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Abstract: The wing planform and flapping kinematics are critical for the hovering flight of flapping
wing micro air vehicles (FWMAVs). The degree of influence of wing geometry and kinematic parame-
ters on aerodynamic performance still lacks in-depth analysis. In this study, a sensitivity analysis was
conducted based on the quasi-steady aerodynamic model. Each parameter was investigated indepen-
dently by using the control variable method. The degree of each variable’s influence on lift, power,
and power loading is evaluated and compared. Furthermore, detailed exponential relationships were
established between the parameters and the corresponding aerodynamic properties. It is found that,
for the geometric parameters, wing area has the greatest influence on lift, and the distribution of area
has the most visible effect on aerodynamic power. All geometric parameters are negatively correlated
with power loading. For the kinematic parameters, flapping frequency, compared with sweeping
amplitude, results in faster lift growth and slower drop in power loading, while their influence on
aerodynamic power is nearly comparable. A moderate pitching amplitude with advanced rotation
will maximize the lift. For the flapping trajectory, lift and power loading are primarily affected by the
shape of the pitching motion rather than the sweeping motion. But the sweeping motion seems to
dominate the power consumption. The research in this paper is helpful to understand the effect of
each parameter and provide theoretical guidance for the development of FWMAVs.

Keywords: flapping wing; hovering flight; sensitivity analysis; geometric parameters; kinematic
parameters

1. Introduction

Flapping wing micro air vehicles (FWMAVs), especially those with hovering flight ca-
pability, have attracted growing interest in the past few years [1,2]. Various insect-inspired
or hummingbird-like FWMAVs have been developed, such as Nano Hummingbird [3],
KUBeetle [4], Colibri robot [5], etc., for sustainable hovering flight and potential applica-
tions. The improvement of the hovering FWMAVs with higher lift force and lower power
consumption is the persistent pursuit of researchers. Numerous numerical and experimen-
tal efforts have been made to design and optimize the flapping wings which are the primary
component of FWMAVs to generate aerodynamic force [6–9]. It has been demonstrated
that the wing planform and the flapping kinematics function as the dominant factors in the
aerodynamic analysis of hovering flight [10–14].

The shape of the flapping wing planform always determines the aerodynamic force
and efficiency. Uniform or dimensionless parameters, such as wing area S, aspect ratio
AR and dimensionless radius of the second moment of area r2 are often used to describe
or define the wing geometry. Effect of these parameters on the aerodynamic performance
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of flapping wing has been explored widely. Researches on the aspect ratio AR present
contradictory results. Some studies indicate that the increase of AR will lead to the mono-
tonic variation of lift force [11,15,16], while others present an optimum value around
AR = 4 [17,18]. This discrepancy might result from the flexibility of the wing. Meanwhile,
the flow structures around the wing appear to be sensitive to AR, which will in turn
affect the aerodynamic force. Additionally, the wing area also presents an apparent influ-
ence on the aerodynamic performance. The experiment conducted by Nan et al. [9] and
Deng et al. [19] has shown that a larger wing area will create more lift, as well as power
consumption. The dimensionless radius of the second moment of area r2, which reflects
the distribution of wing area or chord length, is another crucial parameter for wing shape.
Research by Shahzad et al. [11] and Broadley et al. [13] indicates that the wing with a greater
outboard area can produce higher lift at the cost of more power. It can be found that all the
above geometric parameters are able to affect the aerodynamic performance of flapping
wing. However, few studies have compared the degree of influence of each parameter.

The flapping kinematics also present close relationship with the hovering lift and
maneuverability. The feature parameters include flapping frequency, sweeping amplitude,
pitching trajectory, etc. The flapping frequency shows an allometric positive correlation
with lift and power as summarized by Nan et al. [9] and Nguyen et al. [20]. According to
Phan et al. [21] who evaluated how the sweeping amplitude affects the flight efficiency of
beetles, a larger sweeping amplitude is more beneficial for power requirement of the same
vertical force production than a smaller amplitude. The introduction of pitching motion,
whether passive rotation or active morphing, shows great potential advantages in lift and
efficiency. Result of Lua et al. [22] and Sane and Dickinson [23] showed that an advance
in pitching motion with a moderate angle of attack is the high-lift behavior. Recently, the
impact of flapping trajectories is gradually attracting attention. A triangular sweeping
motion accompanied by a trapezoidal pitching motion, which is similar to the real insect
wing kinematics, will be beneficial for aerodynamic efficiency [14,24]. Although all of these
kinematic parameters have a non-negligible influence on aerodynamic performance, few
studies have provided a comprehensive answer to which parameter is more important for
hovering flight.

For the aerodynamic design and optimization of FWMAVs with various parameters,
it is necessary to evaluate the degree of influence of each variable. Subsequently, the
most crucial factors can be identified to speed up the design process. Nevertheless, few
researchers have focused on the comparison of the influence degree. The limitation might
be that computational fluid dynamics and experimental methods are still very difficult to
deal with a large number of cases with multiple design variables. Nowadays, the quasi-
steady aerodynamic model offers a new choice, which can greatly improve design efficiency
while ensuring reliability [25–27]. Moreover, it has been successfully applied to the design
and optimization of the hovering FWMAVs [28–30].

To explore the degree of influence of geometric and kinematic parameters on the
hovering performance of FWMAVs, a sensitivity analysis was performed based on the quasi-
steady aerodynamic model. Using the control variable method, various cases were carefully
designed to analyze each parameter independently. The degree of each variable’s influence
on lift, power, and power loading is evaluated and compared. Furthermore, the function of
variables and corresponding aerodynamic properties are established. The present research
will help to identify the variables with greater influence and offer theoretical guidance for
the development of FWMAVs.
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2. Materials and Methods
2.1. Key Parameters Selection

According to the blade element theoretical analysis by Ellington [10] and the experi-
mental research of Lee et al. [6], the cycle-averaged force, power, and power loading can be
written as follows:

L = 1
2 ρU2SCL = 1

2 ρ
∫ R

0 (4πr f ψm)
2CLcdr

= 8ρπ2 f 2ψ2
m
∫ R

0 cr2drCL = 8ρπ2 f 2ψ2
mr2

2R2SCL
= 8ρπ2 f 2ψ2

mr2
2 ARS2CL

, (1)

P = 1
2 ρU2SCDU = 1

2 ρ
∫ R

0 (4πr f ψm)
3CDcdr

= 32ρπ3 f 3ψ3
mr3

3SR3CD = 32ρπ3 f 3ψ3
mr3

3 ARS2RCD

= 32ρπ3 f 3ψ3
mr3

3 AR
3
2 S

5
2 CD

, (2)

PL = L
P =

8ρπ2 f 2ψ2
mr2

2 ARS2CL

32ρπ3 f 3ψ3
mr3

3 AR
3
2 S

5
2 CD

=
r2

2CL
4π f ψmr3

3RCD

=
r2

2CL

4π f ψmr3
3 AR

1
2 S

1
2 CD

, (3)

where f is the flapping frequency, ψm is the sweeping amplitude, AR is aspect ratio, S is
wing area, CL and CD is the cycle-averaged lift and drag force coefficient, r2 and r3 is the
dimensionless radius of the second and third moment of wing area. It can be found that the
parameters related to aerodynamic performance of hovering flapping wing can be grouped
into geometric parameters and kinematic parameters. The geometric parameters include
AR, S, r2, and r3. The kinematic parameters incorporate f and ψm.

The above equations present an estimated relationship between the aerodynamic
performance and sensitivity parameters and offer initial guidance in the subsequent study.
However, these equations only considered the translation term from the quasi-steady point
of view, while the rotation and additional mass components that may play an important
role were neglected. Consequently, this estimated relationship between parameters and
aerodynamic performance might not be accurate enough. Meanwhile, due to the introduc-
tion of additional variables such as r3, the influence of some parameters is not intuitive.
Additionally, the existence of force coefficients CL and CD, which might vary with the
wing shape or flight state [21,26], will lead to inaccurate results if the above equations are
directly used for sensitivity analysis. Therefore, it is still necessary to carefully explore the
relationship between sensitivity variables and aerodynamic performance.

2.2. Wing Geometric Parameters

Wing planform and geometric parameters adopted in this study were presented in
Figure 1. The rectangular configuration is selected as the benchmark geometry because the
rectangular shape can be easily parameterized to study the influence of geometric parameters.

The wing is assumed to be a thin rigid plate combined with sweeping and pitching
motions. The sweeping axis is parallel to the wing root, and the wing pitches around the
leading edge. As presented in Figure 1, the total length from the sweeping axis to the wing
tip is defined as R, the wing span is B, and the offset from the wing root to the pitching axis
is denoted as ∆R = R − B. The chord length at the wing root and wing tip is defined as cR
and cT respectively, thus the mean chord is given by c = (cR + cT)/2.

According to the quasi-steady blade element model proposed by Ellington [10], wing
area S, aspect ratio AR, and dimensionless radius of the second moment of area r2 are
selected as the key geometric parameters in this study. Since r3 and r2 can both reflect the
distribution of the wing area, r3 is not considered in this study. Therefore, these three key
parameters are established for the geometric parameters sensitivity analysis. Additionally,
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taper ratio (λ = cR/cT) is also considered under the research framework of r2. The wing
area S can be calculated by integrating the strip of wing area and is given by:

S =
∫ R

∆R
cdr, (4)

Thus, the aspect ratio AR can be expressed as:

AR =
R2

S
, (5)

The dimensionless radius of the second moment of area r2 is a crucial parameter that
denotes the distribution of the chord along the wing or wing area and is defined by:

r2 =
R2

R
=

√
1
S
∫ R

0 cr2dr

R
, (6)

where R2 is the radius of the second moment of area.
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Figure 1. Schematic diagram of the wing planform and geometric parameters. LE means leading
edge, and TE means trailing edge.

