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Abstract: This paper presents new techniques for the trajectory design and control of nonlinear
dynamical systems. The technique uses a convex polytope to bound the range of the nonlinear
function and associates with each vertex an auxiliary linear system. Provided controls associated
with the linear systems can be generated to satisfy an ordering constraint, the nonlinear control
is computable by the interpolation of controls obtained by convex optimization. This theoretical
result leads to two numerical approaches for solving the nonlinear constrained problem: one requires
solving a single convex optimization problem and the other requires solving a sequence of convex
optimization problems. The approaches are applied to two practical problems in aerospace engineer-
ing: a constrained relative orbital motion problem and an attitude control problem. The solve times
for both problems and approaches are on the order of seconds. It is concluded that these techniques
are rigorous and of practical use in solving nonlinear trajectory design and control problems.
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1. Introduction

This paper presents new techniques for the trajectory design and control of nonlinear
dynamical systems. Assuming that the state and control are constrained to convex sets, a
sufficient condition for the nonlinear control to be computable by interpolation of controls
obtained by convex optimization is stated and proved. This theoretical result leads to two
numerical approaches for solving the nonlinear constrained problem: one requires solving
a single convex optimization problem and the other requires solving a sequence of convex
optimization problems.

The approaches are applied to two spacecraft trajectory design and control problems:
(1) a spacecraft is constrained to stay a certain distance from another space object in orbit
while moving from one location to another in a finite time; (2) a spacecraft is to change its
attitude in a finite time. The first problem may arise in the inspection phase of an on-orbit
servicing (OOS) mission [1]. For such a mission, the controlled spacecraft must stay far
enough from the target space object for safety reasons but also close enough to efficiently
perform the inspection. In general, OOS missions are needed to either repair a damaged
spacecraft or to extend the active lifetime of a spacecraft. An example of a spacecraft that
has had multiple OOS missions to service it is the Hubble Space Telescope [2]. Beyond
OOS missions, there are other types of missions where this type of problem could arise,
such as asteroid proximity operations [3,4].

The finite-time attitude control problem arises in optical applications where a picture
of a space object is to be taken at a certain time [5]. There may, for example, be a short time
window when the lighting of a space object is sufficient due to the relative positions of
the space object, the controlled spacecraft, and the sun [6,7]. The problem could also arise
when a spacecraft wants to perform an impulsive or so-called ’delta-v’ maneuver [8] and
its thrusters need to be oriented in the correct direction.

The class of problems studied in this paper has nonlinear dynamics, and there is a
large body of literature on feedback control, optimization, and trajectory design for such
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systems. The next two subsections situate the present work relative to control-related work
and optimization/trajectory-design-related work.

1.1. Control Theory

There are multiple techniques to solve nonlinear control problems based on lineariza-
tion. One of the most common techniques is feedback linearization [9]. This technique,
when applicable, allows one to use well-studied linear control techniques on the linearized
problem. Feedback linearization is an exact linearization technique because no approxi-
mations are needed. However, errors in state estimation, modeling, and time delays may
destabilize the system. Because the nonlinear term is part of feedback, incorporation of
control constraints is challenging.

There are other techniques that produce exact linearizations, such as the ones discussed
in [10,11]. In both of these cases, a linear system is achieved by the transformation of
variables. The challenge is that these types of exact linearizations exist for only a small
subset of dynamical systems, and even when they do, the transformation may not be
obvious, requiring the control engineer to spend significant time deriving it.

In addition to exact linearization techniques, there are techniques that approximate
the nonlinear system by a linear one. The most well-known one is where the Jacobian is
evaluated at an operating point. Some of the other techniques include approximation of the
Koopman operator and the use of machine learning [12–14]. These techniques approximate
the nonlinear dynamics by introducing new state variables/lifting functions to arrive at
a high-order linear model. The results of this paper leverage ‘auxiliary’ linear systems
associated with a nonlinear system; however, neither exact nor approximate linearizations
are used.

Yet another technique to linearize a nonlinear system is to use linear parameter-varying
(LPV) system [15]. LPV systems have been used to represent nonlinear systems in many
applications, such as aerospace, ground vehicle, and robotic control [16]. The controller
design for LPV systems usually takes advantage of linear matrix inequalities (LMI) and
convex combinations of linear systems [17]. LPV controller techniques are often used in
robust control where the model has uncertainty and the controller is designed to be robust
for these uncertainties. The LPV controller techniques using LMIs are limited to controllers
with asymptotic stability, whereas the controller design technique introduced in this paper
can be used to solve fixed finite-time problems. A non-LPV technique where the nonlinear
system is bounded by linear ones was introduced in [18].

Control design using control Lyapunov functions has been performed for nonlinear
control affine systems with ball-type control constraints [19] and polytopic control con-
straints [20]. In [20], their algorithm minimizes the control magnitude pointwise in time;
as such, it requires the solution of a quadratic program (QP) pointwise in time. Similarly,
control barrier functions have been used to simultaneously ensure system ’safety’ and
stability, again often requiring pointwise optimization [21]. The technique in this paper
requires the solution of only one SOCP, and then the nonlinear control may be interpolated.

