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Abstract: Decision support tools for arrival sequencing and scheduling could assist air traffic con-
trollers in managing the arrival aircraft in terminal areas. However, one critical issue is that the
current method for dealing with the arrival sequencing and scheduling problem does not consider the
dynamic traffic situation and the human working experience, which results in a deviation between
the scheduled and actual landing sequences. This paper develops a data-driven method to address
this issue. Firstly, the random forest model is applied to predict the estimated time of arrival (ETA).
During the ETA prediction, the trajectory, operation, and airport-related factors that could increase
the prediction accuracy are considered. Secondly, the landing sequence is obtained by sorting the
predicted ETAs. Thirdly, two optimization methods are proposed to generate the scheduled time of
arrival (STA). The former uses the predicted ETAs as inputs and then directly optimizes the landing
sequence and the STA. The latter uses both the predicted ETA and the landing sequence as inputs for
further optimization. Finally, these proposed methods are evaluated with three sets of historical data
on arrival operations at Changsha Huanghua International Airport (ZGHA). The results show that the
RF-based ETA prediction method could improve scheduling performance. Moreover, the proposed
optimization methods could provide controllers with a more appropriate decision advisory. Such
advisories could simultaneously reduce the operation efficiency indicators (average/maximum delay
or dwell time) and the operation complexity indicators (Kendall rank correlation or position shift).

Keywords: air traffic management; arrival sequencing and scheduling; optimization; ETA prediction;
random forest

1. Introduction

The continuous growth of air traffic has accelerated the development of civil aviation
in China. Radar vectoring is undoubtedly the most flexible tactical method for air traffic
management (ATM) within the Terminal Maneuvering Area (TMA). However, frequent
radar vectoring might lead to flight inefficiency in the high traffic situation and a heavy
workload due to growing traffic demand and limited airspace resources. Thereupon,
optimizing spatial–temporal resources has always been a hot topic in the ATM research
field. In particular, the arrival sequencing and scheduling problem (ASSP) is a typical
spatial–temporal resource optimization problem.

To tackle the ASSP, one should allocate the landing runway, determine the landing
sequence, and optimize the landing times for arrivals while considering the given objectives
and operational constraints [1,2]. During nearly three decades of development, the research
on ASSP attracted considerable attention from many researchers. Some research treated
the ASSP as a static case [3] and others as a dynamic case [4–10]; some research tackled
the ASSP from a deterministic perspective and others from a stochastic perspective [11–14];
some research concerned the appeals of one single stakeholder (i.e., single-objective op-
timization) [15–18] and others multiple stakeholders (i.e., multiple-objectives optimiza-
tion) [19–23]; some research solved the ASSP by exact solution methods [3,19,24–28] (e.g.,
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Beasley used solvers such as CPLEX and Briskorn used model language such as GAMS)
and others by approximate solution methods [29], including the simulated annealing algo-
rithm [18,30], genetic algorithm [31,32], ant colony optimization algorithm [33], imperialist
competitive algorithm [34], local search algorithm [10], and so on; and some research only
provided the optimized landing runway, sequence, and time, while others also proposed
the advisories for air traffic controllers [22,35–37].

As well as the theoretical research, the Air Navigation Service Providers (ANSPs) also
developed several decision support tools (DSTs) for the ASSP, for example, the Center-
TRACON Automation System (CTAS) [38] in the US and Arrival Manager (AMAN) [39]
around Europe. After capturing the arrivals, DSTs first predicted the estimated time of
arrival (ETA). Subsequently, these DSTs optimized the landing sequence and provided the
scheduled time of arrival (STA) for each arrival aircraft. However, in actual operation, it
was highly recommended that “an Arrival Manager should not be over-engineered, nor
should it try to replicate to the ultimate degree many of the more complex human tasks or
cognitive processes carried out routinely by air traffic controllers” [40]. It meant that, for
arrival operations, the utmost concern of air traffic controllers was the landing sequence
establishment. Therefore, current studies have focused on building up a sequence and
scheduling a time of arrival.

Zhang et al. modeled the ASSP as a machine scheduling problem and proposed a
new approach to solve the ASSP [41]. The first stage of such a proposed approach was
establishing the landing sequence based on a composite dispatching rule. The second
stage was optimizing the landing time using a CPLEX solver or a metaheuristic algorithm.
However, this method only focused on the instantaneous situation of the arrival operation
to establish the landing sequence. Jung et al. proposed a new classification-based method
for predicting the landing sequences to accommodate the cognitive processes of air traffic
controllers [42]. Such a data-driven method first learned the pairwise preference functions
between two arrivals by logistic regression. Then it induced the entire sequence by com-
paring the score of each aircraft, which was the sum of pairwise preference probabilities.
However, the weakness of this method was the heavy computational burden through
pairwise preference learning.