By referring to the derivation process of the geometric parameters aforementioned, it
can be found that there is a potential relationship between each parameter. That is to say,
changing one variable may cause changes in others, so the variables being investigated
need to be carefully designed to meet the control variates principle. Therefore, when
designing geometric parameters, only one variable is changed at a time.

The designed wings with various AR and S are listed in Table 1. In Group 1, the wing
shape remained rectangular when the AR is changed. The wing area S remains constant by
changing the wing span and chord length synchronously. In Group 2, the variable is the
wing area S, and the aspect ratio AR is kept constant by synchronously increasing the span
and chord length. It should be noted that to isolate the influence of wing shape change to
r2, the wing offset from the root ∆R is assumed to be zero.

Table 1. List of designed wings with various AR and S.

Wing
Name

Wing Tip
Radius R (mm)

Aspect Ratio
AR

Taper
Ratio λ

r2
Wing Area
S (mm2)

Group 1 1 81.6 2

1 0.577 3333
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Table 1. Cont.

Wing
Name

Wing Tip
Radius R (mm)

Aspect Ratio
AR

Taper
Ratio λ

r2
Wing Area
S (mm2)

Group 2 10 81.6

3 1 0.577

2220
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Another crucial parameter, r2, determines the area distribution of the wing, which
has been proved to play an important role in the lift generation [13]. By referring to
Equation (6), one can find that r2 is closely related to the local chord length of the wing.
Therefore, r2 was modulated by changing the local chord length distribution in this study.

First, maximum chord length cmax and its dimensionless spanwise location lc/R are
considered to adjust r2. Table 2 presents wings with various r2 by changing cmax and lc/R,
while the taper ratio λ is kept constant.

Table 2. List of wings with different r2 by changing maximum chord length cmax and its spanwise
location.

Wing
Name

Root
Chord
cR (mm)

Ratio of cmax to cR
cmax/cR

Spanwise
Location of cmax
lc/R

Taper Ratio
λ

r2

Group 3 19

27.8 1.4

0.125

1

0.557
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Wing 

Name 

Root Chord 

cR (mm) 

Ratio of cmax to 

cR 

cmax/cR 

Spanwise 

Location of cmax 

lc/R 

Taper Ratio 

λ 
r2 

Group 3 19 

27.8 1.4 

0.125 

1 

0.557 

 

20 0.25 0.561 

21 0.375 0.566 

22 0.5 0.573 

23 0.625 0.579 

24 0.75 0.586 

25 0.875 0.594 

Group 4 26 33.3 1.0 

0.25 1 

0.577 

 

27 31.7 1.1 0.573 

28 30.3 1.2 0.569 

29 29.0 1.3 0.565 

30 27.8 1.4 0.561 

31 26.7 1.5 0.558 

32 25.6 1.6 0.555 

33 24.7 1.7 0.552 

34 23.8 1.8 0.549 

Group 5 35 33.3 1.0 

0.75 1 

0.577 

 

36 31.7 1.1 0.580 

37 30.3 1.2 0.582 

38 29.0 1.3 0.584 

39 27.8 1.4 0.586 

40 26.7 1.5 0.588 

41 25.6 1.6 0.590 

42 24.7 1.7 0.591 

36 31.7 1.1 0.580
37 30.3 1.2 0.582
38 29.0 1.3 0.584
39 27.8 1.4 0.586
40 26.7 1.5 0.588
41 25.6 1.6 0.590
42 24.7 1.7 0.591
43 23.8 1.8 0.593

Additionally, r2 will also change with the variation of the taper ratio λ and presented in
Table 3, indicating that the rectangular wing transforms into a trapezoidal shape. Therefore,
the influence of r2 by modifying the taper ratio λ has also been investigated. Noteworthy,
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in all the cases of r2 mentioned above, R is set to 100 mm, S is 3333 mm2, and ∆R is set to
zero.

Table 3. Wings with different r2 by changing the taper ratio λ.

Wing Name Root Chord
cR (mm) Taper Ratio λ r2

Group 6 44 41.7 0.6 0.540
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2.3. Wing Kinematic Parameters

The setup of coordinate systems and the definition of wing motions are given in
Figure 2. An inertial frame (Oxyz) and wing-fixed frame (Owxwywzw) are introduced. The
flapping movements of the flat plate are composed of the sweeping around z and pitching
motion around yw. Two Euler angles, including the sweeping angle ψ and pitching angle θ,
are introduced. As shown in Figure 2, the sweeping angle ψ is defined as the position of
the wing relative to the midstroke in the horizontal stroke plane. The pitching angle θ is
the rotation angle of the wing relative to the horizontal stroke plane. The angle of attack α
is defined as the angle between the sweeping direction and the chord line. According to
the geometric relationship shown in Figure 2b, the angle of attack α can be expressed as:{

α = θ, downstroke
α = π− θ, upstroke

, (7)

Aerospace 2023, 10, x FOR PEER REVIEW 6 of 28 
 

 

43 23.8 1.8 0.593 

Additionally, r2 will also change with the variation of the taper ratio λ and presented 

in Table 3, indicating that the rectangular wing transforms into a trapezoidal shape. There-

fore, the influence of r2 by modifying the taper ratio λ has also been investigated. Note-

worthy, in all the cases of r2 mentioned above, R is set to 100 mm, S is 3333 mm2, and ΔR 

is set to zero. 

Table 3. Wings with different r2 by changing the taper ratio λ. 

 Wing Name 
Root Chord 

cR (mm) 
Taper Ratio λ r2 

Group 6 44 41.7 0.6 0.540 

 

45 39.2 0.7 0.551 

46 37.0 0.8 0.561 

47 35.1 0.9 0.570 

48 33.3 1.0 0.577 

49 31.7 1.1 0.584 

50 30.3 1.2 0.590 

51 29.0 1.3 0.596 

52 27.8 1.4 0.601 

2.3. Wing Kinematic Parameters 

The setup of coordinate systems and the definition of wing motions are given in Fig-

ure 2. An inertial frame (Oxyz) and wing-fixed frame (Owxwywzw) are introduced. The flap-

ping movements of the flat plate are composed of the sweeping around z and pitching 

motion around yw. Two Euler angles, including the sweeping angle ψ and pitching angle 

θ, are introduced. As shown in Figure 2, the sweeping angle ψ is defined as the position 

of the wing relative to the midstroke in the horizontal stroke plane. The pitching angle θ 

is the rotation angle of the wing relative to the horizontal stroke plane. The angle of attack 

α is defined as the angle between the sweeping direction and the chord line. According to 

the geometric relationship shown in Figure 2b, the angle of attack α can be expressed as: 

downstroke

upstroke

=

=

 

 




 −

，

，
,  (7) 

It should be noted that the elevating motion, defined as motion deviating from the 

stroke plane, can be observed in the experimental measurement of insect wings kinemat-

ics [31,32]. However, the amplitude of elevating motion is quite smaller than that of the 

other two motions. Meanwhile, a small elevating motion has been proven to have minimal 

aerodynamic effects compared with the other two motions [23,33]. Therefore, the elevat-

ing motion has been isolated and only the sweeping and pitching motion are incorporated. 

 

 

(a) (b) 

Figure 2. Definition of the flapping angle variables. (a) Schematic diagram of the sweeping and
pitching motion and coordinate systems. (b) Definition of the angle of attack α and rotation angle θ.
The red dot means the leading edge. The black arrow line represents the flapping direction.

It should be noted that the elevating motion, defined as motion deviating from the
stroke plane, can be observed in the experimental measurement of insect wings kinemat-
ics [31,32]. However, the amplitude of elevating motion is quite smaller than that of the
other two motions. Meanwhile, a small elevating motion has been proven to have minimal
aerodynamic effects compared with the other two motions [23,33]. Therefore, the elevating
motion has been isolated and only the sweeping and pitching motion are incorporated.
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The flapping kinematic proposed by Berman and Wang [34] is adopted in this study,
which presents very similar wing trajectory as the measured kinematic from the hovering
flapping wing [35]. The active sweeping and pitching kinematics are given as follows:

ψ(t) =
ψm

sin−1 K
sin−1(K cos(2π f t)), (8)

θ(t) =
θm

tanhCθ
tanh(Cθ cos(2π f t− ϕ)) + θ0, (9)

where θm is the pitching amplitude, ϕ is the phase angle between sweeping and pitching
motion, and θ0 is the offset of the mean pitching angle from the horizontal stroke plane. As
shown in Figure 3, the other two parameters, K and Cθ , determine the shape of sweeping
and pitching trajectory respectively.

Aerospace 2023, 10, x FOR PEER REVIEW 7 of 28 
 

 

Figure 2. Definition of the flapping angle variables. (a) Schematic diagram of the sweeping and 

pitching motion and coordinate systems. (b) Definition of the angle of attack α and rotation angle 

θ. The red dot means the leading edge. The black arrow line represents the flapping direction. 

The flapping kinematic proposed by Berman and Wang [34] is adopted in this study, 

which presents very similar wing trajectory as the measured kinematic from the hovering 

flapping wing [35]. The active sweeping and pitching kinematics are given as follows: 

1

1
)( ) sin cos(2π )

sin
(mt K ft

K


 −

−
= ,  (8) 

0( ) tanh( cos(2π ))
tanh

mt C ft
C






  = − + ,  (9) 

where θm is the pitching amplitude, φ is the phase angle between sweeping and pitching 

motion, and θ0 is the offset of the mean pitching angle from the horizontal stroke plane. 