1.2. Optimization and Trajectory Design

Classical approaches for control of linear and nonlinear systems do not account for
state and control constraints. When such constraints are present, optimization-based
techniques may be used. Most relevant here are the recent results in lossless convexification
and sequential convex programming. The fundamental idea in lossless convexification
is to relax non-convex constraints to convex form and then prove the relaxation did not
introduce new optimal solutions [22]. Motivating this research has been minimum-fuel-
type optimal control problems with linear dynamics and annular control constraints [23].
The earliest papers required a technical assumption related to the transversality condition
of optimal control. This assumption has recently been weakened, allowing a broader class
of problems including ones with fixed final time [24]. The theory has also been extended
to problems with linear state constraints [25,26], quadratic state constraints [27,28], and
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disconnected control sets [29]. For problems with state constraints, a key condition in the
proofs is related to the strong observability property of the dynamical system [30].

The theory has also been extended to annularly constrained problems with nonlin-
ear dynamics [31]. The relaxation applies only to the control constraint. Consequently,
the relaxed problem remains non-convex because of the nonlinear dynamics and non-
convex techniques, such as sequential quadratic programming and sequential convex
programming [32–35], are required to solve the problem. Those techniques rely upon
local linearizations/convexifications and iterative updates to converge to local extrema. In
sequential convex programming, multiple convex programs must be solved in the process.
In contrast, our Theorem 1 provides sufficient conditions for the nonlinear trajectory design
and control problem to be solved with a single convex program.

1.3. Contributions

The problem of interest in this paper is a nonlinear control problem with convex state
and control constraints. The primary theoretical contribution is a set of sufficient conditions
under which the problem is solvable as a single convex program. This is in contrast to:

• Classical control techniques, which do not account for state and control constraints;
• Lossless convexifications, which do not generate convex problems when nonlinear

dynamics are present;
• Sequential convex programming, which requires the solution of many convex

programs.

Our technique uses a convex polytope to bound the range of the nonlinear function,
and associates with each vertex of the polytope an ‘auxiliary’ linear system. The sufficient
conditions presented in Theorem 1 guarantee that a feasible control for the nonlinear system
is interpolatable from the ‘auxiliary’ linear controls obtained via convex optimization. A
conceptual understanding of the proof leads to a ‘resetting approach’ that applies even
when the sufficient conditions are violated.

The primary applied contribution is the application of the theory and algorithms to two
problems in aerospace engineering. The first problem is a spherically constrained relative
orbital motion problem, which has been studied from the lossless convexification [28] and
nonlinear dynamics [36] perspectives. The second problem is an attitude control problem
using the dynamics of the Euler axis.

1.4. Outline

The remainder of the paper is structured as follows: Section 2 describes the problem
of interest, which is a nonlinear control problem with convex state and control constraints,
and proves sufficient conditions (see Theorem 1) for the problem to be solvable in a single
convex program. A sequential or resetting approach is then outlined for cases in which the
sufficient conditions are not satisfied. The theoretical results and associated algorithms are
applied to a constrained relative orbital motion problem in Section 3 and an attitude control
problem in Section 4. Conclusions are presented in Section 5. Because the paper focuses
on discrete-time systems, a particular strategy for discretizing continuous-time systems is
presented in Appendix A.

2. Problem and Main Result

This section describes the problem of interest, provides a sufficient condition for its
solution as a single convex program, and describes a practical algorithm for implementing
the theoretical results. Consider a nonlinear system of the form

ẋ = Ax + Bu + Eη(x), x0 = x(t0) given (1)

where A ∈ Rn×n is the system matrix, B ∈ Rn×m is the control-influence matrix, and
E ∈ Rn×p is a mapping for the nonlinearity η : D → Rp. The system is defined on a spatial
domain D ⊂ Rn and time domain I = [t0, t f ], where t0 is the initial time and t f is the
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final time. The given initial condition is x0 = x(t0). It is assumed that the range of the
nonlinearity η is bounded by a convex polytope as

∀x ∈ D, η(x) ∈ co{δ1, δ2, . . . , δq} ⊂ Rp (2)

where δi ∈ Rp are the vertices of the polytope and ‘co’ denotes the convex hull. The
trajectory design and control problem is to drive the state to the terminal constraint set
X f ⊂ D while maintaining x ∈ X ⊂ D and u ∈ U ⊂ Rm. All of the constraint sets X f , X,
and U are assumed to be convex. The polytopic range assumption is satisfied when X is
compact and η is continuous since each component of η is guaranteed to attain a minimum
and maximum. These minima and maxima may then serve as vertices of the polytope.
Note that this is a feasibility problem; no objective function is present.