This paper proposes a data-driven method to solve the ASSP concerning the cognitive
processes of air traffic controllers. This method works in two stages: the first stage is
prediction, and the second is optimization. In the prediction stage, this paper trains
machine learning models considering domain knowledge of the ATM field to predict
the ETAs [43]. Specifically, tree-based models named random forests (RF) are developed,
including three types of features. Then, the landing sequence is obtained by sorting the
ETAs of the arrival aircraft. In the optimization stage, two types of optimization models
are proposed. The former uses the predicted ETAs as inputs and then directly optimizes
STAs [3,23], while the latter sorts the predicted ETAs to obtain landing sequences as
inputs for further optimization. The critical difference between the proposed and previous
methods is that the traffic situation and controllers’ working experience are considered for
ETA prediction, which could guarantee that the optimized landing sequence is consistent
with the actual landing sequence. Furthermore, the consistency of the landing sequence
between optimization and actual operation could keep the controllers’ working load under
an acceptable level.

The main contributions of this paper are as follows: From the theoretical perspective,
this paper studies the impact of the accuracy of flight time on the sequencing optimization
model. Firstly, this paper develops random forest models to predict the ETAs by considering
the domain knowledge in air traffic control, such as trajectory, operation, and airport factors.
Then, the landing sequence is obtained based on ETA sorting. Finally, two optimization
strategies are proposed to sequence and schedule the arrival aircraft while considering
the constraints of operational context and objectives from multi-stakeholders. From the
practical perspective, this study also addresses the problem of the scheduled landing
sequence deviating from the actual landing sequence. Furthermore, the proposed method
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can be embedded into the decision support tools to help air traffic controllers schedule
arrival aircraft more efficiently. It could also reduce the workloads for controllers and
promote operational efficiency around the airport.

This paper is organized as follows: First, the methodology of the proposed data-
driven method is provided in Section 2, including data preparation, prediction of ETA,
and optimization of arrival schedule. Subsequently, Section 3 details the scenarios of case
studies and the results of ETA prediction. Finally, Section 4 presents the validation results
and carries out the comparison work before the conclusion in Section 5.

2. Methodology

This paper proposes a data-driven method to provide a landing sequence for the
AMAN system. The framework of our proposed method is shown in Figure 1, including
three primary steps.
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1. Prepare and preprocess the historical aircraft trajectories, detailed in Section 2.1.
2. Divide the preprocessed data into training and testing subsets, and construct a

random-forest-based ETA prediction model. The ETA is predicted using the model
for the testing data subset, detailed in Section 2.2.

3. After the landing sequence is sorted, an optimization model is proposed in Section 2.3
to obtain the STAs, and another optimization model using only the predicted ETA is
constructed for comparison.
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Table 1 presents the notations used in this paper.

Table 1. Notations.

Term Description

ZGHA Changsha Huanghua International Airport
TMA Terminal Maneuvering Area

EF Entry fix
ATA Actual time of arrival
ETA Estimated time of arrival
STA Scheduled time of arrival

Tj Delay time of aircraft j, if aircraft j arrives later than ETA
Fj Dwell time, the flight time from EF to the runway

FEF
xx%

The corresponding percentage of arrival flight time (from the entry fix to
the runway)

tATAEF
j ATA at a particular entry fix of aircraft j

tETA
j ETA of aircraft j

tSTA
j STA of aircraft j

tETAE
j Earliest ETA of aircraft j

tETAL
j Latest ETA of aircraft j
qk,j Binary decision variable. If aircraft k lands before aircraft j, qk,j = 1.
skj Wake vortex separation between aircraft k and aircraft j

2.1. Data Preparation

In this paper, data preparation contains the following four steps:

1. Data decoding: The raw data are aircraft track messages received from Surveil-
lance Data Processing System (SDPS). Based on the Eurocontrol Standard Document
(Category 062), aircraft trajectory information could be obtained by decoding the
track messages.

2. Data partitioning: The aircraft trajectories within the TMA could belong to departure,
overflight, or arrival aircraft. Our concern in this paper is the arrival trajectories,
which could be partitioned based on the flight plan information.

3. Data cleaning: This step eliminates abnormal data, such as the trajectories of testing
flights. Accordingly, the remaining data are referred to as the cleaned data.

4. Data grouping: After data cleaning, the remaining data are grouped into training and
testing sets for further ETA prediction and STA optimization.

2.2. ETA Prediction

ETA prediction can be converted into arrival flight time prediction of the arrival
aircraft within the TMA. It is because the ETA equals the actual time of arrival (ATA) at the
entry fix, added to the arrival flight time. Furthermore, Trivedi et al. [44] demonstrated that
combining clustering and regression could improve the ETA prediction accuracy, compared
with only using a single regression model over the whole training set. Therefore, the
training datasets are divided into subsets according to different entry fixes. Then, machine
learning models are trained to estimate the arrival flight time for each clustered data.

2.2.1. Model of ETA Prediction

In this section, this paper constructs a machine learning model to predict the ETAs.
Suppose n features are selected, and the target variable is the flight time of each arrival
aircraft, denoted by t.