As shown in Figure 3, the other two parameters, K and Cθ, determine the shape of sweep-

ing and pitching trajectory respectively. 

  

(a) (b) 

Figure 3. Flapping kinematics of different parameters. (a) Sweeping angle of different K. (b) Pitching 

angle of different Cθ. T is the flapping period. 

The Reynolds number is given by: 

refU c
Re

v
= ,  (10) 

where the reference velocity Uref = 4πfψmR2/180, v is the kinematic viscosity of air. As the 

flapping frequency in this study ranges from 10 Hz to 30 Hz, the Reynolds number varies 

from 10,000 to 30,000. 

2.4. Sensitivity Analysis of Parameters 

Sensitivity analysis can be performed to investigate the effects of various parameters 

on the flapping wing’s aerodynamic performance. More crucially, to determine the extent 

to which each parameter influences aerodynamic performance. To explore the effect of 

wing shape and flapping motion on the hovering performance, the geometric and kine-

matic parameters are considered for the sensitivity analysis. While conducting the analy-

sis process, only one parameter is changed and all other parameters are maintained con-

stant. 

The geometric parameters for the sensitivity analysis consist of AR, S, and r2. The 

kinematic parameters for the sensitivity include f, ϕm, θm, φ, K, and Cθ. The dimensionless 

form of sensitivity [36] can be expressed as: 

0.0 0.2 0.4 0.6 0.8 1.0

−60

−40

−20

0

20

40

60


 (

d
eg

re
e)

t/T

 K=0.01

 K=0.5

 K=0.9

 K=0.99

0.0 0.2 0.4 0.6 0.8 1.0

40

60

80

100

120

140


 (

d
eg

re
e)

t/T

 C=0.01

 C=2

 C=4

 C=10

m

Figure 3. Flapping kinematics of different parameters. (a) Sweeping angle of different K. (b) Pitching
angle of different Cθ . T is the flapping period.

The Reynolds number is given by:

Re =
Ure f c

v
, (10)

where the reference velocity Uref = 4πfψmR2/180, v is the kinematic viscosity of air. As the
flapping frequency in this study ranges from 10 Hz to 30 Hz, the Reynolds number varies
from 10,000 to 30,000.

2.4. Sensitivity Analysis of Parameters

Sensitivity analysis can be performed to investigate the effects of various parameters
on the flapping wing’s aerodynamic performance. More crucially, to determine the extent to
which each parameter influences aerodynamic performance. To explore the effect of wing
shape and flapping motion on the hovering performance, the geometric and kinematic
parameters are considered for the sensitivity analysis. While conducting the analysis
process, only one parameter is changed and all other parameters are maintained constant.

The geometric parameters for the sensitivity analysis consist of AR, S, and r2. The
kinematic parameters for the sensitivity include f, φm, θm, ϕ, K, and Cθ . The dimensionless
form of sensitivity [36] can be expressed as:

SAF =
∂y(x)/y(x)

∂x/x
. (11)
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During the sensitivity calculation, the variable x changes by an increment ∆x each time,
and the corresponding dependent variable y changes by ∆y. So, the sensitivity analysis can
be calculated as:

SAF =
∆y(x)/y(x)

∆x/x
. (12)

It should be noted that when calculating the SAF in different frequency states, y is
considered as the value at that corresponding frequency, rather than a constant value at a
fixed frequency. From the sensitivity analysis, it is helpful to identify the most important
variable in lift generation and energy saving. Consequently, researchers can only focus on
the predominant parameters to speed up the design process.

2.5. Aerodynamic Model, Force and Power Calculation

While conducting the sensitivity analysis, the aerodynamic forces and power consump-
tion under various parameters and flapping frequency need to be calculated. Therefore,
a quasi-steady aerodynamic model developed by Lee et al. [26] was selected to deal with
the large amount of calculation work. Translational, rotational, and added mass load are
the three terms that make up this aerodynamic model. The semi-empirical coefficients
in the model were obtained from numerical simulations. This aerodynamic model has
been validated by various numerical simulations and experimental measurements. As
the model could yield reasonable force and power predictions over a wide range of wing
geometric and flapping kinematic situations, it has been widely used in force calculation
and optimization [29,37]. Thus, the aerodynamic model is suitable for solving the analysis
problem considering various geometric and kinematic parameters.

As the elevating motion is not considered in this study, the quasi-steady aerodynamic
model can be written as follows:

FL = FL,tr + (Frot,1 + Frot,2 + Fa) cos α, (13)

FD = FD,tr + (Frot,1 + Frot,2 + Fa) sin α, (14)

where FL and FD are the total lift and drag force, FL,tr and FD,tr are the translation lift and
drag force respectively, Frot,1 and Frot,2 are the rotation force, and Fa is the added mass force.
Each force component can be expressed in detail as:

FL,tr = fAR,tr fRo,trCL,tr
.
ψ

2
(0.5ρ

∫ R

0
cr2dr), (15)

FD,tr = fAR,tr fRo,trCD,tr
.
ψ

2
(0.5ρ

∫ R

0
cr2dr), (16)

Frot,1 = fα frCrot,1(ρ
∣∣∣ .
ψ
∣∣∣ .
α)(
∫ R

0
c2rdr), (17)

Frot,2 = 2.67ρ
.
α
∣∣ .
α
∣∣∫ TE

LE
rx|x|dx, (18)

Fa = fλ,α fAR,α fa
ρπ

4
(

..
ψ sin α

∫ R

0
c2rdr +

..
α
∫ R

0

c3

2
dr), (19)

where ρ is the air density, r is the distance from the flapping axis to any radial position
along the wingspan, c is the local chord length at the given radial position r, x is the
chordwise position from the LE to the TE. Lee et al. [26] presented detailed expressions for
the coefficients in the above equations as follows:

CL,tr = (1.966− 3.94Re−0.429) sin(2α), (20)

CD,tr = 0.031 + 10.48Re−0.764 + (1.873− 3.14Re−0.369)(1− cos(2α)), (21)

Crot,1 = 0.842− 0.507Re−0.1577, (22)
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fAR,tr = 32.9− 32.0AR−0.00361, (23)

fRo,tr = −0.205arctan(0.587(Ro− 3.105)) + 0.870, (24)

fα =


1
−1√

2 cos α

, −45
◦
< α < 45

◦

, 135
◦
< α < 225

◦

, otherwise
, (25)

fr = 1.570, (26)

fλ,α = 47.7λ−0.0019 − 46.7, (27)

fAR,α = 1.294− 0.590AR−0.662, (28)

fa = 0.776 + 1.911Re−0.687, (29)

where Ro is defined as Ro = R2/c.
As the sweeping and pitching motion are both active movements in this study, the

instantaneous aerodynamic power required to drive the wing is expressed as:

Paero = −(Mψ

.
ψ + (Mα + Tα)

.
α), (30)

where Mψ and Mα are aerodynamic moments about flapping and pitching axis respectively,
Tα is the torque due to added moment of inertia. As the aerodynamic power are related to
the sweeping angular velocity and pitching angular velocity, the aerodynamic power can
be divided into sweeping power and pitching power, which correspond to the first and
second terms in Equation (30), respectively. Each aerodynamic moment term is given as:

Mψ = −FD,trR2(0.0784 cos(2α) + 1.088)− 0.993R2(Frot,1 + Frot,2) sin α− 1.078R2Fa sin α, (31)

Mα = −(FL,tr cos α + FD,tr sin α)(−0.0799 cos(2α) + 0.377)c− 0.398c(Frot,1 + Frot,2)− 0.5cFa, (32)

Tα = −(1.114 + 7.89Re−0.855)
..
α
πρ

128

∫ R

0
c4dr. (33)

The inertia power, the energy to overcome the inertia force during wing acceleration,
can be expressed as:

Piner = −(Mψ,iner
.
ψ + Mα,iner

.
α), (34)

where Mψ ,iner and Mα ,iner are inertia moments about the flapping and pitching axis respec-
tively. Meanwhile, as the wing is regarded as a rigid plate, the energy stored in the elastic
structure was ignored.

Different from other research on evaluating force coefficient, dimensional aerodynamic
force is given more attention in this study. The major purpose of this study is to explore the
degree of influence of geometric and kinematic parameters on aerodynamic performance
and to identify which parameters are the dominant factors. The influence degree of these
parameters may not be fully demonstrated only by the coefficient. Because the calculation
process of force coefficient naturally excludes the influence of some parameters such as
flapping frequency and wing area. Another purpose is to establish a more accurate and
intuitive functional relationship between aerodynamic performance and the parameters
than that proposed by Ellington [10]. Thus, dimensional aerodynamic force is more feature
than force coefficient in this study.

The aerodynamic model mentioned above can evaluate instantaneous force and power
under a specific flapping trajectory. For sensitivity analysis, the cycle-averaged force and
power consumption are the objects which need to be concerned in this study, and can be
calculated as:

L =
1
T

∫ T

0
FL(t)dt, (35)

P =
1
T

∫ T

0
(Piner(t) + Paero(t))dt. (36)
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According to the study of Truong et al. [25] and Phan et al. [38], the inertia force
presents a minor contribution to the average resultant vertical force of hovering flexible
wing, although it will increase at high frequency. Theoretically, for a rigid wing with
perfectly periodic flapping trajectory, the cycle-averaged inertia power will be zero [10,39].
So, the inertia force and corresponding power are not considered in this study, which is
also adopted by other researchers [40,41]. Then, the power consumption can be written as:

P =
1
T

∫ T

0
Paero(t)dt, (37)

Consequently, only the time-averaged aerodynamic power will be discussed in the subse-
quent sections.