Though motivated by continuous-time dynamics in aerospace applications, all analysis
is conducted on an analogous discrete-time system

x[k + 1] = Adx[k] + Bdu[k] + Edη(x[k]), x[0] = x(t0) given (3)

where the discrete-time index is k ∈ Id = {0, . . . , N − 1}. A significant portion of the
analysis in this section can be performed in either continuous or discrete time. However,
for use as a control-synthesis tool using finite-dimensional optimization, it is best to use
a discrete-time formulation. To our knowledge, all results on the lossless convexification
of optimal control problems are based on continuous-time formulations and measure-
theoretic considerations. As such, the ‘lossless’ guarantees do not hold up in the associated
discrete-time algorithms. The use of discrete-time dynamics in the formulation is superior
in this respect. A particular discretization strategy used in the forthcoming examples is
provided in Appendix A.

Now, consider the auxiliary systems

xi[k + 1] = Adxi[k] + Bdui[k] + Edδi, xi[0] = x0, i ∈ {1, . . . , q} (4)

where in the ith system the nonlinearity η is replaced by the δi vertex of its bounding
polytope. Solutions to these linear time-invariant (LTI) difference equations are, for every
k ∈ {1, . . . , N}, given by

xi[k] = Ak
dx0 +

k−1

∑
j=0

Ak−1−j
d (Bdui[j] + Edδi)

= Ak
dx0 +

k−1

∑
j=0

αi[k, j]

(5)

where for every k ∈ {1, . . . , N} and j ∈ {0, . . . , k− 1}

αi[k, j] = Ak−1−j
d (Bdui[j] + Edδi). (6)

For a given sequence {ui[k]}N−1
k=0 , the sequence {αi[k, j]}k−1

j=0 becomes known. This fact
motivates the following theorem, which is the main theoretical result of the paper.

Theorem 1. For each i ∈ {1, . . . , q}, let {ui[k]}N−1
k=0 be a control sequence that solves the trajectory

design and control problem for the ith auxiliary system. Let αi[k, j] be given by (6). If for every
k ∈ {1, . . . , N} and l ∈ {1, . . . , n} there exist indices g,f ∈ {1, 2, . . . , q} such that for every
i ∈ {1, . . . , q} and j ∈ {0, . . . , k− 1}

αl
g[k, j] ≤ αl

i [k, j]

αl
f[k, j] ≥ αl

i [k, j]
(7)
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then the sequence {u[k]}N−1
k=0 with u[k] = u1[k]λ1[k] + . . .+ uq[k]λq[k] solves the trajectory design

and control problem for the nonlinear system, where λi[k] satisfies the interpolation constraint

η(x[k]) = δ1λ1[k] + . . . + δqλq[k] (8)

and the convex combination constraints

q

∑
i=1

λi[k] = 1, 0 ≤ λi[k] ≤ 1. (9)

Proof. For every k ∈ Id, define the following quantities.

U[k] =
[
u1[k], . . . , uq[k]

]
∆ =

[
δ1, . . . , δq

]
(10)

λ[k] =
[
λ1[k], . . . , λq[k]

]>
For any sequence {λ[k]}N−1

k=0 satisfying (9), the linear system

x[k + 1] = Adx[k] + BdU[k]λ[k] + E∆λ[k] (11)

has a unique solution for every k ∈ {1, . . . , N} given by

x[k] = Ak
dx0 +

k−1

∑
j=0

Ak−1−j
d (BU[j] + E∆)λ[j]

= Ak
dx0 +

k−1

∑
j=0

[
α1[k, j], . . . , αq[k, j]

]
λ[j] (12)

= Ak
dx0 +

k−1

∑
j=0

β[k, j]

where for every k ∈ {1, . . . , N} and j ∈ {0, . . . , k− 1}

β[k, j] =
[

α1[k, j], . . . , αq[k, j]
]

λ[j]. (13)

Because β[k, j] is defined as a convex combination of α1[k, j], . . . , αq[k, j], it is known that
each component l ∈ {1, 2, . . . , n} of β[k, j] is constrained based on (7) as

∀k ∈ {1, . . . , N}, ∀j ∈ {0, . . . , k− 1}, αl
g[k, j] ≤ βl [k, j] ≤ αl

f[k, j]. (14)

Consequently, their sums are ordered in the same way.

∀k ∈ {1, . . . , N},
k−1

∑
j=0

αl
g[k, j] ≤

k−1

∑
j=0

βl [k, j] ≤
k−1

∑
j=0

αl
f[k, j]. (15)

Adding the lth component of Ak
dx0 to each, it follows that for every k ∈ {1, . . . , N}

xl
g[k] ≤ xl [k] ≤ xl

f[k]. (16)

That is, elements of the sequence {xl [k]}k=N
k=0 are always between elements of the sequences

{xl
g[k]}k=N

k=0 and {xl
f[k]}k=N

k=0 . From the convexity of X and X f , it is concluded that for every
k ∈ {0, . . . , N} the states x[k] ∈ X and x[N] ∈ X f .

Upon choosing, for every k ∈ Id, λ[k] such that (8) is satisfied and u[k] = U[k]λ[k], the
original discrete-time system (3) is obtained. By convexity of U, the interpolated control
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u[k] ∈ U. That is, the sequence {u[k]}N−1
k=0 solves the nonlinear trajectory design and control

problem.

