. Hence, the temperature at the interface is the melting
temperature. As the liquid film is assumed to be very thin and of uniform temperature
in the normal direction, the whole film is at the melting temperature.

3.2. Heat Conduction in the Ice Layer and Melted Film Layer

Both the ice and melted film layers are assumed motionless. Here, the subscript k
will be used to generically denote these two layers (k = i or k = s). Furthermore, heat
transfer in the tangential direction is neglected. Heat transfer is considered in the z (normal)
direction only.

• Mass conservation (at each curvilinear abscissa x):

∂ρkhk
∂t

= Γk (8)

where Γk is the mass transfer term (for example, the melting rate which governs the
transfer of mass from the ice layer to the static film layer).

• Energy conservation (at each curvilinear abscissa x):

∂ρkckTk
∂t

= λk
∂2Tk
∂z2 For z in ]ak(t), bk(t)[

fa

(
Tk,

∂Tk
∂z

)
= 0 For z = ak(t) (9)

fb

(
Tk,

∂Tk
∂z

)
= 0 For z = bk(t)

where for each layer k = i or s, ρk is the density, ck is the specific heat, λk is the
conductivity, and Tk is the temperature. Here, fa and fb denote in a generic way the
boundary conditions at the moving boundaries of each layer.

As shown in [22], these equations provide the basic building blocks to model all six
modes. The equations are then discretized using a finite volume method for the running
film layer and a Galerkin method for the static layers. The unsteady set of equations is
solved with an implicit time marching scheme.



Aerospace 2023, 10, 75 8 of 29

4. Boundary Layer Solver

The previous sections were devoted to the modeling and simulation of heat conduction
and ice accretion. The modeling of the boundary layer is addressed in this section.

Although a strong attraction of the integral method of Section 4.2 is its possible exten-
sion in 3D, all methods are presented here in 2D because the applications are bidimensional.
Moreover, the mass transfer will not be addressed because they are modeled via the
Chilton–Colburn analogy [39], which is current practice in the icing community.

4.1. Boundary-Layer Equations

Let us consider the variation of the density ρ(t, x, y), the flow velocities in the x and
y direction, respectively, ux(t, x, y) and uy(t, x, y), the pressure p(t, x, y), and the enthalpy
Ha(t, x, y) as a function of time (t) and position in a 2D boundary layer, where x is the
streamwise direction, and y is the direction normal to the wall. The set of equations thus
reads [40]:

∂ρ

∂t
+

∂ρux

∂x
+

∂ρuy

∂y
= 0 (10)

ρ
∂ux

∂t
+ ρux

∂ux

∂x
+ ρuy

∂ux

∂y
= −∂p

∂x
+

∂τxy

∂y
(11)

∂p
∂y

= 0 (12)

ρ
∂Ha

∂t
+ ρux

∂Ha

∂x
+ ρuy

∂Ha

∂y
=

∂p
∂t

+ ux
∂p
∂x
− ∂φ

∂y
+ Ḋ (13)

The viscous shear stress reads τxy = µ
∂ux

∂y
− < ρu′xu′y >, where µ is the dynamic

viscosity of the fluid. The Reynolds tensor −ρ < u′xu′y > is generally modeled through

the Boussinesq assumption, which allows writing − < ρu′xu′y >= µt
∂ux

∂y
. Various models

can be used for the turbulent viscosity µt. The heat flux reads φ = −λ
∂T
∂y

+ < ρu′yH′a >,

where T(t, x, y) is the temperature, and λ is the thermal conductivity of the fluid. Again,
the turbulent part < ρu′y H′a > is generally modeled by the use of the turbulent viscosity,

in addition to a turbulent Prandtl number Pt: − < ρu′y H′a >=
µt

Pt

∂Ha

∂y
. Finally, the viscous

dissipation reads: Ḋ = τxy
∂ux

∂y
.

Moreover, the air is supposed to be an ideal gas. Equation (10) is the continuity
equation, while Equations (11) and (12) are the momentum equations in the streamwise
and normal directions, respectively. Equation (13) is the enthalpy equation that models the
heat transfer in the boundary layer.

The solver CLICET [33,41,42] solves the steady-state version of this system of equa-
tions for a given distribution of the edge-flow pressure pe(x) and temperature Te(x) (which
is a one-way direct coupling). This is a parabolic system [43], which is solved by a march-
ing procedure from a boundary condition given at the stagnation point. Note that the
direct-coupling method does not allow producing a solution beyond the separation of the
boundary layer. A finite volume method is used for the resolution of the system. A wide va-
riety of turbulence and transition models are available. For instance, the Spalart–Allmaras
turbulence model [44] and Drela’s transition model [45] were used for the simulations of
Appendix A.2, while the k−ω SST turbulence model [46] and an imposed transition were
used for the simulations of Appendix A.1 and Section 4.4.

The solution of the steady-state version of the Prandtl Equations (10) to (13) by solvers
such as CLICET is shown to be quite fast and efficient. However the mandatory localization
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of the stagnation point is a drawback because it constrains the grid (this is an even bigger
problem in 3D).

4.2. One-Equation Integral Method for the Thermal Boundary Layer

In order to make it easier to solve the boundary-layer equations on arbitrary meshes of
the surface, a method based on unsteady integral boundary-layer equations in the conserva-
tive form is presented. The convergence of the solution to steady state is then performed by
a finite volume method. As the goal is to extend the method to 3D, the simplifying assump-
tions of the simplified integral method, well-known by the icing community and presented
in Section 4.3, are not made, which also allows us to expect a higher level of accuracy.