Power loading (lift per unit power) is defined as:

PL =
L
P

. (38)

3. Results and Discussion
3.1. Effect of Wing Geometric Parameters

The flapping kinematics of the wing are kept constant when performing the sensitivity
analysis for the geometric parameters. The motion of the wing consists of sweeping and
pitching movements, and the main kinematic parameters are shown in Table 4.

Table 4. Kinematic parameters used in sensitivity analysis for the geometric parameters.

Parameter Description Value

ψm Sweeping amplitude (degree) 60
θm Pitching amplitude (degree) 45
ϕ Phase shift of pitching motion (degree) 90
θ0 Pitching motion offset (degree) 90
K Affects of the shape of ψ 0.01
Cθ Affects of the shape of θ 4.00

3.1.1. Aspect Ratio AR

The aerodynamic performance of wings with different AR was evaluated and com-
pared under various flapping frequencies. The frequency simulated ranges from 10 Hz to
30 Hz and only the results of four specific frequencies are presented. In fact, the results
of all frequencies show the same trend. As can be seen in Figure 4, the cycle-averaged
lift force and aerodynamic power increase monotonically as AR increases. Additionally,
the increase of lift appears to be gentler when the AR is large, e.g., AR > 5. According to
the study by Shahzad et al. [11], the reason for this might be the detachment of the vortex
structure on the upper surface at higher AR, leading to a loss of lift. The growth rate of the
curves which means the slope is larger at higher frequency. It seems that the AR presents a
linear relationship with lift and power. However, the increase in AR shows a disadvantage
in aerodynamic efficiency. Power loading decreases gradually with the increase of AR. The
reason for this might be that, at higher AR, flapping motion consumes more significant
power, even if the lift generated is considerable. This phenomenon can also explain why a
lower power loading appears at a higher flapping frequency.
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Figure 4. Aerodynamic performance of wings with different AR. (a) Mean lift of different AR. (b)
Aerodynamic power of different AR. (c) Power loading of different AR.

To further investigate the effect of AR on the aerodynamic performance of the flapping
wing, sensitivity analysis was performed at several frequencies. Wing 3 in Group 1 where
the AR equals 3 was selected as the base state. The relationship between AR variation
and lift variation is established and presented in Figure 5, as well as the power and PL.
Interestingly, the flapping frequency shows a minor impact on the sensitivity analysis
result, indicating the kinematic parameters are independent of the geometric parameters
for the rigid wing. However, in reality, due to the flexibility of the wing, the kinematic
parameters are more or less potentially related to the geometric parameters. For example,
with the increase of flapping frequency, the flexible deformation of wing surface turns to be
obvious gradually. Subsequently, the aerodynamic performance will be affected. Under
these circumstances, the results of the sensitivity analysis for a certain geometric parameter
might be related to kinematic parameters. Therefore, the results in this study might be
limited in the application of flapping wings with high rigidity.
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Figure 5. Sensitivity analysis for AR. The value of SAF is given as an interval between the minimum
and maximum values. (a) Variation of lift vs. variation of AR. (b) Variation of aerodynamic power vs.
variation of AR. (c) Variation of PL vs. variation of AR.

As presented in Figure 5, an approximately linear relationship can be clearly found
between AR and mean lift as well as aerodynamic power. The PL is negatively correlated
with AR. Meanwhile, the increase of AR does not seem to cause a significant decrease in
power loading anymore.

Based on Equations (1)–(3), the aerodynamic performance as a function of sensitivity
parameter could be described as a power function:

y = bxa, (39)



Aerospace 2023, 10, 74 12 of 27

where b is the coefficient, and a is the exponent. Thus, a and b can be easily identified by
linear fitting on log-transformed data.

Figure 6 demonstrates the encouraging results that the data after log-transformed
presents a dramatic linear correlation. Table 5 presents the coefficients for the power
relationship between aerodynamic performance and AR at various flapping frequencies.
It can be found that, same as the expression in Equations (1)–(3), the flapping frequency
will affect the constant b but shows little impact on the exponent a which is the more
important variable. Meanwhile, the exponent value obtained by linear fitting is closed to
the theoretical value, although there are some deviations. According to the simplification
by Ellington, Equations (1)–(3) mainly account for the dominant force formed by the
translation mechanism without considering the rotation and added mass mechanisms,
which may be the reason for the deviations.
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Figure 6. Logarithmic relationship of aerodynamic performance with AR. Symbols are raw data, and
solid lines are fitted data. (a) Mean lift with AR. (b) Aerodynamic power with AR. (c) Power loading
with AR.

Table 5. Coefficients for the power relationship between aerodynamic performance and AR at
different flapping frequencies.

L P PL

Frequency a b R-Squared a b R-Squared a b R-Squared

10 Hz 0.654 1.697 0.999 1.356 0.022 0.998 −0.702 77.256 0.995
16 Hz 0.657 4.367 0.999 1.356 0.091 0.998 −0.699 48.084 0.995
22 Hz 0.658 8.281 0.999 1.356 0.237 0.998 −0.698 34.877 0.995
28 Hz 0.659 13.440 0.999 1.356 0.491 0.998 −0.697 27.351 0.995

Consistent with the previous discussion, for the rigid flapping wing, the flapping
frequency has little effect on the sensitivity of geometric parameters. By referring to the
exponent value presented in Table 5, the approximate relationship between aerodynamic
performance and AR can be obtained and written as follows:

L ∝ AR0.659; P ∝ AR1.356; PL ∝ AR−0.697. (40)

3.1.2. Wing Area S

Figure 7 presents the aerodynamic performance of wings with different surface area S.
Different from the result of AR, the wing surface area S presents a more allometric effect
on lift and power. With the increase of S, the lift will increase exponentially, as well as the
power consumption. Whereas the power loading decreases quickly at first and then more
gradually, suggesting the growth ratio of power is much higher than that of lift. At larger
wing area S, the increase in lift seems comparable with the variation of power, resulting in
a slow decrease in power loading. This phenomenon can also be seen in the result of AR in
Figure 5c.
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Figure 7. Sensitivity analysis for wing surface area S. (a) Mean lift of different S. (b) Aerodynamic
power of different S. (c) Power loading of different S. (d) Variation of lift vs. variation of S. (e)
Variation of aerodynamic power vs. variation of S. (f) Variation of PL vs. variation of S.

To conduct the sensitivity analysis for wing area S, wing 12 in Group 2 is selected as
the basis wing. The analysis results are presented in Figure 7d–f). Apparently, flapping
frequency is also independent of the S variation, since the results of different frequencies
are almost consistent. The influence of S on lift and power is nonlinear. The larger the
increment of wing area, the higher the increment of lift and power consumption, but the
slower the decrease of power loading.

Linear fitting was also performed on the log-transformed data to obtain the relation-
ship between S and corresponding aerodynamic performance. A similar linear relationship
can also be found in Figure 8, indicating that wing surface area S also satisfies the expo-
nential assumption in Equation (39). Table 6 gives the exponent values obtained by linear
fitting. It can be found that the exponent values are very close to the theoretical result in
Equations (1)–(3). The constant b, the intercept of the fitted line, is related to the flapping
frequency, which is not presented here.
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Figure 8. Logarithmic relationship of aerodynamic performance with S. Symbols are raw data, and solid
lines are fitted data. (a) Mean lift with S. (b) Aerodynamic power with S. (c) Power loading with S.
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Table 6. Coefficients for the power relationship between aerodynamic performance and S at different
flapping frequencies.

L P PL

Frequency a R-Squared a R-Squared a R-Squared

10 Hz 2.021 0.999 2.523 0.999 −0.502 0.999
16 Hz 2.018 0.999 2.520 0.999 −0.502 0.999
22 Hz 2.016 0.999 2.518 0.999 −0.502 0.999
28 Hz 2.015 0.999 2.517 0.999 −0.502 0.999

According to Table 6, the approximate relationship between aerodynamic performance
and S can be obtained and written as follows:

L ∝ S2.015; P ∝ S2.517; PL ∝ S−0.502. (41)

3.1.3. The Dimensionless Radius of the Second Moment of Area r2

The dimensionless radius of the second moment of area r2 has been demonstrated
to be an important factor in hovering flight aerodynamic performance. Research by Weis-
Fogh [42] has shown that the mean lift force is proportional to the second moment of
wing area in the quasi-steady state. According to the statistical data of insect wings’
morphological parameters by Ellington [43], r2 of natural insect wings mostly ranges from
0.5 to 0.6. a larger r2 means the wing area concentrates towards the wing tip, such as the
forewing of Chrysoperla carnea. Conversely, lower r2 indicates the centroid of the area is
closer to the wing root, such as the hindwing of Manduca sexta.

In light of the important role of r2 in the aerodynamic performance of hovering
wing, it was systematically investigated with four groups of wings as present in Tables 2
and 3. Three ways of modulating r2 are introduced, namely changing the magnitude of the
maximum chord length, the location of the maximum chord length, and the taper ratio. It
should be noted that the taper ratio was kept constant when the maximum chord length
was the research object.

First, for the wings in Group 3 with different r2 by changing the location of maximum
chord length cmax, cmax remains constant and equals 1.4 times root chord length. Wing 22
in Group 3 is selected to calculate the sensitivity. According to Figure 9, a strong linear
relationship can be found between r2 and mean lift at any frequency, as well as aerodynamic
power. However, r2 is only able to vary −3% to 5% by modulating the location of cmax, and
the variation of lift and power seems slight. Nevertheless, the sensitivity of r2 under this
circumstance is relativity higher than that of AR by referring to Figure 5, suggesting a more
significant impact of r2 on the aerodynamic performance. The result of power loading is
not presented here and will be discussed later.