Conceptually, it is convenient to think of the controls and nonlinearities as non-
homogenous forcing terms whose effects are captured in αi[k, j]—see (6). The theorem
requires through (7) that it be possible for the non-homogenous effects to be bounded
componentwise by only two of the possibly many αi[k, j] terms. For this reason, we refer to
(7) as the ‘ordering constraint’. It is this restriction, as detailed in the proof, that allows the
nonlinear trajectories to be bounded by the linear ones, thus allowing interpolation for the
nonlinear controls.

This paper uses two techniques to design trajectories for nonlinear systems that are
both based on Theorem 1. The first technique sets (7) as a constraint in an optimization
problem. Including this constraint does not add any nonlinearities to the optimization
problem. However, it does require the control engineer to pre-determine what the g and
f are for each l and each k. In other words, the lower and upper limits on α can vary by
the element of α as well as by the time instance k; however, they must be pre-determined
by the control engineer in this formulation. In the forthcoming examples, this is called the
’constrained approach’.

The second technique computes a trajectory for a full time domain Id and then checks
if the condition (7) is violated. If it is, the problem is reset at the first k ∈ Id, where the
condition is violated. Not introducing the constraint (7) into the optimization problem
makes solving the optimization problem faster; however, this technique does require
computing the controller multiple times with a shrinking time horizon (similar to MPC).
This technique also does not require the control engineer to pre-determine g or f, which
can be a challenging task, especially for higher-dimensional systems. The algorithm for
this technique is given in Algorithm 1 and is referred to as the ’resetting approach’.

Algorithm 1 Resetting Approach.

Input: x0, N, Ad, Bd, Ed, ∆, η
Output: u

1: Set K = 0 and x[0] = x0.
2: while K < N − 1 do
3: For each k ∈ {K, K + 1, . . . , N − 1} find u1[k], u2[k], . . . , uq[k].
4: for k = K to N − 1 do
5: For each j ∈ {K, K + 1, . . . , k} compute α1[k, j], α2[k, j], . . . , αq[k, j].
6: Determine αg[k] and αf[k].
7: if ∃j ∈ {K, K + 1, . . . , k} such that α[k, j] < αg[k] or α[k, j] > αf[k] then
8: Set K = k.
9: break for

10: end if
11: Use (9) to get λ[k].
12: Compute nonlinear control as u[k] = U[k]λ[k].
13: Use u[k] in (3) to get x[k + 1].
14: end for
15: end while

3. Spherically Constrained Relative Motion Trajectory Design

The approaches developed in Section 2 are now applied to a spherically constrained
relative orbital motion problem. Variations of the problem have motivated a recent lossless
convexification [28] and nonlinear dynamical analysis [36], which identified periodic and
chaotic motion.
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The relative motion of two spacecraft in proximity to each other in low earth orbit is
described by the Clohessy–Wiltshire (CW) equations [37] as

ẏ = v

v̇ = M1y + M2vs. + τ
(17)

where y ∈ R3 is the relative position of the spacecraft in the local vertical local horizontal
(LVLH) frame, v ∈ R3 is the relative velocity of the spacecraft in the LVLH frame, and
τ ∈ R3 is the thrust-to-mass ratio. The matrices M1 and M2 are

M1 =

3ω2 0 0
0 0 0
0 0 −ω2

, M2 =

 0 2ω 0
−2ω 0 0

0 0 0

 (18)

where the constant ω ∈ R is the mean motion of the reference orbit. To prevent the vehicles
from colliding while keeping them close together, the relative position is constrained to
a sphere of radius R, i.e., ||y|| = R. Because of this constraint, use of a spherical coordi-
nate system is convenient. The transformation from Cartesian to spherical coordinates is
given as y1

y2
y3

 = r

cos(φ) cos(θ)
cos(φ) sin(θ)

sin(φ)

 (19)

where r ∈ R is the radial distance of the spacecraft from the target space object, which
in the case of a spherical constraint is constant and equal to R. The spherical angles are
φ ∈ (−π/2, π/2) and θ ∈ [0, 2π]. An illustration of the coordinate transformation is shown
in Figure 1.

x1

x2

x3

θ

φ

R

Figure 1. Coordinate transformation of relative coordinates.

The thrust-to-mass ratio may be transformed from Cartesian to spherical coordinates asur
uθ

uφ

 =

 cos(φ) cos(θ) cos(φ) sin(θ) sin(φ)
− sin(θ) cos(θ) 0

− sin(φ) cos(θ) − sin(φ) sin(θ) cos(φ)

τ1
τ2
τ3

. (20)
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Using the the defined transformations, the CW dynamics in the spherical coordinate
system are

r̈ = rφ̇2 + rω2
(

3 cos(φ)2 cos(θ)2 − sin(θ)2
)
+ rθ̇2 cos(φ)2 + 2ωrθ̇ cos(φ)2 + ur (21a)

θ̈ = 2(θ̇ + ω)(φ̇ tan(φ)− ṙ/r)− 3ω2 sin(θ) cos(θ) + uθ/(r cos(φ)) (21b)