4.2.1. System of Integral Boundary-Layer Equations

A steady-state inviscid flow is assumed outside of the boundary layer. The edge
velocity ue, the pressure pe, and the edge static temperature Te are thus dependent on
x only, and the evolution of these variables as a function of x is assumed to be known.
Additionally, the flow in the boundary layer is assumed to be incompressible, with
constant density.

Bayeux’s system of equations for the dynamic boundary layer [34] is concatenated
with the energy integral equation presented in [35,36]. This reads:

∂U
∂t

+
∂F(x, U)

∂x
= S(x, U) (14)

where

U =

 ueδ1
u2

e δ2
(Te − Tw)δ1T

, F =

 u2
e δ2

u3
e δ3 − u3

e δ2
(Te − Tw)ueδ2T



S =


−ueδ1

∂ue

∂x
+

1
2

u2
e C f

(u2
e δ1 − u2

e δ2)
∂ue

∂x
− 1

2
u3

e C f + 2u3
e CD

−Φw

ρcp
− 1

cp
u3

e CD


Five incompressible integral quantities are involved in this system of equations:

δ1 =
∫ ∞

0

(
1− u

ue

)
dy, δ2 =

∫ ∞

0

u
ue

(
1− u

ue

)
dy, δ3 =

∫ ∞

0

u
ue

(
1− u2

ue2

)
dy (15)

δ1T =
∫ ∞

0

Te − T
(Te − Tw)

dy, δ2T =
∫ ∞

0

u
ue

Te − T
(Te − Tw)

dy (16)

where δ1 is the displacement thickness, δ2 is the momentum thickness, δ3 is the kinetic-energy
thickness, δ1T and δ2T are the corresponding thicknesses for the thermal boundary layer, and
C f and CD denote respectively the friction coefficient and the dissipation coefficient:

1
2

ue
2C f =

τw

ρ
, ue

3CD =
1
ρ

∫ ∞

0
τxy

∂ux

∂y
dy (17)

where τw = τxy(y = 0) is the skin friction, Φw = φ(y = 0) is the wall heat flux, and cp is
the specific heat at constant pressure. The first equation of the system (14) is an unsteady
version of the well-known von Kármán equation. The second one is the kinetic energy
integral equation. The third equation is the energy equation in the thermal boundary layer.

The primary variables of the vector U are linked to the integral thicknesses δ1, δ2,
and δ1T . Equation (14) shows six other terms, δ3, δ2T , C f , CD, Tw, and Φw which must be
either specified by boundary conditions (Tw, for instance) or related to the solved variables
U. Some closure relations must thus be defined. Regarding the variables related to the
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dynamic boundary layer (δ3, C f , CD), assumed velocity profiles, and empirical relations,
as well as self-similar theoretical results, are employed in Bayeux’s article [34] to achieve
the closure relations. An assumed temperature profile described in the references [35,36] is
employed for the closure of the terms related to the thermal boundary layer (δ2T and Φw)
in a laminar regime.

Regarding the laminar–turbulent transition, several models were considered. It is
possible to enforce the transition at a given location. The criterion proposed by Drela [45] is
also available.

The interested reader will find further information in Bayeux’s article [34] regarding
the solution of the dynamic boundary layer and in references [35,36] for the thermal
boundary layer.

4.2.2. Numerical Resolution of the Integral Boundary Layer Model

The constant-density assumption is made for the whole system. As for the Euler or
Navier–Stokes equations, they allow decoupling the resolutions of the dynamic boundary
layer (first two equations of the system (14)) and the thermal boundary layer (third equation
of the system (14)). However, it must be mentioned that the density could change due
to temperature changes. Thermal boundary-layer computations with an important wall
heating could therefore be poorly accurate. Since the dynamic and thermal boundary-
layer problems are decoupled, they are solved in a segregated approach: the two-equation
dynamic boundary-layer system is solved first. Then the one-equation thermal boundary
layer is solved.

The conservative formulation of the system (14) allows the use of a finite volume
resolution that was implemented in the solver BLIM2D, which is integrated into the icing
suite IGLOO2D [35]. The unsteady resolution makes it possible to converge to the steady-
state solution along the whole geometry without specifying the location of the stagnation
point. In BLIM2D, a basic first-order upwind scheme, simply based on the sign of the
edge velocity, is used for the space discretization [34]. Regarding the time discretization, a
semi-implicit scheme is used, for which an explicit Euler method is used for dealing with
numerical fluxes, while the source terms are implicit. A local time-stepping method is used
to make the convergence to steady state faster. The same numerical approach is retained
for the thermal boundary layer.

It should be recalled that the main advantage of this boundary-layer method is that
it can be simply extended in 3D on any surface mesh. This has been presented in refer-
ences [47,48] concerning the solution to the most difficult part of the problem, the dynamic
boundary layer.

4.3. Simplified Integral Boundary Layer Method

In the following, results obtained with the SIM2D solver [11] will be shown. This is a
simplified integral method for which the heat transfer coefficient is calculated as follows.
In the laminar regime, the formula of Smith and Spalding [32,49] is used to express htc with
respect to the curvilinear abscissa s:

htc(s) =
cpµeu1.435

e

3.4176Pr
(∫ s

0 µe/ρeu1.87
e (x)dx

)0.5 , (18)

In the turbulent regime, the Ambrok method is used [50]:

htc(s) = 0.0125ρeuecpPr−0.5Re−0.25
θTs

, (19)

where ReθTs =
ρeueθTs

µe
. The enthalpy thickness θTs is inspired by Kays and Crawford [32]:
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θTs = θTs,trans +

(
0.0156Pr−0.5µ0.25

e
∫ s

strans
ρeue(Tw − Te)1.25ds

(ρeue(Tw − Te))
1.25

)1/1.25

, (20)

where θTs,trans =
1

ue(strans)

∫ strans

0

µehtc,lam(s)
ρePrλ

ds is the enthalpy thickness at the point of

transition strans, where htc,lam(s) is given by Equation (18).