After data preparation (in Section 2.1), several features (trajectory-related features) are
available from the data. Heaton [45] pointed out that a suitable feature set can improve
the accuracy and interpretability of the machine learning model. Therefore, this paper
takes the domain knowledge of the ATM field to extract the affecting factors (airport- and
operation-related) that significantly influence the arrival flight time. A detailed description
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of the features is provided in Table 2, including three categories: trajectory-, airport-, and
operation-related features. Among these features, categorical features are encoded using
the target encoding method [46]. In addition, the features, hour of the day and day of the
week, have been transformed by trigonometric functions to account for periodicity [47].
Furthermore, the TMA is divided into sectors for capturing operation situations according
to the ZGHA Aeronautic Information Publication (AIP), as shown in Figure 2. The con-
trollers usually use different strategies in each sector to maintain aircraft separation and
establish a landing sequence. Therefore, the prediction of flight time is related not only
to the number of aircraft in the whole TMA but also to which sector the arrival aircraft is
located in. Therefore, we divide the whole TMA into sectors for constructing the features
for further prediction.

Table 2. Feature Set for Flight Time Estimation.

Symbol Description Type Category

#fea 1 Altitude of the aircraft when entering the TMA N *

Trajectory
FTra

#fea 2 Latitude of the aircraft when entering the TMA N
#fea 3 Longitude of the aircraft when entering the TMA N
#fea 4 Ground speed of the aircraft when entering the TMA N
#fea 5 Heading of the aircraft when entering the TMA N

#fea 6 Aircraft type C

Airport
FAirp

#fea 8 Airline C
#fea 9 Hour of day N

#fea 11 Mean flight time during the previous 15 min (MT_15) N
#fea 12 Mean flight time via the same fix during the previous 15 min (MTS_15) N

#fea 13 Number of arrivals in the whole TMA N

Operation
FOper

#fea 14 Number of arrivals within sector A N
#fea 15 Number of arrivals within sector B N
#fea 16 Number of arrivals within sector C N
#fea 17 Number of arrivals within sector D N
#fea 18 Number of arrivals near the TMA (Extra_num) N

* C = categorical, N = numerical.
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For a set of training data containing m arrivals, the independent variables are denoted
by XTR = [x1, x2, · · · , xm]

T and the corresponding dependent variables are denoted by
tTR. Tree-based models have been proven to provide better prediction performance in ETA
prediction [48,49]. Specifically, this paper adopts the random forest model (RF) [50] due
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to several advantages: a small number of tuning parameters, appropriate for nonlinear
problems, and robust to outliers. Meanwhile, our previous work also proved that random
forest outperforms the other regression models in predicting ETAs when appropriate
features are selected [43].

Only a random part of the training set is used when building a forest tree. The
model training is performed on the corresponding training subsets to generate the different
decision tree models. Thus, each tree becomes a weak learner, while combining such
weak learners generates a random forest. Moreover, hyperparameters could significantly
impact model performance and generalization ability. Therefore, skillfully selecting the
hyperparameters might help to achieve unbiased machine learning models. This work
utilizes grid search and K-fold cross-validation for hyperparameters’ tuning.

2.2.2. Evaluation of ETA Prediction

The performance of ETA prediction is evaluated by Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE). Given a total of
m aircraft to predict, the definitions of these three indicators are as follows:

MAE = 1
m ∑m

j=1
∣∣tj − t̂j

∣∣ (1)

RMSE =
√

1
m ∑n

j=1
(
tj − t̂j

)2 (2)

MAPE = 100%
m ∑n

j=1

∣∣∣∣ tj−t̂j
tj

∣∣∣∣ (3)

where tj and t̂j are the actual and predicted flight time of jth arrival aircraft within the
TMA, respectively, while the predicted ETA of jth arrival is as follows:

tETA
j = tATAEF

j + t̂j (4)

where tATAEF
j is the actual time of arrival (ATA) at a particular entry fix.

2.3. STA Optimization

The STA optimization aims to find a landing sequence and a set of STAs to assist air
traffic controllers in managing the arrival aircraft. In practice, the optimization model is
embedded in the AMAN system. This paper considers two optimization strategies. The
first one uses the predicted ETAs as inputs and then optimizes STAs directly. In contrast, the
second one uses both ETAs and the landing sequence (generated by sorting the predicted
ETA) as inputs for further optimization.

2.3.1. Optimization Based on Predicted ETAs

Suppose there are a set of arrivals J = {1, · · · , j, · · · , m} for the arrival schedule.
Optimization based on the predicted ETAs tries to sequence and schedule the arrivals, while
the STA (tSTA

j ) of each aircraft j ∈ J is subject to wake vortex separation and time window
constraints. The wake vortex separation, denoted by si,j, ensures the safe separations

between the leading aircraft i and following aircraft j. The time window
[
tETAE

j , tETAL
j

]
constraints of the STA should be between them. Thus, the earliest and latest arrival
times could be defined as: tETAE

j = tATAEF
j + FEF

25%, tETAL
j = tATAEF

j + FEF
100%, where the

corresponding percentage of arrival flight time (FEF
xx%) from the entry fix to the runway

could be obtained based on statistical analysis.
In addition to the operational constraints, objective functions should also be concerned

from the perspectives of multiple stakeholders (e.g., air traffic controllers, airlines, airports,
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and governments). This paper selects total delay time ∑ Tj and total dwell time ∑ Fj as the
objective functions to balance the appeals of different stakeholders [23].