φ̈ = −2φ̇ṙ/r− sin(2φ)(θ̇ + ω)2/2− 3ω2 sin(φ) cos(φ) cos2(θ) + uφ/r. (21c)

Keeping in mind that the constraint is to stay on a spherical surface centered at the
target space object, we know that r = R, ṙ = 0 and r̈ = 0. Using this information, (21a) can
be solved for the radial control ur to obtain

ur = −R
(

φ̇2 + ω2(3 cos(φ)2 cos(θ)2 − sin(θ)2) + θ̇2 cos(φ)2 + 2ωθ̇ cos(φ)2
)

. (22)

The spherical controls uθ and uφ may then take any values, and the relative distance
between the spacecraft will remain R. Furthermore, since the r̈ equation is constant, it does
not need to be considered for the dynamics, and the simplified equations for θ̈ and φ̈ with
r = R and ṙ = 0 are

θ̈ = 2(θ̇ + ω)φ̇ tan(φ)− 3ω2 sin(θ) cos(θ) + uθ/(R cos(φ))

φ̈ = − sin(2φ)(θ̇ + ω)2/2− 3ω2 sin(φ) cos(φ) cos2(θ) + uφ/R.
(23)

Now, if a new control vector is defined as u = [uθ/ cos(φ), uφ]>, and a state vector is
defined as x = [θ, φ, θ̇, φ̇]>, the above equations can be written in the following form

ẋ =

[
02×2 I2×2
02×2 02×2

]
x +

1
R

[
02×2
I2×2

]
u

+

 02×2
2(θ̇ + ω)φ̇ tan(φ)− 3ω2 sin(θ) cos(θ)

− sin(2φ)(θ̇ + ω)2/2− 3ω2 sin(φ) cos(φ) cos2(θ)

.
(24)

This nonlinear system is in the form of (1) with the system matrices being

A =

[
02×2 I2×2
02×2 02×2

]
, B =

1
R

[
02×2
I2×2

]
, E =

[
02×2
I2×2

]
(25)

and the nonlinear function η given by

η(θ, φ, θ̇, φ̇) =

[
2(θ̇ + ω)φ̇ tan(φ)− 3ω2 sin(θ) cos(θ)

− sin(2φ)(θ̇ + ω)2/2− 3ω2 sin(φ) cos(φ) cos2(θ)

]
. (26)

For numerical purposes, the radius R of the sphere is 100 m and the mean motion ω is
4 rad/h, which corresponds to a low earth orbit with a period of π/2 h. The dynamics
in (24) are discretized according to the procedure in Appendix A with ∆t = 0.05 h to obtain

Ad =


1 0 0.05 0
0 1 0 0.05
0 0 1 0
0 0 0 1

, Bd =


0.0125 0

0 0.0125
0.5 0
0 0.5

× 10−3, Ed =


0.00125 0

0 0.00125
0.05 0

0 0.05

. (27)

The initial relative position of the spacecraft is defined as θ0 = 3π/4 rad and φ0 = π/4 rad
with initial relative velocity of zero. The desired final relative position of the spacecraft
is θ f = φ f = 0 rad and the desired final relative velocity is zero. This maneuver is to be
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completed in 6 h. With the chosen time step as 0.05 h, N becomes 120. The vertices for the
bounding polytope of the nonlinearity are chosen as (all in rad/h2)

δ1 =

[
−35
−42

]
, δ2 =

[
−35
+42

]
, δ3 =

[
+35
−42

]
, δ4 =

[
+35
+42

]
. (28)

With this in place, Theorem 1 may be applied to generate feasible solutions to the nonlinear
trajectory design and control problem. First, the ‘constrained approach’ is used, which is
followed by the ‘resetting approach’. Both of the solutions are compared against a solution
that was achieved by solving a non-convex optimization problem using MATLAB’s [38]
fmincon solver. The ‘constrained’ and ‘resetting’ solutions are used as initial guesses for
the non-convex solver.

3.1. Constrained Approach

In this approach,the constraints in (7) are incorporated into an optimization problem.
The second-order cone programming (SOCP) problem to be solved is

min
u

4

∑
i=1

(
N−1

∑
k=0

10−12‖ui[k]‖2 + ‖xi[N]− x f ‖2

)
(29a)

s.t. xi[k + 1] = Adxi[k] + Bdui[k] + Edδi, i = 1, . . . , 4, k = 0, . . . , N − 1 (29b)

xi[0] = x0, i = 1, . . . , 4 (29c)

Equation (7) withg = [4, 4, 4, 4]> and f = [2, 3, 2, 3]>, k = 1, . . . , N (29d)

The cost function in (29a) has two quadratic terms. The first term penalizes the control
inputs of the auxiliary LTI systems. This term is not needed; it serves to regularize or
smooth the resulting solutions. The second term penalizes errors in the final state. Weights
multiplying the terms have been chosen based on their magnitudes. The control inputs for
the auxiliary LTI systems are on the order of 104, whereas the final state error gets very close
to zero; therefore, the multiplier for the final state error is chosen to be significantly larger
than that for the control inputs. The dynamics of the auxiliary LTI systems are enforced
in (29b) with initial conditions in (29c). The ordering constraint (7) of Theorem 1 is enforced
in (29d). Note that other orderings can be used, and it is not required for one ordering to be
enforced at all k. The user is free to choose the ordering.