4.4. Application: Simulations on an Airfoil with Non-Uniform Wall Temperature

The solver BLIM2D is validated on cases involving the resolution of the thermal
boundary layer in Appendix A.1 and Appendix A.2 in the Appendix A. These sections also
allow us to discuss the good accuracy of SIM2D for very simple cases for which the wall
temperature is constant.

The two test cases in Table 1 from Al-Khalil’s database [27] were investigated with
all three boundary-layer codes CLICET, BLIM2D, and SIM2D. These are flows around a
NACA0012 airfoil under anti-icing conditions. In addition to the aerodynamic conditions
provided in Table 1, wall temperature measurements are available at several curvilinear
abscissas s/c (c is the chord length). Therefore, the wall temperature was imposed as a
boundary condition for these measurements, as shown in Figure 7. A simple piecewise
linear function was used to provide the entire wall temperature distribution to the codes.
RUN87b has a nearly uniform wall temperature and is thus very similar to the cases of
Section A.2. The temperature is higher and significantly more variable for RUN22a.

Table 1. Test cases from Al-Khalil’s database for the analysis of the boundary-layer solvers.

Case Profile c (m) AOA (◦) M∞ T∞ (K) P∞ (Pa)

RUN87b NACA0012 0.9144 0 0.1376 262.7 100,000
RUN22a NACA0012 0.9144 0 0.1369 265.5 100,000

Figure 7. Wall temperature in the test cases of Table 1. (Left): RUN87b. (Right): RUN22a.

For the simulations, the structured Vassberg and Jameson meshes were used [51].
More specifically, the one consisting of 1024 points at the wall was employed since it was
established in Section A.2 that it produces satisfactory results for uniform wall temperature.
All simulations were performed by feeding the different boundary-layer codes with the
velocity fields computed by the inviscid code EULER2D (see [11] for more details on this
solver). Since BLIM2D only provides results in the laminar area, the analysis is limited
to this region, which is assumed to cover the range s/c ∈ [−0.087, 0.087]. In addition,
since the profile is symmetric with zero angle of attack, only the results on the suction side
(s/c > 0) are shown. In Figure 8, the wall heat flux is shown. This is a native output for
CLICET and BLIM2D. However, for SIM2D, the heat flux has been reconstructed through
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Φw = htc(Tw − Trec). The results of the three codes are quite close to each other overall.
However, BLIM2D produces a significantly better result than SIM2D near the stagnation
point (s/c = 0), compared to CLICET (which is consistent with the observations also made
in Section A.2). On the other hand, for RUN22a, BLIM2D is significantly better than SIM2D
in the entire region where the wall temperature increases (up to s/c ' 0.05). For both
RUN87b and RUN22a, BLIM2D fails to perfectly capture the evolution of the heat flux
produced by CLICET at the breaks in the slope of Tw, around s/c ' 0.025, in particular for
RUN87b and around s/c ' 0.05 for RUN22a. However, the agreement remains better than
for SIM2D.

Figure 8. Wall heat flux produced by CLICET, BLIM2D, and SIM2D in the test cases of Table 1. (Left):
RUN87b. (Right): RUN22a.

Regarding the velocity and temperature profiles produced by BLIM2D in s/c = 0.087,
Figure 9 shows that they are very similar to those obtained with CLICET for RUN87b,
which is weakly heated. This agreement is all the more interesting as the figure also shows
that the profiles are not simply self-similar with respect to y/δ (all the profiles provided
by CLICET in the laminar area are plotted). For RUN22a, the agreement becomes worse
(Figure 10). The velocity profile is already affected, as the wall is quite strongly heated,
and the constant density assumption used in BLIM2D is questioned.

Figure 9. Velocity and temperature profiles produced by CLICET and BLIM2D in the Test Case
RUN87b of Table 1, s/c = 0.087. (Left): velocity. (Right): temperature.
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Figure 10. Velocity and temperature profiles produced by CLICET and BLIM2D in the Test Case
RUN22a of Table 1, s/c = 0.087. (Left): velocity. (Right): temperature.

There are thus two avenues of progress for the integral approach. The one highlighted
here is the development of a “compressible” method, with variable density. The other
avenue concerns the fact that the temperature profile is not completely representative of the
real profile either. Here, Figure 10 (right) shows that BLIM2D’s profile does not capture any
of the slight inflections of CLICET’s profile. There may be even more critical cases, studied
by Harry et al. [52]. Very complex temperature profiles are indeed impossible to predict
with the one-equation integral method presented here. Harry et al. [52,53] thus solved a
system of integral equations for the thermal boundary layers, such that the temperature
profile can be more complex, and more information is transported by the boundary layer.
This system was built based on a Galerkin method, as shown in reference [53], which is
very promising.

5. Coupling Methodologies

In the previous sections, the ice accretion solvers, heat conduction solver, and boundary-
layer solvers were presented. This section describes the methods that were used to couple
these solvers in order to perform simulations of a thermal ice protection system in anti-icing
and deicing mode.

5.1. Coupling between the Ice Accretion Solver and the Heat Conduction Solver

In order to model thermal ice protection systems, the ice accretion solver and the
heat conduction solver need to be coupled. Continuity of the temperature field and the
heat flux has to be ensured at the interface between the heat conduction solver and the ice
accretion solver. To do so, a Schwarz coupling algorithm is used. The idea is to perform
sub-iterations using the following interfacial boundary conditions (the superscript (k)
denotes the sub-iteration):

−Φ(k)
acc = ω1(T

(k−1)
cond − T(k)

acc )−Φ(k−1)
cond

Φ(k)
cond = ω2(T

(k)
acc − T(k)

cond) + Φ(k)
acc

(21a)

(21b)

where Φacc and Φcond denote respectively the heat flux at the interface provided by the
accretion solver and the heat conduction solver. In the same way, Tacc is the temperature
at the interface provided by the accretion solver and Tcond the one provided by the heat
conduction solver; ω1 and ω2 are numerical coupling coefficients.