Tj = max
(

tSTA
j − tETA

j , 0
)

(5)

Fj = tSTA
j − tATAEF

j (6)

Thus, the formulation of the arrival schedule is as follows.

min α
m
∑

j=1
Tj + (1− α)

m
∑

j=1
Fj ∀j ∈ J (7)

s.t. Fj ≤ Fmax ∀j ∈ J (8)

tSTA
j ≥ tETAE

j ∀j ∈ J (9)

tSTA
j ≤ tETAL

j ∀j ∈ J (10)

qk,j + qj,k = 1 ∀k, j ∈ J; k > j (11)

tSTA
j ≥ tSTA

k + qkjskj − qjk

(
tETAL
k − tETAE

j

)
∀k, j ∈ J; k 6= j (12)

Tj ≥ tSTA
j − tETA

j ∀j ∈ J (13)

0 ≤ Tj ≤ tETAL
j − tETA

j ∀j ∈ J (14)

Fj = tSTA
j − tATAEF

j ∀j ∈ J (15)

In objective function (7), the weight α indicates the trade-off between dwell time
and delay. The dwell time in TMA is the time an aircraft spends from entering the TMA
to landing on the runway, which is the duration that air traffic controllers need to pay
close attention to in order to ensure separation among aircraft to avoid potential collisions.
Therefore, the total dwell time is a surrogate of the air traffic controller workload, and
minimizing this criterion reduces the air traffic controller workload. Please refer to [23] for
a detailed description. Constraint (8) confines the arrival flight time within a defined limit.
Constraints (9) and (10) qualify the landing time window constraint of the arrival aircraft:
Constraint (11) defines the landing sequence of arrival aircraft. Constraint (12) ensures the
wake vortex separations between the leading and following aircraft. Constraints (13)–(14)
define the delay of landing aircraft. Finally, Constraint (15) defines the dwell time. For
the convenience of the following description, the optimization strategy proposed in this
section is referred to as optimization with the predicted ETA, opt-pETA for short.

2.3.2. Optimization Based on Predicted ETA and Landing Sequence

After predicting the ETAs for a set of aircraft J, the landing sequence Seq can be
obtained based on:

Seq = Sort
(

tETA
j

)
∀j ∈ J (16)

where Sort(·) means sorting a set of values in non-descending order.
Then, the landing sequence and ETAs are used as inputs to optimize the STAs. Such a

strategy could significantly reduce the complexity of the ASSP. Thus, the formulation of the
arrival schedule is as follows.

min α
m
∑

j=1
Tj + (1− α)

m
∑

j=1
Fj ∀j ∈ J (17)

s.t. Fj ≤ Fmax ∀j ∈ J (18)

tSTA
j ≥ tETAE

j ∀j ∈ J (19)
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tSTA
j ≤ tETAL

j ∀j ∈ J (20)

tSTA
Seq.j+1 ≥ tSTA

Seq.j + sSeq.j, Seq.j+1 ∀j ∈ J (21)

Tj ≥ tSTA
j − tETA

j ∀j ∈ J (22)

0 ≤ Tj ≤ tETAL
j − tETA

j ∀j ∈ J (23)

Fj = tSTA
j − tATAEF

j ∀j ∈ J (24)

Compared to the strategy using only the predicted ETA, Constraints (11) and (12)
are replaced by Constraint (21). With this change, the number of constraints decreases
dramatically, which could significantly reduce the computational time. For the convenience
of the following description, the optimization strategy proposed in this section will be
referred to as optimization with the predicted ETA and landing sequence, opt-seq for short.

2.3.3. Performance of Optimization

In this paper, several indicators of ASSP are adopted to evaluate the performance of op-
timization, including average delay time (∑ Tj/m), average dwell time (∑ Fj/m), maximum
delay time (maxTj), and maximum dwell time (maxFj). As well as these efficiency-related
indicators, this paper also considers the deviation between the actual and scheduled land-
ing sequence. Such indicators of sequence deviation could quantify the workload of human
controllers since the controllers need to spend extra effort to follow the scheduled land-
ing sequence if they find the recommended sequence is far from the sequence based on
their experience.

The Kendall rank correlation is adopted to measure the sequence deviation between
the actual and scheduled landing sequence, which is defined as follows.

τ = N1−N2
m(m−1)/2 (25)

where N1 and N2 are the number of concordant and discordant pairs between the actual
and scheduled landing sequence, respectively, m is the number of arrival aircraft. Thus,
this coefficient varies between −1 (when the scheduled landing sequence is the inverse of
the actual one) and +1 (when the scheduled and actual landing sequences are identical).