Solving the optimization problem (29) took 1.14 s on a laptop with a 2.30 GHz Intel i7
processor using Gurobi [39] in MATLAB [38] through YALMIP [40]. The same setup was
used for all the computations in the following sections as well.

Figure 2 shows the relative angular displacement trajectories of the spacecraft and
Figure 3 shows the relative angular velocity trajectories of the spacecraft. In the figures, the
linear system trajectories are covered by the actual nonlinear system trajectories; however,
the nonlinear system trajectory is between the upper and lower bounds of the linear system
trajectories. From inspection of the magnified inset, it is evident that the final angular
displacements are on the order of 10−4 rad corresponding to a final position error on the
centimeter level.
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Figure 2. Angular displacement trajectories of the spacecraft. The black curves are the angular
displacements of the actual nonlinear system, whereas the gray curves are the angular displacements
of the auxiliary linear systems. The dashed line is the desired final position and the dotted line a
solution using a non-convex solver.
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Figure 3. Angular velocity trajectories of the spacecraft. The black curves are the angular velocities of
the actual nonlinear system whereas the gray curves are the angular velocities of the auxiliary linear
systems. The dashed line is the desired velocity at final time and the dotted line a solution using a
non-convex solver.

3.2. Resetting Approach

In this section, the constrained relative motion problem is solved using the ’resetting
approach’ described in Algorithm 1. The SOCP problem used to find control solutions in
Line 3 of Algorithm 1 is the same as (29) but with (29d) removed. The resets are performed
as described in Algorithm 1.

The results are shown in Figures 4 and 5. The results are similar to those shown in
Figures 2 and 3, except that towards the end of the time horizon, the angular velocity
trajectories of the linear systems diverge from the desired final velocity. The noticeable
difference is that designing this controller requires a solution to 11 SOCP problems as there
were 10 resets due to violations of the ordering constraint in 7. On average, solving each
problem required 0.17 s for a total solve time of 1.87 s. The number of variables in each
optimization problem also reduces on each reset as the time horizon gets shorter.
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Figure 4. Angular displacement trajectories of the spacecraft. The black curves are the angular
displacements of the actual nonlinear system, whereas the gray curves are the angular displacements
of the auxiliary linear systems. The dashed line is the desired final position and the dotted line a
solution using a non-convex solver.
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Figure 5. Angular velocity trajectories of the spacecraft. The black curves are the angular velocities of
the actual nonlinear system, whereas the gray curves are the angular velocities of the auxiliary linear
systems. The dashed line is the desired velocity at final time and the dotted line a solution using a
non-convex solver.

4. Spacecraft Attitude Control

The approaches developed in Section 2 are now applied to a spacecraft attitude control
problem. To represent the attitude of a spacecraft, a rotation vector θ = αe ∈ R3 is used.
The unit vector e ∈ R3 is the Euler rotation axis and α ∈ R is the angular displacement. To
derive the kinematics of the spacecraft attitude, a quaternion q ∈ R4 is defined representing
the spacecraft attitude as [41]

q =

[ 1
α sin(α/2)θ
cos(α/2)

]
. (30)

Taking the time derivative leads to

q̇ =

[ 1
α sin(α/2)θ̇

0

]
+

[(
− 1

α2 sin(α/2) + 1
2α cos(α/2)

)
α̇θ

− 1
2 sin(α/2)α̇

]
. (31)
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It is also well-known that the quaternion kinematics can be written as [42]

q̇ =
1
2

[
q4ω + q1:3 ×ω

−q>1:3ω

]
(32)

=
1
2

[
cos(α/2)ω− 1

α sin(α/2)θ ×ω

− 1
α sin(α/2)θ>ω

]
(33)

where ω ∈ R3 is the attitude rate of the spacecraft expressed in its body frame. Comparing
the last element of (31) and (33) gives an expression for α̇ as α̇ = α−1θ>ω. Comparing the
first three elements of (31) and (33), substituting the expression of α̇, and solving for θ̇, gives

θ̇ =

(
1
α
− 1

2
cot(α/2)

)
1
α

θ>ωθ +
1
2
(α cot(α/2)ω + θ ×ω). (34)

Subtracting and adding α−2θ>θω on the right-hand side, using the vector triple product,
and noting that α = ‖θ‖ (provided 0 < α < 2π), simplifies the above to

θ̇ = ω +
1
2

θ ×ω +
1
‖θ‖2

(
1− ‖θ‖

2
cot(||θ||/2)

)
θ × (θ ×ω). (35)

The attitude dynamics of the spacecraft can be derived from Euler’s equations [42].
Assuming that the only external torque affecting the system is a control torque τ ∈ R3, the
dynamics are

ω̇ = J−1(ω× (Jω) + τ) (36)

where J is a moment of inertia of the spacecraft about its center of mass represented in the
body frame. Defining the state vector as x = [θ>, ω>]> ∈ R6, Equations (35) and (36) can
be written as

ẋ =

[
03×3 I3×2
03×3 03×3

]
x +

[
03×3
J−1

]
τ

+

[
I3×3 03×3
03×3 J−1

][ 1
2 θ ×ω + 1

‖θ‖2

(
1− ‖θ‖2 cot(||θ||/2)

)
θ × (θ ×ω)

ω× (Jω)

]
.