The coefficients ω1 and ω2 are adaptive and depend on local information such as the
ice thickness, the thermal conductivity, and the heat transfer coefficient. They are chosen to
minimize the number of sub-iterations required to reach convergence. More details may be
found in [23].
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5.2. Coupling with the Boundary-Layer Solvers BLIM2D and CLICET

Both boundary-layer solvers BLIM2D and CLICET can take an imposed wall tem-
perature boundary condition, solve their respective equations, and then output the corre-
sponding boundary heat flux. Using the approach presented in Appendix A.2 and more
specifically Equation (A3), one may compute an updated htc and reference temperature.

Based on this method, two approaches for coupling a boundary-layer solver (BLIM2D
or CLICET) with the ice accretion/heat conduction solver were used in the present work.

For anti-icing cases, a steady-state tight coupling was performed. At every iteration
of the algorithm, the boundary-layer solver is used to compute htc and Tr. These data are
then provided as input to the ice accretion solver. The ice accretion solver and the heat
conduction solver then perform a coupled iteration using the relations presented in the
previous subsection. The algorithm is iterated until sufficient convergence is reached on
the interface temperature with the boundary-layer flow and the interface temperature and
heat flux between the ice accretion solver and the heat conduction solver.

For deicing cases, the simulation is unsteady. The method in that case is to update the
heat transfer coefficient and the reference temperature at every N time step. However, at
every time step, a strong coupling between the ice accretion solver and the heat conduction
solver is still performed as described in the previous subsection.

For both solvers, the boundary-layer solver meshes are not coincident with the ice
accretion and heat conduction skin mesh. BLIM2D uses the aerodynamic flow computation
mesh, whereas CLICET constructs its own mesh based on internal criteria. The wall
temperature is passed to these solvers using interpolation.

6. Illustrative Cases

In this section, two test cases are presented to assess the proposed modeling and simu-
lation strategy. These cases are based on the experimental databases of Al Khalil et al. [27]
and Wright et al. [54]. In both these experimental campaigns, the same electrothermal ice
protection system was implemented and tested in anti-icing conditions on the one hand
and deicing conditions on the other. The electrothermal system was integrated into a 0.9144
m chord NACA0012 airfoil. The layout of the system is illustrated in Figure 11.

The layout is slightly non-symmetrical due to a fabrication error. Following the
observations of Al Khalil et al. [27], the heater layout is shifted approximately 4.8 mm in
the direction of the trailing edge on the suction side. The layout is provided in Table 2 in
terms of the curvilinear abscissa.

1
2

3
4

5
6 7

1.905cm

2.54cm

2.54cm

2.54cm

2.54cm
3.81cm

3.81cm

Figure 11. Illustration of the layout of the studied electrothermal system.
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Table 2. Location of the heaters in terms of starting (s1) and ending (s2) curvilinear abscissas.

Heater s1 [m] s2 [m]

1 −0.098853 −0.055753
2 −0.055753 −0.030353
3 −0.030353 −0.004953
4 −0.004953 0.014097
5 0.014097 0.039497
6 0.039497 0.064897
7 0.064897 0.102997

Moreover, the heaters were embedded in a multilayered stack of materials. The
thickness and composition of the stack are given in Table 3. The heaters were placed
between layers 2 and 3. The physical properties of the materials are given in Table 4. The
electrothermal system was discretized with 10,000 cells. More details concerning the mesh
can be found in Appendix B.

Table 3. Thickness and composition of the multilayered stack.

Layer Material Thickness [mm]

1 Erosion Shield 0.20
2 Elastomer 0.2865
3 Elastomer 0.2865
4 Fiberglass/Epoxy Composite 0.89
5 Silicone Foam Insulation 3.43

Table 4. Material properties.

Material ρ (kg.m−3) cp (J.kg−1.K−1) λ (W.m−1.K−1)

Erosion Shield 8025.25 502.41 16.30
Elastomer 1384.00 1256.04 0.256

Fiberglass/Epoxy Composite 1794.06 1570.05 0.294
Silicone Foam Insulation 648.75 1130.43 0.121

6.1. Anti-Icing Case

Al Khalil et al. [27] performed experiments in many different anti-icing conditions.
Here, Case 87b (already investigated in Section 4.4) was selected for simulation and com-
parison to experimental results. The aerodynamic and icing conditions for this case are
given in Table 5. The heating power density provided by each mat is given in Table 6.

This case was simulated by coupling a steady-state ice accretion solver with a steady-
state heat conduction solver using the same type of methodology as that presented in
Section 5.1. Concerning the heat transfer coefficient, several approaches were tested.

First, the simplified integral solver SIM2D was used. This solver computes the heat
transfer coefficient before the coupling procedure between accretion and conduction solvers.
When using this solver, the wall is assumed to be adiabatic, and the heat transfer coefficient
is not updated during the coupling algorithm.

Second, the solver CLICET which solves the Prandtl boundary-layer equations was
used. In this case, a stronger coupling with the boundary-layer solver is performed as
described in Section 5.2.

Third, the integral boundary-layer solver BLIM2D was also used. The coupling is
performed in the same way as the one with CLICET in the laminar area, while the SIM2D
solution is used in the turbulent region.