The position shift (#Pos) is another indicator to measure the similarity between the
actual and scheduled landing sequence. For example, if the landing sequence of six arrivals
shifts from #1 #2 #3 #4 #5 #6 to #3 #2 #1 #4 #5 #6, the #Pos value is 2 (since the landing
position of aircraft #1 and #3 are changed).

3. Case Studies

This paper takes the actual operation of Changsha International Airport (ZGHA) to
evaluate the performance of the proposed opt-pETA and opt-seq scheduling strategies.
Figure 3 shows the arrival tracks on December 25, 2019 (238 landing aircraft). It can be
seen that there are five entry fixes, including BEMTA, LLC, LIG, OVTAN, and DAPRO. The
location of BEMTA is close to LLC, and the inbound traffic shares the same arrival route
via these two entry fixes. Therefore, BEMTA and LLC are regarded as the same entry fix
and labeled as LLC. In addition, there are two runways in ZGHA airport, which adopts the
segregated operating mode, i.e., one is for departure, and the other is for landing.

After data preparation (Section 2.1), 7141 historical radar tracks in December 2019
were obtained. The whole dataset was divided into a training set and a testing set, with
the former containing 5711 samples (80%) and the latter containing 1430 samples (20%),
respectively. Table 3 presents the number of samples in each dataset. Moreover, this paper
selects three real traffic scenarios (group 1, group 2, and group 3) from the testing set to
validate the scheduling strategies proposed in this paper. All of those real traffic scenarios
correspond to high traffic density.



Aerospace 2023, 10, 62 9 of 18

Aerospace 2023, 10, x FOR PEER REVIEW 9 of 20 
 

 

maximum delay time ( max jT ), and maximum dwell time ( max jF ). As well as these effi-
ciency-related indicators, this paper also considers the deviation between the actual and 
scheduled landing sequence. Such indicators of sequence deviation could quantify the 
workload of human controllers since the controllers need to spend extra effort to follow 
the scheduled landing sequence if they find the recommended sequence is far from the 
sequence based on their experience. 

The Kendall rank correlation is adopted to measure the sequence deviation between 
the actual and scheduled landing sequence, which is defined as follows. 

( )
1 2

1 2
τ −

=
−

N N
m m

 (25) 

where 1N  and 2N  are the number of concordant and discordant pairs between the ac-
tual and scheduled landing sequence, respectively, m  is the number of arrival aircraft. 
Thus, this coefficient varies between −1 (when the scheduled landing sequence is the in-
verse of the actual one) and +1 (when the scheduled and actual landing sequences are 
identical). 

The position shift ( # Pos ) is another indicator to measure the similarity between the 
actual and scheduled landing sequence. For example, if the landing sequence of six arri-
vals shifts from #1 #2 #3 #4 #5 #6 to #3 #2 #1 #4 #5 #6, the # Pos  value is 2 (since the landing 
position of aircraft #1 and #3 are changed). 

3. Case Studies 
This paper takes the actual operation of Changsha International Airport (ZGHA) to 

evaluate the performance of the proposed opt-pETA and opt-seq scheduling strategies. 
Figure 3 shows the arrival tracks on December 25, 2019 (238 landing aircraft). It can be 
seen that there are five entry fixes, including BEMTA, LLC, LIG, OVTAN, and DAPRO. 
The location of BEMTA is close to LLC, and the inbound traffic shares the same arrival 
route via these two entry fixes. Therefore, BEMTA and LLC are regarded as the same entry 
fix and labeled as LLC. In addition, there are two runways in ZGHA airport, which adopts 
the segregated operating mode, i.e., one is for departure, and the other is for landing. 

Longitude /  Deg.

Latitude
/  D

eg.

 
Figure 3. Heat map of arrival radar tracks for arrivals within ZGHA TMA. 

After data preparation (Section 2.1), 7141 historical radar tracks in December 2019 
were obtained. The whole dataset was divided into a training set and a testing set, with 
the former containing 5711 samples (80%) and the latter containing 1430 samples (20%), 
respectively. Table 3 presents the number of samples in each dataset. Moreover, this paper 
selects three real traffic scenarios (group 1, group 2, and group 3) from the testing set to 

Figure 3. Heat map of arrival radar tracks for arrivals within ZGHA TMA.

Table 3. Dataset splitting.

Entry Fix Training Set Testing Set Total Data

LLC 2348 593 2941
OVTAN 1131 282 1413

LIG 526 128 654
DAPRO 1706 427 2133

Total 5711 1430 7141

Four random forest models were constructed based on the corresponding training
subsets. The grid search and 5-fold cross-validation techniques were used for hyperparam-
eters’ tuning. The search space for these hyperparameters is shown in Table 4. The result
shows that the number of estimators is 500, the max features is 1, the max depth is 3, and
the min samples leaf is 1.

Table 4. Search space for hyperparameters’ tuning.