Then, focus on the r2 by modulating the magnitude of cmax. It is worth noting that
increasing the chord length at the wing root will lead to the concentration of area toward
the wing root and a decrease of r2. However, the increase of chord length near the wing tip
will cause a distal concentration of the wing and an increase of r2. It can be found that the
modulation of cmax at different locations will lead to different results of r2. Therefore, two
spanwise locations, 0.25R and 0.75R, are selected when the magnitude of cmax is adjusted,
corresponding to the wings in Group 4 and Group 5 respectively.

Wing 30 and wing 39 are chosen as the base state in each group to calculate the
sensitivity and the results are presented in Figure 10. In all cases, the positive SAF value
indicates that with the increase of r2, the lift and power gradually increase. Regardless of
the spanwise location, the linear correlation between lift and r2 is less obvious than that
between power and r2. Additionally, a higher SAF value shows that r2 has a much greater
impact on power than lift. Considering the results at different spanwise locations, it can
be found that the variation of r2 at the wing tip presents a greater influence on the force
and power, because a higher SAF is obtained at 0.75R. This phenomenon suggests that the
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increase of chord length near the wing tip might offer an advantage on lift generation,
while it consumes more power.
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Figure 9. Sensitivity analysis for the dimensionless radius of the second moment of area r2 by
changing the location of cmax. (a) Variation of lift vs. variation of r2. (b) Variation of aerodynamic
power vs. variation of r2.
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Figure 10. Sensitivity analysis for the dimensionless radius of the second moment of area r2 by
modulating the value of cmax at different spanwise locations. (a) Variation of lift vs. variation of r2,
modulating cmax at 0.25R. (b) Variation of aerodynamic power vs. variation of r2, modulating cmax at
0.25R. (c) Variation of lift vs. variation of r2, modulating cmax at 0.75R. (d) Variation of aerodynamic
power vs. variation of r2, modulating cmax at 0.75R.

One interesting question is, since r2 varies with the modulation of both the magnitude
and location of cmax, which is the better strategy to modulate r2? Figure 11a depicts the
relationship between r2 and the magnitude of cmax as well as the location. As mentioned
above, a higher r2 can be obtained at a larger cmax located near the wing tip. Considering
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the proportional relationship between lift and r2, a higher lift appears at a higher r2 as
shown in Figure 11b. Consequently, the way which can achieve a larger r2 variation, i.e., a
higher lift increment, is the primary factor to be considered.
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Figure 11. (a) The dimensionless radius of the second moment of area r2 and (b) lift performance with
respect to the magnitude and location of the maximum chord length cmax at the flapping frequency of
16 Hz.

A similar sensitivity analysis was performed for r2 by tuning the magnitude and
location of cmax with small variation. As shown in Figure 12, a higher and positive variation
of r2 can also be obtained with a larger ∆cmax near the wing tip, which is similar to the
result in Figure 11a. A positive and larger boundary curve slope indicates that an obvious
increment of r2 can be obtained. Apparently, a rapid growth of r2 occurs as the location of
the maximum chord length moves towards the wing tip. Whereas the increase of cmax can
lead to the increase of r2, the growth rate of r2 is not as fast as adjusting the location of cmax.
Therefore, if one wants to improve hovering lift by adjusting r2, then shifting the location
of the maximum chord length towards the wing tip might be a better choice.
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Figure 12. Sensitivity analysis for r2. Base state: cmax/cR = 1.4, location of the maximum chord length
lc = 0.5R, r2 = 0.574.

Finally, various r2 with different taper ratios λ are considered, corresponding to the
wings in Group 6. In this part, r2 was tuned by varying taper ratio λ. A larger λ means a
larger tip chord length and a shorter root chord length, resulting in a concentration of area
toward the wing tip and a larger r2. The base wing for the sensitivity analysis in this part is
wing 48 which is a rectangular planform.

As can be seen from Figure 13a, a large variation of λ can only achieve a slight increase
in lift of about 10%. The smaller SAF value indicates that the influence of λ on lift is less
obvious than that of other parameters, although the lift increases with an increase in λ. To
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some extent, changing λ is the synchronous adjustment of magnitude and location of cmax.
Therefore, it may be reasonable that changing λ can achieve a more pronounced variation
in r2 compared to other methods.
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Figure 13. Sensitivity analysis for the dimensionless radius of the second moment of area r2 by modulat-
ing the taper ratio λ. (a) Variation of lift vs. variation of λ. (b) Variation of lift vs. variation of r2.

Since the aforementioned r2 can be generated through different methods, it is worth
discussing whether all these r2 can still present a consistent relationship with the aero-
dynamic performance, no matter which way is chosen to modulate r2. Therefore, all the
r2 were reordered with the corresponding force and power. Meanwhile, the sensitivity
analysis was also calculated based on the rearranged data.

As shown in Figure 14, it is encouraging to note that, a consistent phenomenon still
exists in most cases between r2 and the lift and power, as well as the power loading, i.e., the
larger the r2, the greater the lift and power, and the smaller the power loading. Nevertheless,
there are still some slight fluctuations that can be found from the reordered data, especially
the lift curves in Figure 14a,d. To conduct the sensitivity analysis based on the oscillating
data, an optimal quadratic polynomial function is used to fit the corresponding data.
Therefore, the trend of aerodynamic performance varying with r2 can also be reflected
by the fitted curve. Apparently, within the range of r2 study in this section, a nonlinear
relationship can be found between r2 and lift, which is consistent with the estimated
relationship in Equation (1). With the increase of r2, the concentration of wing area moves
towards the wing tip. The larger area with a higher sweep velocity will generate more drag
force near the tip region along the flapping direction, which will lead to a rapid increase in
aerodynamic power. A gradual decrease of power loading also indicates that r2 has a more
obvious effect on aerodynamic power than lift.

Figure 15 shows the logarithmic relationship established based on the reordered r2
and corresponding aerodynamic performance. Although the explicit expression for the
power and power loading with r2 is not given in Equations (2) and (3), a significant linear
relationship can still be observed in Figure 15 and Table 7 on the log-transformed data.
This phenomenon indicates that an exponential relationship can be established between
the power and power loading with r2. Similar to the aforementioned study, the exponent a
basically does not vary with the flapping frequency, whereas the constant b will change
with the frequency.
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Figure 14. Sensitivity analysis for the dimensionless radius of the second moment of area r2 base on
the reordered data. All the r2 were reordered with the corresponding force and power. (a) Mean lift
of different r2. (b) Aerodynamic power of different r2. (c) Power loading of different r2. (d) Variation
of lift vs. variation of r2. (e) Variation of aerodynamic power vs. variation of r2. (f) Variation of power
loading vs. variation of r2.
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Figure 15. Logarithmic relationship of aerodynamic performance with r2. Symbols are raw data, and
solid lines are fitted data. (a) Mean lift with r2. (b) Aerodynamic power with r2. (c) Power loading with r2.

Table 7. Coefficients for the power relationship between aerodynamic performance and r2 at different
flapping frequencies.

L P PL

Frequency a R-Squared a R-Squared a R-Squared

10 Hz 1.441 0.982 2.724 0.999 −1.279 0.991
16 Hz 1.442 0.983 2.723 0.999 −1.280 0.991
22 Hz 1.442 0.983 2.723 0.999 −1.281 0.990
28 Hz 1.443 0.983 2.722 0.999 −1.283 0.990
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According to Table 7, the approximate relationship between aerodynamic performance
and r2 can be obtained and written as follows:

L ∝ r1.443
2 ; P ∝ r2.722

2 ; PL ∝ r−1.283
2 . (42)

3.1.4. Summary of the Sensitivity Analysis for Wing Geometric Parameters

A sensitivity analysis shows that the aspect ratio AR, wing area S, and second moment
of area r2 all have a significant impact on the hovering aerodynamic performance. It is
necessary to evaluate and compare the degree of influence of each geometric parameter,
which in turn helps the designer select the dominant factor to enhance the performance.
Therefore, the sensitivity analysis results for the three parameters are compared in Figure 16.
One of the main differences is that due to the limitation of the designed samples in this
study, it is hard to fully keep an identical variation range of independent variables. For
example, the variation of r2 is much smaller than that of the other two parameters. How-
ever, the influence degree of each parameter can also be identified by the slope of the
sensitivity curves.
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Figure 16. Comparison of sensitivity analysis results for the geometric parameters. ∆x is the variation
of the corresponding independent variable, e.g., ∆S for S. (a) Sensitivity of lift. (b) Sensitivity of
aerodynamic power. (c) Sensitivity of power loading.

Concerning the impact on lift, it can be clearly seen from Figure 16a that wing area S
has the most significant effect on the lift increment, followed by r2 and finally AR. Consistent
with the exponent value in Table 8, lift is scaled with S2.015 and r1.443

2 . The impact of r2 and
S on aerodynamic power is essentially the same for very close exponent values of S and
r2. Figure 16b shows that r2 seems to be the dominant factor in power consumption when
the three parameters vary within the same variation of r2, corresponding to the highest
exponent value in Table 8. However, when the increment of the variable is larger, wing
area S might lead to a more significant increase in power, as the area curve grows more
rapidly than others. From Figure 16c and Table 8, it can be clearly seen that the increase
of all three parameters is detrimental to the power loading. More importantly, increasing
r2 brings the most rapid decrease in power loading. In contrast, drop in power loading
caused by the increase of wing area appears to be gentler than other variables. As a result,
increasing the wing area S may be a more economical option to enhance lift because the
decline in power loading is not as quick.