As the system is operating in anti-icing mode, the surface is likely to be free of
ice. Hence, for all boundary-layer computations, the surface was assumed to be smooth.
Moreover, following Al Khalil et al. [27], when using SIM2D or CLICET, a transition to
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turbulence was imposed at s = ±0.03175. In addition, when using CLICET, the Spalart-
Allmaras turbulence model [44] was used to compute the turbulent regions.

Table 5. Aerodynamic and icing conditions for anti-icing Case 87b

AoA [◦] M∞ p∞ [Pa] T∞ [K] LWC [g.m−3] MV D [µm]

0 0.137 101,325 262.7 2 20

Table 6. Power densities for anti-icing Case 87b

Heater nb 1 2 3 4 5 6 7

Power density [W.m−2] 3410 3875 5425 7130 4030 3875 3100

First, simulations using SIM2D and CLICET as boundary-layer solvers were per-
formed. Figure 12 shows a comparison of the predicted wall temperature distribution
with the experimental data. The simulation strategy can capture the correct order of
magnitude for the surface temperature. One may observe that the surface temperature
predicted with CLICET is higher than the one predicted with SIM2D. This can be ex-
plained by the fact that when using CLICET the wall is not assumed to be adiabatic. The
updating at every step of the coupling algorithm enables taking into account the transport
of heat in the boundary layer. This heat is convected downstream and contributes to
increasing the wall temperature. This improvement of the simulation results is of interest
for industrial applications.

Secondly, this test case was also used to assess the integral boundary-layer solver
BLIM2D. Figure 13 shows a comparison of the predicted wall temperature distribution and
how it compares to the ones obtained using SIM2D or CLICET. As stated in Section 4.4, the
comparison is limited to the laminar region because in its current state of development
BLIM2D only provides results in the laminar area. All boundary-layer solvers show
excellent agreement. Moreover, as expected from Section 4.4, BLIM2D produces better
agreement compared to CLICET than SIM2D in the vicinity of the stagnation point (s ' 0).
These results are therefore encouraging regarding the further development of an integral
boundary-layer solver such as BLIM2D and its 3D counterpart BLIM3D.
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Figure 12. Comparison between experimental data and numerical results for anti-icing Case 87b.
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Figure 13. Anti-icing Case 87b: comparison between experimental data and numerical results (in the
laminar region) obtained with a coupling with SIM2D, CLICET, and BLIM2D.

6.2. Deicing Case

In this section, deicing Case 1 from Wright et al. [54] is chosen for simulation and
comparison to experimental results. The aerodynamic and icing conditions for this case are
given in Table 7. The heating power density provided by each mat is given in Table 8. In this
case, the electrothermal system is operated in deicing mode. During the cycle, heater 4 is
always activated. All other heaters are initially deactivated. After 100 s, Heaters 3 and 5 are
activated simultaneously for 10 s then deactivated. They are followed by the simultaneous
activation of Heaters 1, 2, 6, and 7 for 10 s. The cycle then repeats itself over a total duration
of 600 s.

To compute the heat transfer coefficient for this case, the boundary-layer solver CLICET
was used. As the electrothermal system is operated in deicing mode, ice is expected to
build up during the activation cycle. Therefore, the surface was assumed to be rough.
Moreover, the boundary layer was assumed to be fully turbulent. As in the previous case,
the Spalart–Allmaras turbulence model was used.

Ice shedding was taken into account using a simple criterion. Once the melted length
of an ice block exceeds 80% of the total contact length, the whole block is assumed to detach
from the airfoil.

Figure 14 shows a comparison between experimental data and numerical results.
More precisely, the predicted time evolution of the temperature near the center of Heaters
4, 5, and 6 are compared to the experimental measurements. Concerning Heater 4, the
simulations over-predict the rate at which the temperature increases. This may be due
to an underestimation of the heat transfer coefficient at the leading edge. However, after
t = 100 s the temperature stabilizes to a value that is close to the experimentally observed
temperature peaks. For Heaters 5 and 6, the simulation shows good agreement with
the experimental data. The temperature field for Heater 5 is slightly over-predicted by
approximately 2K. The comparison for Heater 6 shows much better agreement.

Table 7. Aerodynamic and icing conditions for deicing Case 1.

AoA [◦] M∞ p∞ [Pa] T∞ [K] LWC [g.m−3] MV D [µ m]

0 0.137 101,325 265.5 0.78 20

Table 8. Power densities for deicing Case 1.

Heater nb 1 2 3 4 5 6 7

Power density [W.m−2] 12,400 12,400 15,500 7750 15,500 12,400 12,400
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Figure 14. Comparison between experimental data and numerical results for the deicing Case.

A qualitative description of the evolution of the liquid water films, the ice shape, and
the temperature field in the ETIPS is shown in Figure 15 for t = 10, 99, 110 and 115 s. At
t = 10 s, Figure 15 (top left) shows that the heating at the parting strip generates a runback
liquid water film that freezes further downstream. This generates ice build-up, as shown in
Figure 15 (top right) for t = 99 s. At t = 100 s, Heater 3 is activated. As this heater is located
below the ice shape, its activation leads to the creation of a melted liquid layer. This is
shown in Figure 15 (bottom left) (for t = 110 s). After t = 110 s, Heater 3 is deactivated.
However, the ice bloc continues to melt due to thermal inertia. When a sufficient amount
of the contact area between the ice and the airfoil has melted, the ice block is shed. This is
shown in Figure 15 (bottom right).