Hyperparameter Range of Grid

number of estimators {10, 20, . . . , 300, 500}
max features {0.6, 0.7, 0.8, 0.9, 1}
max depth {3, 4, 5, 6, 7, 8, 9}

min samples leaf {1, 2, . . . , 10}

After determining the optimal hyperparameters, the random forest models for each
subset were constructed based on the training set and validated based on the testing set.
Table 5 provides the results of ETA prediction performance on the testing sets. In addition,
the last row of Table 5 provides the average indicators of ETA prediction while regarding
the number of samples used in the testing set.

Table 5. Results of the ETA prediction.

Entry Fix MAE (s) RMSE (s) MAPE (%)

LLC 74.9 103.2 7.3
OVTAN 83.8 123.6 7.2

LIG 90.2 131.6 9.2
DAPRO 77.5 100.0 5.9
Average 77 109 6.9
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From Table 5, the best prediction performance for the arrival aircraft is via DAPRO.
However, the prediction MAE via DAPRO is not the best due to the longest distance of
the arrival route, which could be regarded as the most extended look ahead of time for
a prediction. Moreover, Shapley additive explanation (SHAP) values are used to explore
which features significantly affect the predicting performance. From the SHAP diagrams,
as shown in Figure 4, the number of arrivals within the TMA, the speed when entering the
TMA, and the number of arrivals within the corresponding sectors play a crucial role in
predicting the arrival flight time.
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The two proposed optimization strategies for arrival scheduling were evaluated
using three real traffic scenarios during rush hour. Then, as defined in Section 2.3, those
corresponding models were solved by CPLEX (IBM ILOG CPLEX Optimization studio
version 12.6) on a PC with a 3.60 GHz Intel Core i7-7700 processor and 16 GB RAM.

The weight α in Equation (7) is set as 0.5, and the maximum dwell time Fmax is set
as 1500. As presented in our previous study [23], when increasing Fmax (relaxing the
constraints (8) and (18)), the optimum of other criteria can be easily approached; when
changing the weight α (varying the importance to total delay time or total dwell time in
objective function), it is evident that criteria with higher weight will be reduced with the
increase in weight. In addition, this paper derives FEF

xx% from the quartile map of the flight
time via each entry fix of actual operation in December 2019.
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Subsequently, the performance of the two proposed scheduling methods, the opt-
pETA and the opt-seq, respectively, was compared with the First-Come-First-Served (FCFS)
strategy, the widely-used classic scheduling method [3], and the Hybrid Arrival Sequencing
method [42]. Finally, all three traffic scenarios in rush hour were evaluated and compared
for each strategy.

As mentioned in Section 2.3, the decision variables of the opt-pETA method are the
landing sequence and STAs. Therefore, they could be optimized based on the model
of Equations (7)–(15), where the random forest models in Section 2.2 predict the ETAs.
In contrast, the decision variables of the opt-seq strategy are the STAs only. Therefore,
they could be optimized based on the model of Equations (17)–(24), where Equation (16)
estimates the landing sequence and the random forest models predict the ETAs.

As for the FCFS scheduling strategy, the ETAs are obtained by using tETA
j = tATAEF

j + FEF
50%

while the landing sequence is obtained by Equation (16). Correspondingly, the STAs for
each arrival aircraft are: tSTA

Seq.j+1 = tSTA
Seq.j + sSeq.j, Seq.j+1 ∀j ∈ J.

As for the widely-used classic scheduling method [3], the decision variables are the
landing sequence and STAs. Therefore, they could be optimized based on the model of
Equations (7)–(15), where the ETAs could be obtained by tETA

j = tATAEF
j + FEF

50%.
As for Jung’s hybrid scheduling method, the landing sequence is obtained using a

preference learning approach, which emulates the working experience of controllers [42].
Then, the STAs could be optimized based on the model of Equations (17)–(24), where our
proposed random forest models predict the ETAs.

4. Results and Discussion
4.1. Results of Arrival Scheduling

Table 6 compares the indicators between the different scheduling methods. Moreover,
Figure 5 provides ATAs on each entry fix (denoted by black circles), ATAs on the runway
(denoted by red squares), and STAs on the runway (denoted by blue diamonds) by the
three scheduling strategies mentioned above, Beasley’s classic method (the upper part of
Figure 5), Jung’s hybrid method (the middle part of Figure 5), and our proposed opt-seq
strategy (the bottom part of Figure 5).

Table 6. Comparison of on arrival scheduling results by different methods.