Table 8. Comparison of the exponent a of different sensitivity parameters at 28 Hz.

L P PL

AR 0.659 1.356 −0.697
S 2.015 2.517 −0.502
r2 1.443 2.722 −1.283
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During the sensitivity analysis process, the sample of the parameters follows the
principle of controlling variables. Only one parameter is changed at a time, while the
remaining parameters are maintained constant. In other words, AR, S, and r2 are designed
as independent variables when conducting the analysis process. Finally, the exponential
relationship shown in Table 8 was obtained. Therefore, by referring to Equations (1)–(3),
the following approximate relationship can be established:

L ∝ AR0.659S2.015r1.443
2 , (43)

P ∝ AR1.356S2.517r2.722
2 , (44)

PL ∝ AR−0.697S−0.502r−1.283
2 . (45)

3.2. Effect of Wing Kinematic Parameters

In this section, wing 3 in Group 1 was selected to perform the sensitivity analysis
for kinematic parameters. Unless mentioned otherwise, the tests were carried out at a
moderate flapping frequency of 20 Hz.

3.2.1. Flapping Frequency and Sweeping Amplitude

As discussed in previous studies [20,44,45], the flapping frequency and sweeping
amplitude, as key kinematic parameters, play a vital role in the hovering performance of
flapping wing. Given that both parameters have an impact on aerodynamic performance,
it is worthwhile to compare the degree of influence of these two parameters. The results
of the sensitivity analysis for the flapping frequency and sweeping amplitude are given
in Figure 17. Other kinematic parameters except the sweeping amplitude and flapping
frequency remain constant values as presented in Table 4. The sweeping amplitude ranges
from 30◦ to 90◦, and the baseline for the sensitivity analysis is 60◦. The flapping frequency
varies from 10 Hz to 30 Hz, and the baseline is 20 Hz. The sensitivity analysis for each
parameter is performed independently, which means only one parameter is changed at a
time and the other is held constant.
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Figure 17. Comparison of sensitivity analysis results for the flapping frequency and sweeping ampli-
tude. (a) Sensitivity of lift. (b) Sensitivity of aerodynamic power. (c) Sensitivity of power loading.

Obviously, lift and power grow monotonically with the increase of flapping frequency
and sweeping amplitude, which is consistent with the expression in Equations (1) and (2).
It can be seen from this study that flapping frequency results in a higher SAF value than
sweeping amplitude, indicating that lift increases faster as frequency increases. The same
phenomenon is also corroborated by the exponents in Table 9 obtained through curve
fitting on the log-transformed data. However, the exponent of sweeping amplitude shows
a little discrepancy with the theoretical values. Although flapping frequency and sweeping
amplitude present different effects on lift, their effects on aerodynamic power are nearly
identical. Moreover, the influence of frequency and sweeping amplitude on aerodynamic
power is significantly greater than that on lift. In fact, according to the exponent in
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Table 9, the aerodynamic power is almost related to the third power of frequency and
sweeping amplitude.

Table 9. Coefficients for the power relationship calculated from the log-transformed data.

L P PL

Parameter a R-Squared a R-Squared a R-Squared

f 2.014 0.999 3.017 0.999 −1.003 0.999
ψm 1.415 0.983 2.876 0.999 −1.462 0.992

For power loading, a more rapid drop can be seen with an increase in sweeping
amplitude, corresponding to a larger negative exponent value of the sweeping amplitude
in Table 9. This phenomenon implies that increasing the sweeping amplitude to increase
lift might result in a greater decrease in aerodynamic efficiency.

In the design process of the flapping wing system, modulating the frequency is much
easier than changing the amplitude, which has been fixed when the design of the flapping
mechanism is finished. In actual flight, adjusting the frequency is the most straightforward
and achievable method to modulate the hovering lift. The sweeping amplitude is always
set to a quite larger value (e.g., 90◦) to maximize the lift. Another purpose is to generate
additional lift through the clap and fling effect formed by the interaction of left and
right wing.

To date, exponential relationships between key parameters and aerodynamic per-
formance have been established by referring to Equations (1)–(3). Since the variables are
independent of each other as previously described, the following approximate relationships
can be obtained:

L ∝ f 2.014ψ1.415
m AR0.659S2.015r1.443

2 , (46)

P ∝ f 3.017ψ2.876
m AR1.356S2.517r2.722

2 , (47)

PL ∝ f−1.003ψ−1.462
m AR−0.697S−0.502r−1.283

2 . (48)

3.2.2. Pitching Amplitude and Phase Shift

Pitching motion has been observed to be a major flapping component of natural flyers,
particularly for the small scale birds and insects [32,46]. Unsteady mechanisms of pitching
motion, whether active or passive pitching, play important roles in force generation and
flight control of flapping wings [39,47–49]. According to Dickinson et al. [50] who analyzed
the aerodynamic basis of wing rotation using a dynamically scaled model of the fruit fly,
pitching motion can first induce a favorable angle of attack to maximize the translational
lift force. Another contribution is the rotation mechanism which can generate a noticeable
force component during stroke reversal.

Pitching motion combines two key parameters, namely pitching amplitude and phase
angle between sweeping and pitching motion. The pitching amplitude determines the angle
of attack during wing’s sweeping. The phase angle defines the timing of rotational motion
during stroke reversal. Lift and power performance of two typical states are presented
in Figure 18. Consistent with the previous research [23,51], aerodynamic performance,
especially lift, does not vary monotonically with the pitching amplitude or phase angle.
This phenomenon implies that there are some optimal values to maximize the performance.
For example, when the pitching amplitude is fixed at 45◦, the peak lift appears at phase
angle ϕ = 60◦, corresponding to an advance in rotation relative to sweeping. Moreover, the
maximum lift can be obtained at pitching amplitude θm = 55◦ when phase angle is kept
at 90◦. Given the inconsistent phenomenon with the previous kinematic parameters, the
cooperation effect of pitching amplitude and phase angle on the aerodynamic performance
is investigated in this section.
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Figure 18. Aerodynamic performance of two typical states. (a) Lift and power with different phase
angle ϕ, the pitching amplitude θm is fixed at 45◦. (b) Lift and power with different pitching amplitude
θm, the phase angle ϕ is fixed at 90◦.

As presented in Figure 19, the aerodynamic performance is closely related to both
pitching amplitude and phase angle. The maximum lift appears at ϕ = 60◦, θm = 60◦,
corresponding to an advanced rotation motion with a relatively higher pitching angle.
It should be noted that when the phase angle ϕ is large and exceeds 90◦ or is less than
−90◦, negative aerodynamic power appears, which implies the energy harvesting effect.
This phenomenon agrees well with the findings of Su et al. [52] on a flapping hydrofoil
employed a larger pitching amplitude. Higher power consumption can be found when
the pitching motion is isolated (θm = 0◦) or moves in phase (ϕ = 0◦) with the sweeping
motion. The reason for this might be that a larger wing area facing the flapping direction
forms a significant drag force, which induces more power requirement to drive the flapping
wing. In other words, flapping with a pitching motion might be a quite saving energy
behavior. For the power loading, since the existence of values of power close to 0 leads to
non-physical power loading, only the power loading ranges from −20 to 50 are presented
in Figure 19c. Obviously, a high aerodynamic efficiency appears at a moderate phase angle
around 90◦, which has been observed in the kinematics of mostly natural flyers [46,53].

3.2.3. K and Cθ

The parameters K and Cθ determine the kinematic profile of sweeping and pitching
respectively. The parametric model in Equations (8) and (9) was designed to mimic the
insect flapping kinematics, particularly the pitching movement. From the observation of
the inset wing or the flapping robot wing [35,54], it can be found that the pitching motion is
similar to the trapezoidal trajectory, characterized by a rapid rotation followed by a slight
angle fluctuation, subsequently, maintaining an almost constant pitching angle. And the
sweeping motion is very similar to harmonic motion, but there are still some differences.

Figure 20 shows the contours of aerodynamic performance on the K-Cθ plane. K varies
from 0.01 to 0.99, and Cθ varies from 0.01 to 10. Apparently, the impact of K and Cθ on
lift and power appears to be quite different. For the lift, consistent with the findings by
Bhat et al. [14], the maximum lift appears at a low K and a high Cθ , corresponding to a
sinusoidal sweeping and trapezoidal pitching motion. Furthermore, the influence degree
of K and Cθ on the lift is also different according to the trend of contour lines. Lift increases
more rapidly as Cθ increases, but gradually decreases as K increases, indicating that the
insect-inspired pitching motion is beneficial to lift generation. In terms of the aerodynamic
power, it seems that K has a stronger influence than Cθ. Lower power consumption can be
obtained at a larger K, which agrees well with the research of Berman and Wang [34], indicating
a triangular sweeping is beneficial to saving energy. The power loading is obviously affected
by the shape of pitching motion. A higher power loading can be obtained at a larger Cθ

with a higher K. Therefore, it makes sense that this combination, triangular sweeping with
trapezoidal pitching motion, appears to be an economical movement for insect flight.
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Figure 19. Parameter maps of aerodynamic performance as functions of phase angle ϕ and pitching
amplitude θm. (a) Lift with the phase angle and pitching amplitude. The star shape denotes the
location of maximum lift. (b) Aerodynamic power with the phase angle and pitching amplitude.
(c) Power loading with the phase angle and pitching amplitude. Note that only the values from −20
to 50 are presented in the colored map to isolate the non-physical power loading generated by a
near-zero aerodynamic power.
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As can be seen in Figure 3, the discrepancy in the flapping trajectories for different
K and Cθ are mainly in the angular velocity and acceleration, especially during the stroke
reversal, which will directly affect the aerodynamic forces associated with rotational mech-
anisms [14,50]. Consequently, lift and aerodynamic power components in several typical
states are compared and presented in Figure 21. When the pitching profile changes from
sinusoidal wave to trapezoidal wave, pitch angular velocity and angular acceleration will
increase during the stroke reversal. An extensive increase in rotation and added mass lift
can be seen at this stage by referring to Figure 21a,b, resulting in the increase in mean lift
force. This sudden increase in angular velocity and angular acceleration also appears in
the sweeping motion during the stroke reversal as K increases, which might be respon-
sible for the higher power magnitude at this stage as shown in Figure 21c,d. However,
during the translation stage, the angular velocity and angular acceleration of sinusoidal
sweeping motion will be larger, leading to more power consumption and, finally, a higher
cycle-averaged aerodynamic power.
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Figure 21. Transient aerodynamic performance at different K and Cθ . (a) Lift components at K = 0.01,
Cθ = 0.01. (b) Lift components at K = 0.01, Cθ = 4. (c) Power components at K = 0.01, Cθ = 4. (d) Power
components at K = 0.9, Cθ = 4.