Figure 15. Temperature field in the electrothermal system and unsteady ice accretion solution at
different simulation times. (Top left): t = 10 s. (Top right): t = 99 s. (Bottom left): t = 110 s.
(Bottom right): t = 115 s.
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7. Conclusions and Perspectives

In this article, models and simulation strategies for electrothermal ice protection
systems were presented. In particular, the modeling and simulation of the heat conduction
in the airfoil, unsteady ice accretion, and melting and boundary-layer flow were described.

After presenting the heat conduction model describing the electrothermal system, a
three-layer model for the simulation of unsteady icing phenomena was proposed. The
methodology models the dynamics of the sheared liquid film with a lubrication assumption.
The heat equation is used to model heat transfer in the normal direction in the static layers
and to capture the dynamics of the melting front.

Several methods for solving the boundary-layer flow were presented. These solvers
are used to compute the heat transfer coefficient. Details concerning the integral boundary-
layer solver BLIM2D were provided. The development of this solver has several aims such
as providing sufficiently accurate heat transfer predictions at a reasonable computational
cost. Moreover, this approach is easier to extend to a three-dimensional setting than a
Prandtl boundary-layer solver. The results obtained when using this solver are encouraging
in this respect.

Simulations of the operation of an electrothermal ice protection system in anti-icing
and deicing mode were presented. The numerical predictions compared well to the experi-
mental data, showing that the presented coupled modeling and simulation methodology
can capture the relevant physics.

To conclude, the presented modeling and simulation method for electrothermal ice
protection systems takes into account many complex physical phenomena. The coupling of
the different numerical modules is challenging but provides satisfactory results concerning
the test cases. Nevertheless, there is room for many improvements. Further effort is required
to consolidate and assess this methodology in more severe conditions. For example, when
applying high heating power the coupling with the boundary layer may become even
stronger and could require more sophisticated algorithms. In addition, the high evaporation
rate could also be poorly modeled by the Chilton–Colburn analogy, hence requiring a
boundary-layer solver that would solve mass fraction transport equations [31].

Additional work concerning optimized coupling coefficients between solvers could
also help to reduce the computational cost. Some improvements, such as accounting for
the heater mat source terms in the derivation of the coupling coefficients, are possible and
are part of ongoing work.

In this article, the ETIPS were modeled without considering the surface state of the
walls exposed to icing, in particular the wettability properties. This lack in modeling may
affect the characteristics of water runback on the surface, and it is an issue to address in
order to allow modeling the combination of ETIPS with icephobic coatings.

The extension of the method in 3D also remains to be instituted. The reflection was
carried out for the resolution of the boundary layer with the integral method presented. The
triple layer method has so far been simplified in 3D by removing the layer of melted liquid
between the protected surface and the ice [14] and would deserve to be extended. Other
points remain to be solved. The coupling methodology between the conduction solver
and the triple-layer solver would remain to be optimized. In addition, the treatment of ice
shedding would require the development of efficient algorithms to ensure a reasonable
computational cost for icing applications.

Finally, it may be interesting to take into account the high degree of uncertainty
inherent to icing in aeronautics. Some research efforts have already been performed in this
direction [55,56] and are the subject of ongoing investigations.
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Appendix A. Validation of the Thermal Integral Boundary-Layer Method

Appendix A.1. Validation in Laminar Regime

Some simulations of a database generated by Han and Palacios [57,58] were performed
with CLICET, BLIM2D, and SIM2D to validate these tools. In the experimental database
of Han and Palacios, some measurements of heat transfer coefficient were performed, for
which htc is given by:

htc =
Φw

Tw − T∞
(A1)

where φw is the measured wall heat flux, whereas Tw is the measured wall temperature,
and T∞ is the airflow temperature set in the wind-tunnel inlet. This database is mainly
dedicated to the investigation of the influence of wall roughness on htc. The effects of
roughness being out of the scope of this paper, we are only interested in the laminar area
where roughness is not expected to affect htc.

The experimental conditions are as follows: a NACA0012 airfoil, whose chord length
is c = 0.5334 m, was put in a wind tunnel. The aerodynamic flow has an upstream
velocity of about V∞ ' 35 m/s, the outside air temperature is about T∞ ' 295 K, while the
wall temperature is about Tw ' 298 K. The experimental data are unfortunately known
approximately. The measurements of htc have been digitized, and more precisely, they

have been reconstructed from the graphs of Frossling number Fr =
htc × c

λ∞Re0.5
∞

, where the

air conductivity λ∞ was taken equal to 2.2× 10−2 W/m/K and the Reynolds number is

Re∞ =
P∞cV∞

rT∞µ∞
(r = 287 J/K/kg for air, µ∞ is given by the Sutherland law, and the pressure

was set to P∞ = 93,000 Pa here).
Despite the low precision of the input data, the agreement on htc between the codes and

the experimental data is rather good. The experimental data set has been plotted in Figure A1
for different roughness sizes. As expected, the roughness size affects only the extent of the
laminar area, and the values of htc coincide rather well for all sets of measurements.

Figure A1. Solution produced by CLICET, SIM2D, and BLIM2D for the heat transfer coefficient with
respect to the curvilinear abscissa s in the laminar area of Han and Palacios’s experiment for several
meshes. Comparison against the experimental measurements.



Aerospace 2023, 10, 75 21 of 29

For the simulations, several meshes were used. The first mesh is the default structured
mesh of IGLOO2D [11]. The others are unstructured meshes of different refinement levels.
The structured mesh is rather refined around the leading edge of the airfoil (Figure A2),
where the mesh size is around ∆xLE ' 2× 10−3 × c. Further downstream, the mesh is
coarsened, especially downstream of the first five percent of the chord length, the mesh size
reaching around 0.05× c in the downstream half of the airfoil. Figure A2 shows that the
mesh size is more uniform for the unstructured meshes, here on the example of the coarsest
mesh for which the same level of refinement is used at the leading edge as for the structured
mesh. Two additional levels of refinement were employed for these unstructured meshes,
two times (∆xLE ' 1× 10−3× c) and four times (∆xLE ' 5× 10−4× c) finer than the coarse
mesh, respectively.