(37)

To simplify the nonlinear effects, it is assumed that the rate vector ω is known from
navigation and available for feedback linearization. Upon defining the control τ = u−
ω× (Jω), the nonlinear system is

ẋ =

[
03×3 I3×2
03×3 03×3

]
x +

[
03×3
J−1

]
u

+

[
I3×3
03×3

][
1
2 θ ×ω + 1

‖θ‖2

(
1− ‖θ‖2 cot(||θ||/2)

)
θ × (θ ×ω)

]
.

(38)

Feedback linearization has the effect of reducing the dimension of the nonlinearity from six
to three, which in turn reduces the dimension of the bounding convex polytope.

This nonlinear system is in the form of (1), with the system matrices being

A =

[
03×3 I3×2
03×3 03×3

]
, B =

[
03×3
J−1

]
, E =

[
I3×3
03×3

]
(39)

and the nonlinear function η given by

η(θ, ω) =
1
2

θ ×ω +
1
‖θ‖2

(
1− ‖θ‖

2
cot(||θ||/2)

)
θ × (θ ×ω). (40)
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For numerical purposes, the spacecraft is assumed to have a cylindrical shape with
constant density. The radius of the spacecraft is r = 0.25 m, height h = 0.5 m, and
mass m = 100 kg. The body z-axis is defined to be aligned with the axis of the cylinder.
The moment of inertia matrix is then given as J = diag{Jxx, Jyy, Jzz}, where Jxx = Jyy =
1
4 mr2 + 1

12 mh2 and Jzz = 1
2 mr2. The dynamics in (37) are discretized according to the

procedure in Appendix A with ∆t = 0.05 sec to obtain

Ad =



1 0 0 0.05 0 0
0 1 0 0 0.05 0
0 0 1 0 0 0.05
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, Bd =



0.343 0 0
0 0.343 0
0 0 0.4

13.7 0 0
0 13.7 0
0 0 16

× 10−3, (41)

Ed =



0.05 0 0
0 0.05 0
0 0 0.05
0 0 0
0 0 0
0 0 0

.

The initial attitude of the spacecraft is given with an axis of rotation of 1√
3
[1, 1, 1]> and

angle 45◦. The desired final attitude is given by an axis of rotation of − 1√
3
[1, 1, 1]> and

angle 90◦. The initial angular velocity of the spacecraft is [5,−10, 15] ◦/s and the desired
final angular velocity is zero. The maneuver is to be performed in 6 s. With the chosen time
step of 0.05 s, N becomes 120. The vertices for the bounding polytope of the nonlinearity
are chosen as (all in rad/s)

δ1 =

−0.1
−0.1
−0.1

, δ2 =

−0.1
−0.1
+0.1

, δ3 =

−0.1
+0.1
−0.1

, δ4 =

−0.1
+0.1
+0.1

,

δ5 =

+0.1
−0.1
−0.1

, δ6 =

+0.1
−0.1
+0.1

, δ7 =

+0.1
+0.1
−0.1

, δ8 =

+0.1
+0.1
+0.1

.

(42)

Again, Theorem 1 may be applied to generate feasible solutions to the nonlinear trajectory
design and control problem. The ‘constrained’ and ‘resetting’ approaches are compared
against a solution that was achieved by solving a non-convex optimization problem using
MATLAB’s [38] fmincon solver with the initial guesses obtained from the ‘constrained’ and
‘resetting solutions’.

4.1. Constrained Approach

In this approach, the constraints in (7) are incorporated into an optimization problem.
The second-order cone programming (SOCP) problem to be solved is

min
u

8

∑
i=1

(
N−1

∑
k=0

10−8‖ui[k]‖2 + ‖xi[N]− x f ‖2

)
(43a)

s.t. xi[k + 1] = Adxi[k] + Bdui[k] + Edδi, i = 1, . . . , 8, k = 0, . . . , N − 1 (43b)

xi[0] = x0, i = 1, . . . , 8 (43c)

Equation (7) withg = [4, 6, 7, 8, 8, 8]>, k = 1, . . . , N (43d)

f = [8, 8, 8, 4, 6, 7]>, k = 1, . . . , N
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Due to different scaling between the auxiliary system control magnitudes and errors
between actual and desired final states compared with the relative motion problem of the
previous section, the weight on the control term was set to 10−8. As before, the control
penalty is not needed but has a regularizing effect. The dynamics of the auxiliary LTI
systems are enforced in (43b) with initial conditions in (43c). The ordering constraint (7) of
Theorem 1 is enforced in (43d).