4. Conclusions

In this study, the sensitivity analysis of wing geometric and kinematic parameters was
performed on a hovering flapping wing based on the quasi-steady aerodynamic model.
Each parameter’s influence on aerodynamic performance was evaluated and compared.
Meanwhile, detailed exponential relationships were established between the parameters
and the corresponding aerodynamic performance.

For the geometric parameters, sensitivity analysis shows that the wing area S has
the greatest influence on lift, and aerodynamic power is most obviously affected by the
dimensionless radius of the second moment of area r2. The taper ratio shows less effect
on the lift generation than other geometric parameters. All geometric parameters are
negatively correlated with the power loading, and increasing area S results in the most
gentle decrease in power loading.
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For the kinematic parameters, flapping frequency and sweeping amplitude show
almost identical effects on the aerodynamic power, but the increase in flapping frequency
will lead to faster lift growth and slower drop in power loading. There exists an optimal co-
operation of pitching amplitude and phase shift between pitching and sweeping (θm = 60◦,
ϕ = 60◦) to maximize lift. The pitch motion is beneficial to reduce the power consumption.
A higher power loading appears when the phase shift ϕ is close to 90◦.

Lift and power loading are primarily affected by the shape of the pitching motion
rather than that of the sweeping motion. The power consumption seems to be dominated
by the sweeping motion. The bio-inspired flapping trajectory, characterized by triangular
sweeping with trapezoidal pitching motion, is quite an efficient movement.

Author Contributions: Conceptualization, B.S.; formal analysis, X.L.; funding acquisition, X.Y.;
writing—original draft, X.L.; writing—review & editing, W.Y. and D.X. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by Shenzhen Science and Technology Program and Research
(Grant No. JCYJ 20220530161808018), Guangdong Basic and Applied Basic Research Foundation
(Grant No. 208273626031), Basic Research Program of Shenzhen (Grant No. JCYJ 20190806142816524),
the Key R&D Program in Shaanxi Province (Grant No. 2023-YBGY-372), the National Natural
Science Foundation of China (Grant No. 52175277), the Youth Program of National Natural Science
Foundation of China (Grant No. 51905411), the National Key Laboratory of Science and Technology
on Aerodynamic Design and Research (Grant No. 61422010301).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiao, S.J.; Hu, K.; Huang, B.X.; Deng, H.C.; Ding, X.L. A review of research on the mechanical design of hoverable flapping wing

micro-air vehicles. J. Bionic Eng. 2021, 18, 1235–1254. [CrossRef]
2. Phan, H.V.; Park, H.C. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future

directions. Prog. Aerosp. Sci. 2019, 111, 100573. [CrossRef]
3. Keennon, M.; Klingebiel, K.; Won, H.; Andriukov, A. Development of the Nano Hummingbird: A Tailless Flapping Wing Micro

Air Vehicle. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace
Exposition, Nashville, TN, USA, 9–12 January 2012; p. 0588.

4. Phan, H.V.; Kang, T.; Park, H.C. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular
rates feedback control. Bioinspiration Biomim. 2017, 12, 036006. [CrossRef] [PubMed]

5. Roshanbin, A.; Altartouri, H.; Karásek, M.; Preumont, A. COLIBRI: A hovering flapping twin-wing robot. Int. J. Micro Air Veh.
2017, 9, 270–282. [CrossRef]

6. Lee, J.; Yoon, S.H.; Kim, C. Experimental surrogate-based design optimization of wing geometry and structure for flapping wing
micro air vehicles. Aerosp. Sci. Technol. 2022, 123, 107451. [CrossRef]

7. Lang, X.Y.; Song, B.F.; Yang, W.Q.; Yang, X.J. Effect of Wing Membrane Material on the Aerodynamic Performance of Flexible
Flapping Wing. Appl. Sci. 2022, 12, 4501. [CrossRef]

8. Tay, W.B.; Jadhav, S.; Wang, J.L. Application and improvements of the wing deformation capture with simulation for flapping
micro aerial vehicle. J. Bionic Eng. 2020, 17, 1096–1108. [CrossRef]

9. Nan, Y.; Karásek, M.; Lalami, M.E.; Preumont, A. Experimental optimization of wing shape for a hummingbird-like flapping
wing micro air vehicle. Bioinspiration Biomim. 2017, 12, 026010. [CrossRef]

10. Ellington, C.P. The aerodynamics of hovering insect flight. VI. Lift and power requirements. Philos. Trans. R. Soc. London. B Biol.
Sci. 1984, 305, 145–181.

11. Shahzad, A.; Tian, F.B.; Young, J.; Lai, J.C. Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of
flapping wings in hover. Phys. Fluids 2016, 28, 111901. [CrossRef]

12. Hassanalian, M.; Throneberry, G.; Abdelkefi, A. Investigation on the planform and kinematic optimization of bio-inspired nano
air vehicles for hovering applications. Meccanica 2018, 53, 2273–2286. [CrossRef]

13. Broadley, P.A.; Nabawy, M.R.; Quinn, M.K.; Crowther, W.J. Wing planform effects on the aerodynamic performance of insect-like
revolving wings. In Proceedings of the AIAA Aviation 2020 Forum, Virtual, 15–19 June 2020; p. 2667.

http://doi.org/10.1007/s42235-021-00118-4
http://doi.org/10.1016/j.paerosci.2019.100573
http://doi.org/10.1088/1748-3190/aa65db
http://www.ncbi.nlm.nih.gov/pubmed/28281468
http://doi.org/10.1177/1756829317695563
http://doi.org/10.1016/j.ast.2022.107451
http://doi.org/10.3390/app12094501
http://doi.org/10.1007/s42235-020-0100-x
http://doi.org/10.1088/1748-3190/aa5c9e
http://doi.org/10.1063/1.4964928
http://doi.org/10.1007/s11012-018-0831-5


Aerospace 2023, 10, 74 26 of 27

14. Bhat, S.S.; Zhao, J.; Sheridan, J.; Hourigan, K.; Thompson, M.C. Effects of flapping-motion profiles on insect-wing aerodynamics.
J. Fluid Mech. 2020, 884, A8. [CrossRef]

15. Phillips, N.; Knowles, K.; Bomphrey, R.J. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
Bioinspiration Biomim. 2015, 10, 056020. [CrossRef]

16. Addo-Akoto, R.; Han, J.S.; Han, J.H. Influence of aspect ratio on wing–wake interaction for flapping wing in hover. Exp. Fluids
2019, 60, 164. [CrossRef]

17. Lee, Y.J.; Lua, K.B.; Lim, T.T. Aspect ratio effects on revolving wings with Rossby number consideration. Bioinspiration Biomim.
2016, 11, 056013. [CrossRef]

18. Jardin, T.; Colonius, T. On the lift-optimal aspect ratio of a revolving wing at low Reynolds number. J. R. Soc. Interface 2018, 15,
20170933. [CrossRef]

19. Deng, H.; Xiao, S.; Huang, B.; Yang, L.; Xiang, X.; Ding, X. Design optimization and experimental study of a novel mechanism for
a hover-able bionic flapping-wing micro air vehicle. Bioinspiration Biomim. 2020, 16, 026005. [CrossRef]

20. Nguyen, T.A.; Phan, H.V.; Au TK, L.; Park, H.C. Experimental study on thrust and power of flapping-wing system based on
rack-pinion mechanism. Bioinspiration Biomim. 2016, 11, 046001. [CrossRef] [PubMed]

21. Phan, H.V.; Truong, Q.T.; Park, H.C. Extremely large sweep amplitude enables high wing loading in giant hovering insects.
Bioinspiration Biomim. 2019, 14, 066006. [CrossRef] [PubMed]

22. Lua, K.B.; Lee, Y.J.; Lim, T.T. Water-Treading motion for three-dimensional flapping wings in hover. AIAA J. 2017, 55, 2703–2716.
[CrossRef]

23. Sane, S.P.; Dickinson, M.H. The control of flight force by a flapping wing: Lift and drag production. J. Exp. Biol. 2001, 204,
2607–2626. [CrossRef] [PubMed]

24. Addo-Akoto, R.; Han, J.S.; Han, J.H. Roles of wing flexibility and kinematics in flapping wing aerodynamics. J. Fluids Struct. 2021,
104, 103317. [CrossRef]

25. Truong, Q.T.; Nguyen, Q.V.; Truong, V.T.; Park, H.C.; Byun, D.Y.; Goo, N.S. A modified blade element theory for estimation of
forces generated by a beetle-mimicking flapping wing system. Bioinspiration Biomim. 2011, 6, 036008. [CrossRef] [PubMed]

26. Lee, Y.J.; Lua, K.B.; Lim, T.T.; Yeo, K.S. A quasi-steady aerodynamic model for flapping flight with improved adaptability.
Bioinspiration Biomim. 2016, 11, 036005. [CrossRef]

27. Wang, Q.; Goosen JF, L.; van Keulen, F. A predictive quasi-steady model of aerodynamic loads on flapping wings. J. Fluid Mech.
2016, 800, 688–719. [CrossRef]

28. Chen, L.; Yang, F.L.; Wang, Y.Q. Analysis of nonlinear aerodynamic performance and passive deformation of a flexible flapping
wing in hover flight. J. Fluids Struct. 2022, 108, 103458. [CrossRef]

29. Bayiz, Y.; Ghanaatpishe, M.; Fathy, H.; Cheng, B. Hovering efficiency comparison of rotary and flapping flight for rigid rectangular
wings via dimensionless multi-objective optimization. Bioinspiration Biomim. 2018, 13, 046002. [CrossRef]

30. Au LT, K.; Phan, H.V.; Park, H.C. Optimal wing rotation angle by the unsteady blade element theory for maximum translational
force generation in insect-mimicking flapping-wing micro air vehicle. J. Bionic Eng. 2016, 13, 261–270.