Figure A2. Meshes used for the simulation of the Han and Palacios test case. Default structured mesh
in blue lines, coarsest unstructured mesh in black lines.

As in Section 4.4, inviscid simulations were performed with the solver EULER2D.
The boundary-layer solution was then computed with the three solvers presented earlier,
CLICET, BLIM2D, and SIM2D, fed with the inviscid solution. For these simulations,
the laminar area was maintained up to the non-dimensional abscissa s/c = 0.02. The
simulations with the intermediate unstructured mesh (∆xLE ' 1× 10−3 × c) are not shown
in the following figures because the results are very close to those of the finest mesh
(∆xLE ' 5× 10−4 × c), except for the region near the stagnation point (s = 0) showing
that mesh convergence is achieved. The simulation with CLICET captures quite well
the experimental data, taking into account the uncertainties of the experimental inputs
(Figure A1). In addition, Figure A3 (left) shows that all the meshes produce very similar
solutions, except in the vicinity of the stagnation point, which is more difficult to capture
and requires sufficient mesh refinement and quality. The SIM2D solution, which is fed with
the same inviscid data from EULER2D, is only slightly more sensitive to mesh convergence
than CLICET (Figure A3, right), and the solution is very good compared to the experiments
too (Figure A1), which justifies even more the use of this type of solver for unheated
applications. For this, however, it was necessary to correct htc in the following way:

htc =
hS(Tw − Trec)

Tw − T∞
, (A2)

because the heat transfer coefficient hS of SIM2D is used as Φw = hS(Tw − Trec), where
Trec is the recovery temperature. Moreover, it is worth noting that SIM2D only slightly
overstimates htc compared to CLICET in the immediate vicinity of s = 0.
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Figure A3. Solution produced by CLICET and SIM2D for the heat transfer coefficient in the
laminar area of Han and Palacios’s experiment for several meshes. (Left): CLICET solution.
(Right): SIM2D solution.

The simulation with BLIM2D, also fed with the same EULER2D data, slightly under-
estimates htc, but the error is rather small (Figure A1). However, the sensitivity to the mesh
is larger than for the other solvers, as shown in Figure A4. The standard structured mesh is
indeed not fine enough and slightly underestimates htc all along the profile. To sum up, for
sufficiently fine meshes, the difference between the results of the three codes is very small
(Figure A1). The main difference is finally that SIM2D overestimates htc near s = 0, which
is a particularly tricky region to capture with this code.

Figure A4. Solution produced by BLIM2D for the heat transfer coefficient in the laminar area of Han
and Palacios’s experiment for several meshes.

In addition, regarding other classical data of boundary-layer approaches, the agree-
ment is very good between BLIM2D and CLICET on the momentum thickness δ2 and the
skin friction coefficient C f , as shown in Figure A5. In addition, BLIM2D’s sensitivity to the
mesh is weaker than for htc for these dynamic boundary-layer parameters. SIM2D is less
accurate for these two variables compared to CLICET (although still providing a rather
good approximation), which highlights the lack of generality of the approach.



Aerospace 2023, 10, 75 23 of 29

Figure A5. Solution produced by CLICET, BLIM2D, and SIM2D for the momentum thickness and
the skin friction coefficient in the laminar area of Han and Palacios’s experiment for several meshes.
(Left): δ2. (Right): C f .

Appendix A.2. Simulations on an Airfoil with Uniform Wall Temperature

For further analysis, comparisons between CLICET, BLIM2D, and SIM2D are per-
formed on the cases of Bayeux’s article [34] (Table A1), for which the dynamic boundary
layer has already been studied in detail by Bayeux et al. All simulations are again per-
formed by feeding the different boundary-layer codes with the velocity fields computed by
the inviscid code EULER2D. In this section, a brief reminder is given on the accuracy of
the results obtained for the dynamic boundary layer in Case 1 of Table A1, with CLICET
as the reference. Concerning the thermal boundary layer, the convective heat transfer
coefficient htc is the key result. There is no ambiguity about the calculation method for
the simplified SIM2D method (see Section 4.3, Equation (18)). However, both CLICET and
BLIM2D perform a heat flux calculation for an imposed wall temperature. In practice, for
these two codes, the heat transfer coefficient is thus derived from the linearization:

htc =
Φw2 −Φw1

Tw2 − Tw1
, (A3)

where Tw1 and Tw2 are, respectively, the two wall temperatures imposed for two different
simulations, Φw2 and Φw1 are the wall heat fluxes produced for each of these simulations.
For CLICET, Tw1 = Trec − 5 K and Tw2 = Trec + 5 K [35]. For BLIM2D, as the method does
not allow simulating cooled walls, Tw1 = Trec + 5 K and Tw2 = Trec + 10 K [35]. It has been
verified in Bayeux’s Ph.D. thesis [35] that the impact of the choice of Tw1 and Tw2 is small
(in particular by using Tw1 = Trec + 5 K and Tw2 = Trec + 10 K for CLICET on some cases).

Table A1. Test cases for the analysis of the boundary-layer solvers.