Data Methods
Indicators

∑Tj/m
(s)

∑Fj/m
(s)

maxTj
(s)

maxFj
(s) #Pos τ

Group 1

FCFS 160.6 1247 730 1661 7 0.9
Beasley’s classic 46.9 1022 526 1500 8 0.78

Opt-pETA 0 1021 0 1316 6 0.9
Jung’s hybrid 81.1 1088 435 1380 4 0.93

Opt-seq 0 1062 0 1380 0 1

Group 2

FCFS 122 1200 672 1346 10 0.86
Beasley’s classic 4.75 863 67 1061 11 0.78

Opt-pETA 0 863 0 1083 11 0.8
Jung’s hybrid 16.6 961 174 1334 0 1

Opt-seq 0 937 0 1196 2 0.91

Group 3

FCFS 134.7 1212 586 1346 6 0.9
Beasley’s classic 0 865 0 1222 7 0.8

Opt-pETA 0 865 0 1077 7 0.83
Jung’s hybrid 30.4 973 266 1263 0 1

Opt-seq 0 973 0 1263 0 1
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Thus, the following conclusions can be drawn from Table 6 and Figure 5:

1. Comparison between the FCFS strategy and our proposed methods. Our proposed
methods outperform the FCFS in the operation efficiency indicators (average delay,
average dwell time, maximum delay, and maximum dwell time) and the operation
complexity indicators (Kendall rank correlation τ and position shift #Pos).

2. Comparison between the classic method and the opt-pETA method. These two
scheduling methods are both based on the model of Equations (7)–(15). The difference
lies in the ETAs since the former ETAs are obtained by statistical analysis, while the
latter is by random forest models. The opt-pETA strategy outperforms the classic
strategy in most indicators except for the maximum dwell time in Group 2. This result
demonstrates the importance of ETA prediction accuracy, indicating that the proposed
ETA prediction method could improve scheduling performance. It is all due to the
fact that our proposed opt-pETA method could improve the predicting accuracy by
considering the dynamic traffic situation and the human working experience.
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3. Comparison between Jung’s hybrid method and the proposed opt-seq method. These
two scheduling methods are both based on the model of Equations (17)–(24). The
difference lies in the landing sequence since the former landing sequence is obtained
by a preference learning approach, while the latter is by sorting the predicted ETAs.
The opt-seq method outperforms Jung’s hybrid method in most situations except for
the Kendall rank correlation and position shift in group 2.

4. Comparison between our proposed two methods. These two methods take the
same predicted ETAs using random forest models. However, the opt-pETA needs to
optimize the landing sequence and STAs simultaneously, while the opt-seq only needs
to optimize the STAs based on a given landing sequence (Equation (16)). Therefore,
as to the operation efficiency-related indicators, the opt-pETA strategy is a better
choice; as to the operation complexity-related indicators, the opt-seq strategy is a
better choice. Moreover, in terms of problem-solving efficiency, the opt-seq strategy is
undoubtedly more capable of real-time performance.

4.2. Analysis of Opt-pETA Method

This subsection explores the relationship between the accuracy of ETA prediction and
the performance of the opt-pETA method.

The accuracy of ETA prediction is first examined by gradually increasing the number
of features, as shown in Equations (26)–(28). The MAE and MAPE for ETA prediction are
presented in Figure 6 based on different feature sets. In addition, Figure 6 contains the
MAE and MAPE of the statistical values (tETA

j = tATAEF
j + FEF

50%).

F1 = [FTra] (26)

F2 =
[
FTra, FOper

]
(27)

F3 =
[
FTra, FAirp, FOper

]
(28)
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Figure 6 illustrates the error of the ETA by the classic scheduling method [3] with an
MAE of 259.3 s and MAPE of 24.6%. When gradually increasing the number of features,
the prediction accuracy could increase up to 77 s of MAE and 6.9% of MAPE, which shows
the effectiveness of the features proposed in Section 2.2.

Then take Group 1 as an example to explore the impact of ETA predicting accuracy
on the performance of the opt-pETA method. Finally, Table 7 compares the optimization
results between the classic method and opt-pETA.



Aerospace 2023, 10, 62 14 of 18

Table 7. Comparison of arrival scheduling under different accuracies of ETA prediction.

Strategy ETA Accuracy
Indicators

∑Tj/m
(s)

∑Fj/m
(s) τ

Beasley’s classic MAE: 259.3 46.9 1022 0.78

Opt-pETA

Random Forests (F1)
MAE: 133.4 18.2 1022 0.80

Random Forests (F2)
MAE: 92.1 1.56 1021 0.86

Random Forests (F3)
MAE: 78.8 0 1021 0.9

As shown in Table 7, due to the improvement in prediction accuracy, the average
delay and dwell time decrease, while the landing sequence gets closer to the actual landing
sequence, which indicates that improving the accuracy of ETA prediction could reduce the
deviation between the optimized and the actual landing sequence. Therefore, improving
the accuracy of ETA prediction could be an alternative method to learning the scheduling
strategy of ATCO [42], which could simultaneously improve the operation efficiency and
complexity indicators for the ASSP.

It is worth noting that some current studies [51,52] use aircraft performance models
to predict ETA and achieve satisfactory results. They usually concern a specific lateral
route or predefined optional routes for arrival aircraft. However, in the current operation,
aircraft seldom follow the standard arrival route due to radar vectoring. Thus, a regression
model may be better for catching the dynamic traffic situation and the human working
experience to reduce the deviation between the optimized and the actual landing sequence.
Nevertheless, there can be little doubt that the current studies [51,52] are more suitable for
the concept of trajectory-based operation.