31. Fry, S.N.; Sayaman, R.; Dickinson, M.H. The aerodynamics of hovering flight in Drosophila. J. Exp. Biol. 2005, 208, 2303–2318.
[CrossRef]

32. Zou, P.Y.; Lai, Y.H.; Yang, J.T. Effects of phase lag on the hovering flight of damselfly and dragonfly. Phys. Rev. E 2019, 100, 063102.
[CrossRef]

33. Lua, K.B.; Lee, Y.J.; Lim, T.T.; Yeo, K.S. Aerodynamic effects of elevating motion on hovering rigid hawkmothlike wings. AIAA J.
2016, 54, 2247–2264. [CrossRef]

34. Berman, G.J.; Wang, Z.J. Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 2007, 582, 153–168. [CrossRef]
35. Phan, H.V.; Park, H.C. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like

tailless flying robot. Bioinspiration Biomim. 2018, 13, 036009. [CrossRef] [PubMed]
36. Ma, Y.; Zhang, W.; Zhang, Y.; Zhang, X.; Zhong, Y. Sizing method and sensitivity analysis for distributed electric propulsion

aircraft. J. Aircr. 2020, 57, 730–741. [CrossRef]
37. Lee, Y.J.; Lua, K.B. Optimization of simple and complex pitching motions for flapping wings in hover. AIAA J. 2018, 56, 2466–2470.

[CrossRef]
38. Phan, H.V.; Truong, Q.T.; Au TK, L.; Park, H.C. Optimal flapping wing for maximum vertical aerodynamic force in hover: Twisted

or flat? Bioinspiration Biomim. 2016, 11, 046007. [CrossRef]
39. Wang, Q.; Goosen JF, L.; van Keulen, F. Optimal pitching axis location of flapping wings for efficient hovering flight. Bioinspiration

Biomim. 2017, 12, 056001. [CrossRef]
40. Timmermans, S.; Vanierschot, M.; Vandepitte, D. Aerodynamic Model Updating Using Wind-Tunnel Setup for Hummingbirdlike

Flapping Wing Nanorobot. AIAA J. 2022, 60, 902–912. [CrossRef]
41. Han, J.S.; Breitsamter, C. Aerodynamic investigation on shifted-back vertical stroke plane of flapping wing in forward flight.

Bioinspiration Biomim. 2021, 16, 064001. [CrossRef]
42. Weis-Fogh, T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol.

1973, 59, 169–230. [CrossRef]
43. Ellington, C.P. The aerodynamics of hovering insect flight. II. Morphological parameters. Philos. Trans. R. Soc. London. B Biol. Sci.

1984, 305, 17–40.

http://doi.org/10.1017/jfm.2019.929
http://doi.org/10.1088/1748-3190/10/5/056020
http://doi.org/10.1007/s00348-019-2816-0
http://doi.org/10.1088/1748-3190/11/5/056013
http://doi.org/10.1098/rsif.2017.0933
http://doi.org/10.1088/1748-3190/abc292
http://doi.org/10.1088/1748-3190/11/4/046001
http://www.ncbi.nlm.nih.gov/pubmed/27321705
http://doi.org/10.1088/1748-3190/ab3d55
http://www.ncbi.nlm.nih.gov/pubmed/31434064
http://doi.org/10.2514/1.J055667
http://doi.org/10.1242/jeb.204.15.2607
http://www.ncbi.nlm.nih.gov/pubmed/11533111
http://doi.org/10.1016/j.jfluidstructs.2021.103317
http://doi.org/10.1088/1748-3182/6/3/036008
http://www.ncbi.nlm.nih.gov/pubmed/21865627
http://doi.org/10.1088/1748-3190/11/3/036005
http://doi.org/10.1017/jfm.2016.413
http://doi.org/10.1016/j.jfluidstructs.2021.103458
http://doi.org/10.1088/1748-3190/aab801
http://doi.org/10.1242/jeb.01612
http://doi.org/10.1103/PhysRevE.100.063102
http://doi.org/10.2514/1.J054326
http://doi.org/10.1017/S0022112007006209
http://doi.org/10.1088/1748-3190/aab313
http://www.ncbi.nlm.nih.gov/pubmed/29493535
http://doi.org/10.2514/1.C035581
http://doi.org/10.2514/1.J056590
http://doi.org/10.1088/1748-3190/11/4/046007
http://doi.org/10.1088/1748-3190/aa7795
http://doi.org/10.2514/1.J060205
http://doi.org/10.1088/1748-3190/ac305f
http://doi.org/10.1242/jeb.59.1.169


Aerospace 2023, 10, 74 27 of 27

44. Nedunchezian, K.; Kang, C.; Aono, H. Effects of flapping wing kinematics on the aeroacoustics of hovering flight. J. Sound Vib.
2019, 442, 366–383. [CrossRef]

45. Li, H.; Nabawy, M.R.A. Effects of stroke amplitude and wing planform on the aerodynamic performance of hovering flapping
wings. Aerospace 2022, 9, 479. [CrossRef]

46. Tobalske, B.W.; Warrick, D.R.; Clark, C.J.; Powers, D.R.; Hedrick, T.L.; Hyder, G.A.; Biewener, A.A. Three-dimensional kinematics
of hummingbird flight. J. Exp. Biol. 2007, 210, 2368–2382. [CrossRef]

47. Wang, J.; Ren, Y.; Li, C.; Dong, H. Computational investigation of wing-body interaction and its lift enhancement effect in
hummingbird forward flight. Bioinspiration Biomim. 2019, 14, 046010. [CrossRef] [PubMed]

48. Liu, X.; Hefler, C.; Fu, J.; Shyy, W.; Qiu, H. Implications of wing pitching and wing shape on the aerodynamics of a dragonfly. J.
Fluids Struct. 2021, 101, 103208. [CrossRef]

49. Hao, J.; Wu, J.; Zhang, Y. Effect of passive wing pitching on flight control in a hovering model insect and flapping-wing micro air
vehicle. Bioinspiration Biomim. 2021, 16, 065003. [CrossRef]

50. Dickinson, M.H.; Lehmann, F.O.; Sane, S.P. Wing rotation and the aerodynamic basis of insect flight. Science 1999, 284, 1954–1960.
[CrossRef]

51. Sane, S.P.; Dickinson, M.H. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp.
Biol. 2002, 205, 1087–1096. [CrossRef]

52. Su, Y.; Miller, M.; Mandre, S.; Breuer, K. Confinement effects on energy harvesting by a heaving and pitching hydrofoil. J. Fluids
Struct. 2019, 84, 233–242. [CrossRef]

53. Willmott, A.P.; Ellington, C.P. The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward
flight. J. Exp. Biol. 1997, 200, 2705–2722. [CrossRef] [PubMed]

54. Lua, K.B.; Lai, K.C.; Lim, T.T.; Yeo, K.S. On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings.
Exp. Fluids 2010, 49, 1263–1291. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jsv.2018.11.014
http://doi.org/10.3390/aerospace9090479
http://doi.org/10.1242/jeb.005686
http://doi.org/10.1088/1748-3190/ab2208
http://www.ncbi.nlm.nih.gov/pubmed/31096194
http://doi.org/10.1016/j.jfluidstructs.2020.103208
http://doi.org/10.1088/1748-3190/ac220d
http://doi.org/10.1126/science.284.5422.1954
http://doi.org/10.1242/jeb.205.8.1087
http://doi.org/10.1016/j.jfluidstructs.2018.11.006
http://doi.org/10.1242/jeb.200.21.2705
http://www.ncbi.nlm.nih.gov/pubmed/9418029
http://doi.org/10.1007/s00348-010-0873-5

	Introduction 
	Materials and Methods 
	Key Parameters Selection 
	Wing Geometric Parameters 
	Wing Kinematic Parameters 
	Sensitivity Analysis of Parameters 
	Aerodynamic Model, Force and Power Calculation 

	Results and Discussion 
	Effect of Wing Geometric Parameters 
	Aspect Ratio AR 
	Wing Area S 
	The Dimensionless Radius of the Second Moment of Area r2 
	Summary of the Sensitivity Analysis for Wing Geometric Parameters 

	Effect of Wing Kinematic Parameters 
	Flapping Frequency and Sweeping Amplitude 
	Pitching Amplitude and Phase Shift 
	K and C 


	Conclusions 
	References