Case Profile c (m) AOA (◦) M∞ T∞ (K) P∞ (Pa)

Case 1 NACA0012 0.500 4 0.30 263 80,000
Case 2 NACA0012 0.500 0 0.15 263 80,000
Case 3 MS317 0.914 0 0.2420 263 101,325
Case 4 MS317 0.914 8 0.2420 263 101,325
Case 5 GLC305 0.9144 4.5 0.2730 268.30 101,325
Case 6 GLC305 0.9144 1.5 0.3940 263.60 101,325

Cases 1 and 2 of Table A1 are NACA0012 airfoils for which the Vassberg and Jameson
meshes were used [51]. In Case 2 of Table A1 in particular, it was shown that the mesh
composed of 1024 points on the surface of the airfoil ensures mesh convergence [34].
Therefore, this mesh was used here for Case 1 as well. To first address the results of
the dynamic boundary layer, Figure A6 (left) shows that the shape factor H = δ1/δ2 is
well reproduced by BLIM2D, compared to CLICET. Figure A6 (right) shows the interest
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in introducing a corrective source term for the numerical issue faced at the stagnation
point (s = 0), which was shown in Case 2 in Bayeux’s article [34]. This source term
corrects a significant error in H, and it affects only the immediate vicinity of s = 0. It also
affects the dynamic integral thicknesses, such as the momentum thickness δ2 (Figure A7,
right). Regarding δ2, Figure A7 (left) shows that BLIM2D captures very well the evolution
predicted by CLICET in the laminar area (s/c in the range between−0.3 and 0.1), especially
on pressure side (s/c < 0). The results are still very good outside this area but a little less
accurate. The simplified SIM2D method produces slightly worse results.

Figure A6. Solution produced by CLICET and BLIM2D for the shape factor H in Case 1 of Table A1.
(Left): whole airfoil. (Right): focus in the vicinity of the stagnation point.

Figure A7. Solution produced by CLICET, SIM2D, and BLIM2D for the momentum thickness δ2 in
Case 1 of Table A1. (Left): whole airfoil. (Right): laminar area.

The resolution of the thermal boundary layer does not suffer from the issue identified
at the stagnation point for the dynamic boundary layer (which is related to the fact that
the numerical flux term evolves linearly with respect to ue and that the issue comes from
discretization errors of derivatives of un

e terms present in the flux terms, with exponents
n larger than one, as shown in Bayeux’s article [34]). Figure A8 (right) indeed shows that
htc is the same whether the corrective source term is activated or not. This area is even
simulated more smoothly than for CLICET. Moreover, Figure A8 (left) shows the very good
agreement between BLIM2D and CLICET on htc in the whole laminar area. The BLIM2D
method for the thermal boundary layer was developed for the laminar regime only, so the
comparison is limited to this region. The SIM2D solution is quite correct, which justifies
the widespread use of such simplified approaches for ice-accretion calculations. However,
the BLIM2D solution is rather better at the stagnation point for the maximum value of htc
(in the accelerated area of the suction side of the airfoil) and on the suction side in general.
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Figure A8. Solution produced by CLICET, SIM2D, and BLIM2D for the convective heat transfer
coefficient htc in Case 1 of Table A1. (Left): laminar area. (Right): focus in the vicinity of the
stagnation point.

Regarding the other cases of Table A1, the same observations are made concerning
htc. Table A2 indeed shows that the average error (relative error L2, compared to CLICET)
in the laminar region is indeed systematically higher for SIM2D, reaching almost 0.1 for
Case 6, while it is limited to around 0.05 for BLIM2D (Cases 4, 5, and 6). The error at the
stagnation point is even higher. With the exception of Case 4 for which the CLICET solution
is oscillating near s = 0. the error made by SIM2D is indeed again systematically larger (in
general significantly) than for BLIM2D.

Table A2. Relative errors in htc in the laminar area for the six cases of Table A1. L2-norm relative
error ε2 = ‖htc − htc,CLICET‖2/‖htc‖2. Relative error at the stagnation point εSP =| htc(s = 0) −
htc,CLICET(s = 0) | / | htc,CLICET | (s = 0).

Case ε2,BLIM2D ε2,SIM2D εSP,BLIM2D εSP,SIM2D

Case 1 0.0400 0.0729 0.0302 0.1445
Case 2 0.0157 0.0568 0.0227 0.2813
Case 3 0.0132 0.0450 0.0486 0.1461
Case 4 0.0528 0.0668 0.2047 0.0384
Case 5 0.0463 0.0662 0.0549 0.1476
Case 6 0.0540 0.0965 0.0742 0.1476

Even if SIM2D can capture these cases well, BLIM2D reduces the error on htc, even for
these very simple cases where the wall has a nearly constant temperature.

Appendix B. ETIPS Mesh Information

The mesh used to solve the heat equation inside the electrothermal ice protection
system was composed of 10,000 cells. As shown in Figure A10, this discretization provides
sufficiently converged results for the targeted applications. The mesh was generated in
a structured way by discretizing each layer and each zone of the outer boundary with a
given number of cells (see Tables A3 and A4 for details). A close-up view of the mesh is
shown in Figure A9.
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Figure A9. Mesh of the electrothermal system in the upper part of the leading edge.
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Figure A10. Comparison between results obtained with 2 meshes (10,000 cells and 20,000 cells)
during the last 3 cycles.

Table A3. Thickness and discretization of the multilayered stack.

Layer Thickness [mm] nb. Cells

1 0.20 4
2 0.2865 6
3 0.2865 6
4 0.89 8
5 3.43 10

Table A4. Definition of zones in terms of starting (s1) and ending (s2) curvilinear abscissa and the
associated discretization.

Zone s1 [m] s2 [m] nb. Cells

1 −0.2 −0.098853 15
2 −0.098853 −0.055753 30
3 −0.055753 −0.030353 30
4 −0.030353 −0.004953 40
5 −0.004953 0.014097 40
6 0.014097 0.039497 40
7 0.039497 0.064897 30
8 0.064897 0.102997 30
9 0.102997 0.2 15
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