Solving the SOCP problem took 1.09 s. Figure 6 shows the attitude of the spapecraft
with the dashed line as the desired final attitude. Figure 7 shows the angular velocity of
the spacecraft. It can be seen in these figures that the nonlinear system does not arrive
exactly to the desired final state but stays between the upper and lower bounding linear
systems. The magnitude of error between the desired final rotation vector and the final
rotation vector of the nonlinear system is 0.107 rad. However, the average magnitude of
error between the desired final rotation vector and the final rotation vectors of the linear
auxiliary systems is 0.217 rad. Since the linear auxiliary systems provide the limits for the
nonlinear system trajectories, better performance is desired and is investigated as part of
the ‘resetting approach’.
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Figure 6. Attitude of the spacecraft. The black curves are the attitude of the actual nonlinear system,
whereas the gray curves are the attitudes of the auxiliary linear system. The dashed line is the desired
final attitude and the dotted line a solution using a non-convex solver.
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Figure 7. Angular velocity of the spacecraft. The black curves are the angular velocities of the
actual nonlinear system, whereas the gray curves are the angular velocities of the auxiliary linear
systems. The dashed line is the desired angular velocity and the dotted line a solution using a
non-convex solver.

4.2. Resetting Approach

In this section, the attitude control problem is solved using the ’resetting approach’
described in Algorithm 1. The SOCP problem used to find control solutions in Line 3
of Algorithm 1 is the same as (43) but with (43d) removed. The resets are performed as
described in Algorithm 1.

Figure 8 shows the attitude of the spacecraft with the dashed line as the desired
final attitude. Figure 9 shows the angular velocity of the spacecraft. It can be seen on
these figures that the resetting controller seems to perform significantly better than the
constrained controller in the previous section especially when comparing the errors between
the desired final attitude and the actual final attitude. The magnitude of the error between
the desired final rotation vector and the final rotation vector of the nonlinear system is
2.17× 10−3 rad. Even the average magnitude of the error between the desired final rotation
vector and the final rotation vectors of the auxiliary systems is only 2.9× 10−3 rad. These
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are significantly lower compared with the final attitude errors reached with the constrained
controller. The design of this controller required solving 20 SOCP problems with an average
solution time of 0.233 s for a total solver time of 4.67 s. The resets are also easily noticeable
because of the saw-blade-like linear system trajectories.
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Figure 8. Attitude of the spacecraft. The black curves are the attitude of the actual nonlinear system,
whereas the gray curves are the attitudes of the auxiliary linear systems. The dashed line is the
desired final attitude and the dotted line a solution using a non-convex solver.

0 1 2 3 4 5 6

−0.4

−0.2

0

0.2

t (s)

ω
1

(r
ad

/s
)

0 1 2 3 4 5 6

−0.4

−0.2

0

t (s)

ω
2

(r
ad

/s
)

0 1 2 3 4 5 6

−0.6

−0.4

−0.2

0

0.2

t (s)

ω
3

(r
ad

)
Figure 9. Angular velocity of the spacecraft. The black curves are the angular velocity of the
actual nonlinear system, whereas the gray curves are the angular velocities of the auxiliary linear
systems. The dashed line is the desired angular velocity and the dotted line a solution using a
non-convex solver.

5. Summary and Conclusions

Convex optimization-based techniques for trajectory design and control of nonlinear
systems with convex state and control constraints were presented. The techniques apply to
systems for which the range of the nonlinear dynamics function is contained in a convex
polytope. Sufficient conditions for the problem to be solvable by a single convex program
were given. The theoretical results were applied to two practical problems in aerospace
engineering: a constrained relative orbital motion problem and an attitude control problem.
Solution times were on the order of seconds. An alternative ‘resetting approach’ was also
introduced that applies to problems not satisfying the sufficient conditions or when the
so-called ordering constraint is difficult to implement. This resetting approach requires
the solution of multiple convex programs; however, solve times remained on the order of
seconds. Both methods were compared against a non-convex optimization solution as well.
It is concluded that this technique is rigorous and is a practical means of solving nonlinear
trajectory design and control problems efficiently.
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Appendix A

The continuous-time system of interest is

ẋ = Ax + Bu + Eη(x). (A1)

Upon defining the fundamental matrix Φ(tk+1, tk) = eA(tk+1−tk), it can be shown by direct
differentiation that a solution to (A1) on the interval [tk, tk+1] is

x(tk+1) = Φ(tk+1, tk)x(tk) +
∫ tk+1

tk

Φ(tk+1, τ)[Bu(τ) + Eη(x(τ))]dτ. (A2)

For small time steps ∆t = tk+1 − tk, evaluation of the integral may be approximated by
fixing u and η(x) at their initial values u(tk) and η(x(tk)), respectively. Upon defining

Ad = Φ(tk+1, tk), Bd =
∫ tk+1

tk

Φ(tk+1, τ)Bdτ, Ed =
∫ tk+1

tk

Φ(tk+1, τ)Edτ, (A3)

a discrete-time approximation of the continuous-time system is

x[k + 1] = Adx[k] + Bdu[k] + Edη(x[k]), (A4)

which is the same as (3).
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