4.3. Analysis of Opt-seq Method

This subsection explores the relationship between the accuracy of ETA prediction and
the performance of the opt-seq method.

The predicted landing sequence, derived from the predicted ETAs, significantly af-
fected the performance of the proposed opt-seq method. In this subsection, the accuracy of
the predicted landing sequence is assessed by the indicator of the position shift (# Pshift).
As shown in Figure 7, the scheduled landing sequence of the classic method (statistical
analysis, MAE: 259.3 s) and the scheduled landing sequence of opt-seq (random forest
model F3, MAE: 77 s) are compared to the actual landing sequence.
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For the landing sequence scheduled by the classic method, the maximum position shift
is three, and the total position shift is eight. Thus, while the accuracy of ETA prediction
is improved, the total position shift in opt-seq (estimating landing sequence based on
ETA prediction by F3) is decreased to two, suggesting that improving ETA prediction
could reduce the deviation between the reference and the actual landing sequence. After
optimization, according to Equations (17)–(24), the landing positions of AC#9 and AC#11
are exchanged, consistent with the actual landing sequence.

Furthermore, a scenario is selected to estimate the landing sequence based on the ETA
prediction by F3 in actual cases. The selected scenario is from Group 3, consisting of three
aircraft (AC#4, AC#6, and AC#7), which enter the TMA of ZGHA successively. Table 8
shows detailed information about those aircraft. Figure 8 provides snapshots of the traffic
scenario of these three aircraft in the TMA of ZGHA, including three scenes arranged in
chronological order.

Table 8. Information of the arrival aircraft in a selected scenario.

ID Flight ID Entry Fix Entry Time Flight Time ETA ATA

AC#4 “GCR6580” DAPRO 538 1243 1781 1841
AC#6 “KNA3019” LLC 759 1046 1805 1934
AC#7 “OKA2932” LIG 922 1172 2094 2020
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As shown in Figure 8a, two aircraft were waiting for landing when AC #4 entered
TMA via DAPRO fix. Based on the regression models, the predicted flight time of AC#4
was 1243 s, which was equal to the average flight time via DAPRO (1242 s).

As shown in Figure 8b, when AC#7 appeared via LIG, six aircraft were in the TMA
and waiting for landing. Thereupon, the predicted flight time of AC#7 was 1172 s, which
was higher than the average flight time via LIG (674 s). Accordingly, the ETAs of AC#4
and AC#7 are 1781 s and 2094 s, respectively. Therefore, based on Equation (16), AC#4
would land before AC#7. Conversely, if the average flight times via LIG were adopted,
AC#7 would land before AC#4, as shown in Figure 7.

Figure 8c shows that the controller guided AC#4 to follow the standard arrival route.
The actual flight time of AC#4 was close to the average flight time due to no additional
vectoring. In contrast, the controller delivered a “dog-leg” instruction to AC#7 for separa-
tion maintenance and sequence establishment, which inevitably increased the flight time.
Consequently, AC#4 landed on the runway before AC#7. Therefore, the proposed ETA
prediction method could better estimate the landing sequence and schedule the arrivals by
considering dynamic traffic situations and controllers’ working experiences.

5. Conclusions

The decision support tools aim to assist air traffic controllers in sequencing and
scheduling arrival aircraft. However, The ETA estimation method of the current decision
support tool does not consider the dynamic traffic situation and controllers’ behavior
factors. As a result, the estimated flight time would deviate significantly from the actual
flight time, and the corresponding scheduled landing sequence would also deviate from
the actual landing sequence.

This paper presents a data-driven method including two stages: prediction and
optimization. In the first stage, this paper employs data-driven regression models to
predict the ETA for each arrival and then determines the landing sequence for a set of
aircraft. In the second stage, this paper develops two optimization methods: opt-pETA and
opt-seq, to tackle the ASSP.

This paper also utilizes the actual historical data to examine the accuracy of the ETA
prediction and the benefits of the proposed data-driven method. The results indicate that
the data-driven ETA prediction method could obtain accurate ETAs, and the estimated
sequence is close to the actual sequence since the dynamic traffic situation and the human
working experience are considered. Moreover, our proposed methods are compared with
the widely-used optimization model in the literature. Finally, the comparison result shows
that our proposed opt-pETA and opt-seq methods can perform well in efficiency-related
and complexity-related indicators.

This research contributes to the upgrading of conventional decision support tools to
provide a suggested sequence that accommodates the traffic condition in TMA. The ETA
prediction model proposed in this paper can replace the trajectory prediction module in the
support tools to obtain a more accurate ETA. Then the data-driven method can be used as
the optimization module in support tools. More specifically, the opt-pETA model is used in
scenarios with high operational efficiency requirements, while the opt-seq model is applied
when safety is the top priority.

In future work, the authors will extend this method to combined arrival and departure
scheduling, multi-runway scheduling, and metroplex scenarios.
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